Search results for: parameter interactions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3972

Search results for: parameter interactions

222 Developing and Standardizing Individual Care Plan for Children in Conflict with Law in the State of Kerala

Authors: Kavitha Puthanveedu, Kasi Sekar, Preeti Jacob, Kavita Jangam

Abstract:

In India, The Juvenile Justice (Care and Protection of Children) Act, 2015, the law related to children alleged and found to be in conflict with law, proposes to address to the rehabilitation of children in conflict with law by catering to the basic rights by providing care and protection, development, treatment, and social re-integration. A major concern in addressing the issues of children in conflict with law in Kerala the southernmost state in India identified were: 1. Lack of psychological assessment for children in conflict with law, 2. Poor psychosocial intervention for children in conflict with law on bail, 3. Lack of psychosocial intervention or proper care and protection of CCL residing at observation and special home, 4. Lack convergence with systems related with mental health care. Aim: To develop individual care plan for children in conflict with law. Methodology: NIMHANS a premier Institute of Mental Health and Neurosciences, collaborated with Social Justice Department, Govt. of Kerala to address this issue by developing a participatory methodology to implement psychosocial care in the existing services by integrating the activities through multidisciplinary and multisectoral approach as per the Sec. 18 of JJAct 2015. Developing individual care plan: Key informant interviews, focus group discussion with multiple stakeholders consisting of legal officers, police, child protection officials, counselors, and home staff were conducted. Case studies were conducted among children in conflict with law. A checklist on 80 psychosocial problems among children in conflict with law was prepared with eight major issues identified through the quantitative process such as family and parental characteristic, family interactions and relationships, stressful life event, social and environmental factors, child’s individual characteristics, education, child labour and high-risk behavior. Standardised scales were used to identify the anxiety, caseness, suicidality and substance use among the children. This provided a background data understand the psychosocial problems experienced by children in conflict with law. In the second stage, a detailed plan of action was developed involving multiple stakeholders that include Special juvenile police unit, DCPO, JJB, and NGOs. The individual care plan was reviewed by a panel of 4 experts working in the area of children, followed by the review by multiple stakeholders in juvenile justice system such as Magistrates, JJB members, legal cum probation officers, district child protection officers, social workers and counselors. Necessary changes were made in the individual care plan in each stage which was pilot tested with 45 children for a period of one month and standardized for administering among children in conflict with law. Result: The individual care plan developed through scientific process was standardized and currently administered among children in conflict with law in the state of Kerala in the 3 districts that will be further implemented in other 14 districts. The program was successful in developing a systematic approach for the psychosocial intervention of children in conflict with law that can be a forerunner for other states in India.

Keywords: psychosocial care, individual care plan, multidisciplinary, multisectoral

Procedia PDF Downloads 254
221 Green Synthesis (Using Environment Friendly Bacteria) of Silver-Nanoparticles and Their Application as Drug Delivery Agents

Authors: Sutapa Mondal Roy, Suban K. Sahoo

Abstract:

The primary aim of this work is to synthesis silver nanoparticles (AgNPs) through environmentally benign routes to avoid any chemical toxicity related undesired side effects. The nanoparticles were stabilized with drug ciprofloxacin (Cp) and were studied for their effectiveness as drug delivery agent. Targeted drug delivery improves the therapeutic potential of drugs at the diseased site as well as lowers the overall dose and undesired side effects. The small size of nanoparticles greatly facilitates the transport of active agents (drugs) across biological membranes and allows them to pass through the smallest capillaries in the body that are 5-6 μm in diameter, and can minimize possible undesired side effects. AgNPs are non-toxic, inert, stable, and has a high binding capacity and thus can be considered as biomaterials. AgNPs were synthesized from the nutrient broth supernatant after the culture of environment-friendly bacteria Bacillus subtilis. The AgNPs were found to show the surface plasmon resonance (SPR) band at 425 nm. The Cp capped Ag nanoparticles formation was complete within 30 minutes, which was confirmed from absorbance spectroscopy. Physico-chemical nature of the AgNPs-Cp system was confirmed by Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) etc. The AgNPs-Cp system size was found to be in the range of 30-40 nm. To monitor the kinetics of drug release from the surface of nanoparticles, the release of Cp was carried out by careful dialysis keeping AgNPs-Cp system inside the dialysis bag at pH 7.4 over time. The drug release was almost complete after 30 hrs. During the drug delivery process, to understand the AgNPs-Cp system in a better way, the sincere theoretical investigation is been performed employing Density Functional Theory. Electronic charge transfer, electron density, binding energy as well as thermodynamic properties like enthalpy, entropy, Gibbs free energy etc. has been predicted. The electronic and thermodynamic properties, governed by the AgNPs-Cp interactions, indicate that the formation of AgNPs-Cp system is exothermic i.e. thermodynamically favorable process. The binding energy and charge transfer analysis implies the optimum stability of the AgNPs-Cp system. Thus, the synthesized Cp-Ag nanoparticles can be effectively used for biological purposes due to its environmentally benign routes of synthesis procedures, which is clean, biocompatible, non-toxic, safe, cost-effective, sustainable and eco-friendly. The Cp-AgNPs as biomaterials can be successfully used for drug delivery procedures due to slow release of drug from nanoparticles over a considerable period of time. The kinetics of the drug release show that this drug-nanoparticle assembly can be effectively used as potential tools for therapeutic applications. The ease of synthetic procedure, lack of possible chemical toxicity and their biological activity along with excellent application as drug delivery agent will open up vista of using nanoparticles as effective and successful drug delivery agent to be used in modern days.

Keywords: silver nanoparticles, ciprofloxacin, density functional theory, drug delivery

Procedia PDF Downloads 358
220 Hydro-Mechanical Characterization of PolyChlorinated Biphenyls Polluted Sediments in Interaction with Geomaterials for Landfilling

Authors: Hadi Chahal, Irini Djeran-Maigre

Abstract:

This paper focuses on the hydro-mechanical behavior of polychlorinated biphenyl (PCB) polluted sediments when stored in landfills and the interaction between PCBs and geosynthetic clay liners (GCL) with respect to hydraulic performance of the liner and the overall performance and stability of landfills. A European decree, adopted in the French regulation forbids the reintroducing of contaminated dredged sediments containing more than 0,64mg/kg Σ 7 PCBs to rivers. At these concentrations, sediments are considered hazardous and a remediation process must be adopted to prevent the release of PCBs into the environment. Dredging and landfilling polluted sediments is considered an eco-environmental remediation solution. French regulations authorize the storage of PCBs contaminated components with less than 50mg/kg in municipal solid waste facilities. Contaminant migration via leachate may be possible. The interactions between PCBs contaminated sediments and the GCL barrier present in the bottom of a landfill for security confinement are not known. Moreover, the hydro-mechanical behavior of stored sediments may affect the performance and the stability of the landfill. In this article, hydro-mechanical characterization of the polluted sediment is presented. This characterization led to predict the behavior of the sediment at the storage site. Chemical testing showed that the concentration of PCBs in sediment samples is between 1.7 and 2,0 mg/kg. Physical characterization showed that the sediment is organic silty sand soil (%Silt=65, %Sand=27, %OM=8) characterized by a high plasticity index (Ip=37%). Permeability tests using permeameter and filter press showed that sediment permeability is in the order of 10-9 m/s. Compressibility tests showed that the sediment is a very compressible soil with Cc=0,53 and Cα =0,0086. In addition, effects of PCB on the swelling behavior of bentonite were studied and the hydraulic performance of the GCL in interaction with PCBs was examined. Swelling tests showed that PCBs don’t affect the swelling behavior of bentonite. Permeability tests were conducted on a 1.0 m pilot scale experiment, simulating a storage facility. PCBs contaminated sediments were directly placed over a passive barrier containing GCL to study the influence of the direct contact of polluted sediment leachate with the GCL. An automatic water system has been designed to simulate precipitation. Effluent quantity and quality have been examined. The sediment settlements and the water level in the sediment have been monitored. The results showed that desiccation affected the behavior of the sediment in the pilot test and that laboratory tests alone are not sufficient to predict the behavior of the sediment in landfill facility. Furthermore, the concentration of PCB in the sediment leachate was very low ( < 0,013 µg/l) and that the permeability of the GCL was affected by other components present in the sediment leachate. Desiccation and cracks were the main parameters that affected the hydro-mechanical behavior of the sediment in the pilot test. In order to reduce these infects, the polluted sediment should be stored at a water content inferior to its shrinkage limit (w=39%). We also propose to conduct other pilot tests with the maximum concentration of PCBs allowed in municipal solid waste facility of 50 mg/kg.

Keywords: geosynthetic clay liners, landfill, polychlorinated biphenyl, polluted dredged materials

Procedia PDF Downloads 95
219 Human Facial Emotion: A Comparative and Evolutionary Perspective Using a Canine Model

Authors: Catia Correia Caeiro, Kun Guo, Daniel Mills

Abstract:

Despite its growing interest, emotions are still an understudied cognitive process and their origins are currently the focus of much debate among the scientific community. The use of facial expressions as traditional hallmarks of discrete and holistic emotions created a circular reasoning due to a priori assumptions of meaning and its associated appearance-biases. Ekman and colleagues solved this problem and laid the foundations for the quantitative and systematic study of facial expressions in humans by developing an anatomically-based system (independent from meaning) to measure facial behaviour, the Facial Action Coding System (FACS). One way of investigating emotion cognition processes is by applying comparative psychology methodologies and looking at either closely-related species (e.g. chimpanzees) or phylogenetically distant species sharing similar present adaptation problems (analogy). In this study, the domestic dog was used as a comparative animal model to look at facial expressions in social interactions in parallel with human facial expressions. The orofacial musculature seems to be relatively well conserved across mammal species and the same holds true for the domestic dog. Furthermore, the dog is unique in having shared the same social environment as humans for more than 10,000 years, facing similar challenges and acquiring a unique set of socio-cognitive skills in the process. In this study, the spontaneous facial movements of humans and dogs were compared when interacting with hetero- and conspecifics as well as in solitary contexts. In total, 200 participants were examined with FACS and DogFACS (The Dog Facial Action Coding System): coding tools across four different emotionally-driven contexts: a) Happiness (play and reunion), b) anticipation (of positive reward), c) fear (object or situation triggered), and d) frustration (negation of a resource). A neutral control was added for both species. All four contexts are commonly encountered by humans and dogs, are comparable between species and seem to give rise to emotions from homologous brain systems. The videos used in the study were extracted from public databases (e.g. Youtube) or published scientific databases (e.g. AM-FED). The results obtained allowed us to delineate clear similarities and differences on the flexibility of the facial musculature in the two species. More importantly, they shed light on what common facial movements are a product of the emotion linked contexts (the ones appearing in both species) and which are characteristic of the species, revealing an important clue for the debate on the origin of emotions. Additionally, we were able to examine movements that might have emerged for interspecific communication. Finally, our results are discussed from an evolutionary perspective adding to the recent line of work that supports an ancient shared origin of emotions in a mammal ancestor and defining emotions as mechanisms with a clear adaptive purpose essential on numerous situations, ranging from maintenance of social bonds to fitness and survival modulators.

Keywords: comparative and evolutionary psychology, emotion, facial expressions, FACS

Procedia PDF Downloads 410
218 An Exploratory Study of Changing Organisational Practices of Third-Sector Organisations in Mandated Corporate Social Responsibility in India

Authors: Avadh Bihari

Abstract:

Corporate social responsibility (CSR) has become a global parameter to define corporates' ethical and responsible behaviour. It was a voluntary practice in India till 2013, driven by various guidelines, which has become a mandate since 2014 under the Companies Act, 2013. This has compelled the corporates to redesign their CSR strategies by bringing in structures, planning, accountability, and transparency in their processes with a mandate to 'comply or explain'. Based on the author's M.Phil. dissertation, this paper presents the changes in organisational practices and institutional mechanisms of third-sector organisations (TSOs) with the theoretical frameworks of institutionalism and co-optation. It became an interesting case as India is the only country to have a law on CSR, which is not only mandating the reporting but the spending too. The space of CSR in India is changing rapidly and affecting multiple institutions, in the context of the changing roles of the state, market, and TSOs. Several factors such as stringent regulation on foreign funding, mandatory CSR pushing corporates to look out for NGOs, and dependency of Indian NGOs on CSR funds have come to the fore almost simultaneously, which made it an important area of study. Further, the paper aims at addressing the gap in the literature on the effects of mandated CSR on the functioning of TSOs through the empirical and theoretical findings of this study. The author had adopted an interpretivist position in this study to explore changes in organisational practices from the participants' experiences. Data were collected through in-depth interviews with five corporate officials, eleven officials from six TSOs, and two academicians, located at Mumbai and Delhi, India. The findings of this study show the legislation has institutionalised CSR, and TSOs get co-opted in the process of implementing mandated CSR. Seventy percent of the corporates implement their CSR projects through TSOs in India; this has affected the organisational practices of TSOs to a large extent. They are compelled to recruit expert workforce, create new departments for monitoring & evaluation, communications, and adopt management practices of project implementation from corporates. These are attempts to institutionalise the TSOs so that they can produce calculated results as demanded by corporates. In this process, TSOs get co-opted in a struggle to secure funds and lose their autonomy. The normative, coercive, and mimetic isomorphisms of institutionalism come into play as corporates are mandated to take up CSR, thereby influencing the organisational practices of TSOs. These results suggest that corporates and TSOs require an understanding of each other's work culture to develop mutual respect and work towards the goal of sustainable development of the communities. Further, TSOs need to retain their autonomy and understanding of ground realities without which they become an extension of the corporate-funder. For a successful CSR project, engagement beyond funding is required from corporate, through their involvement and not interference. CSR-led community development can be structured by management practices to an extent, but cannot overshadow the knowledge and experience of TSOs.

Keywords: corporate social responsibility, institutionalism, organisational practices, third-sector organisations

Procedia PDF Downloads 90
217 The Improved Therapeutic Effect of Trans-Cinnamaldehyde on Adipose-Derived Stem Cells without Chemical Induction

Authors: Karthyayani Rajamani, Yi-Chun Lin, Tung-Chou Wen, Jeanne Hsieh, Yi-Maun Subeq, Jen-Wei Liu, Po-Cheng Lin, Horng-Jyh Harn, Shinn-Zong Lin, Tzyy-Wen Chiou

Abstract:

Assuring cell quality is an essential parameter for the success of stem cell therapy, utilization of various components to improve this potential has been the primary goal of stem cell research. The aim of this study was not only to demonstrate the capacity of trans-cinnamaldehyde (TC) to reverse stress-induced senescence but also improve the therapeutic abilities of stem cells. Because of the availability and the promising application potential in regenerative medicine, adipose-derived stem cells (ADSCs) were chosen for the study. We found that H2O2 treatment resulted in the expression of senescence characteristics in the ADSCs, including decreased proliferation rate, increased senescence-associated- β-galactosidase (SA-β-gal) activity, decreased SIRT1 (silent mating type information regulation 2 homologs) expression and decreased telomerase activity. However, TC treatment was sufficient to rescue or reduce the effects of H2O2 induction, ultimately leading to an increased proliferation rate, a decrease in the percentage of SA-β-gal positive cells, upregulation of SIRT1 expression, and increased telomerase activity of the senescent ADSCs at the cellular level. Further recently it was observed that the ADSCs were treated with TC without induction of senescence, all the before said positives were observed. Moreover, a chemically induced liver fibrosis animal model was used to evaluate the functionality of these rescued cells in vivo. Liver dysfunction was established by injecting 200 mg/kg thioacetamide (TAA) intraperitoneally into Wistar rats every third day for 60 days. The experimental rats were separated into groups; normal group (rats without TAA induction), sham group (without ADSC transplantation), positive control group (transplanted with normal ADSCs); H2O2 group (transplanted with H2O2 -induced senescent ADSCs), H2O2+TC group (transplanted with ADSCs pretreated with H2O2 and then further treated with TC) and TC group (ADSC treated with TC without H2O2 treatment). In the transplantation group, 1 × 106 human ADSCs were introduced into each rat via direct liver injection. Based on the biochemical analysis and immunohistochemical staining results, it was determined that the therapeutic effects on liver fibrosis by the induced senescent ADSCs (H2O2 group) were not as significant as those exerted by the normal ADSCs (the positive control group). However, the H2O2+TC group showed significant reversal of liver damage when compared to the H2O2 group 1 week post-transplantation. Further ADSCs without H2O2 treatment but with just TC treatment performed much better than all the groups. These data confirmed that the TC treatment had the potential to improve the therapeutic effect of ADSCs. It is therefore suggested that TC has potential applications in maintaining stem cell quality and could possibly aid in the treatment of senescence-related disorders.

Keywords: senescence, SIRT1, adipose derived stem cells, liver fibrosis

Procedia PDF Downloads 229
216 Ethno-Philosophy: A Caring Approach to Research and Therapy in Humanities

Authors: Tammy Shel (Aboody)

Abstract:

The integration of philosophy with ethnography, i.e., ethno-philosophy, or any qualitative method, is multi-dimensional. It is, thus, vital to the discourse on caring in the philosophy of education, and in therapy. These two significant dimensions are focal in this proposal’s discussion. The integration of grounded data with philosophy can shed light on cultural, gender, socio-economic and political diversities in the relationships and interactions between and among individuals and societies. This approach can explain miscommunication and, eventually, violent conflicts. The ethno-philosophy study in this proposal focuses on the term caring, through case studies of 5 non-white male and female elementary school teachers in Los Angeles County. The study examined the teachers’ views on caring and, consequently, the implications on their pedagogy. Subsequently, this method turned out to also be a caring approach in therapy. Ethnographic data was juxtaposed with western philosophy. Research discussion unraveled transformable gaps between western patriarchal and feminist philosophy on caring, and that of the teachers. Multiple interpretations and practices of caring were found due to cultural, gender, and socio-economic-political differences. Likewise, two dominant categories emerged. The first is inclusive caring, which is perceived as an ideal, as the compass of humanity that aims towards emancipation from the shackles of inner and external violence. The second is tribal caring, which illuminates the inherently dialectical substantial diversity in the interpretations and praxes of caring. Such angles are absent or minor in traditional western literature. Both categories teach of the incessant dynamic definition of caring, and its subliminal and repressed mechanisms. The multi-cultural aspects can teach us, however, that despite the inclusive common ground we share on caring, and despite personal and social awareness of cultural and gender differences, the hegemonic ruling-class governs the standardized conventional interpretation of caring. Second is the dimension of therapy in ethno-philosophy. Each patient is like a case study per se, and is a self-ethnographer. Thus, the patient is the self-observer and data collector, and the therapist is the philosopher who helps deconstruct into fragments the consciousness that comprises our well-being and self-esteem and acceptance. Together, they both identify and confront hurdles that hinder the pursuit of a more composed attitude towards ourselves and others. Together, they study and re-organize these fragments into a more comprehensible and composed self-acceptance. Therefore, the ethno-philosophy method, which stems from a caring approach, confronts the internal and external conflicts that govern our relationships with others. It sheds light on the dark and subliminal spots in our minds and hearts that operate us. Unveiling the hidden spots helps identify a shared ground that can supersede miscommunication and conflicts among and between people. The juxtaposition of ethnography with philosophy, as a caring approach in education and therapy, emphasizes that planet earth is like a web. Hence, despite the common mechanism that stimulates a caring approach towards the other, ethno-philosophy can help undermine the ruling patriarchal oppressive forces that define and standardize caring relationships, and to subsequently bridge gaps between people.

Keywords: caring, philosophy of education, ethnography, therapy, research

Procedia PDF Downloads 98
215 Investigation of Processing Conditions on Rheological Features of Emulsion Gels and Oleogels Stabilized by Biopolymers

Authors: M. Sarraf, J. E. Moros, M. C. Sánchez

Abstract:

Oleogels are self-standing systems that are able to trap edible liquid oil into a tridimensional network and also help to use less fat by forming crystallization oleogelators. There are different ways to generate oleogelation and oil structuring, including direct dispersion, structured biphasic systems, oil sorption, and indirect method (emulsion-template). The selection of processing conditions as well as the composition of the oleogels is essential to obtain a stable oleogel with characteristics suitable for its purpose. In this sense, one of the ingredients widely used in food products to produce oleogels and emulsions is polysaccharides. Basil seed gum (BSG), with the scientific name Ocimum basilicum, is a new native polysaccharide with high viscosity and pseudoplastic behavior because of its high molecular weight in the food industry. Also, proteins can stabilize oil in water due to the presence of amino and carboxyl moieties that result in surface activity. Whey proteins are widely used in the food industry due to available, cheap ingredients, nutritional and functional characteristics such as emulsifier and a gelling agent, thickening, and water-binding capacity. In general, the interaction of protein and polysaccharides has a significant effect on the food structures and their stability, like the texture of dairy products, by controlling the interactions in macromolecular systems. Using edible oleogels as oil structuring helps for targeted delivery of a component trapped in a structural network. Therefore, the development of efficient oleogel is essential in the food industry. A complete understanding of the important points, such as the ratio oil phase, processing conditions, and concentrations of biopolymers that affect the formation and stability of the emulsion, can result in crucial information in the production of a suitable oleogel. In this research, the effects of oil concentration and pressure used in the manufacture of the emulsion prior to obtaining the oleogel have been evaluated through the analysis of droplet size and rheological properties of obtained emulsions and oleogels. The results show that the emulsion prepared in the high-pressure homogenizer (HPH) at higher pressure values has smaller droplet sizes and a higher uniformity in the size distribution curve. On the other hand, in relation to the rheological characteristics of the emulsions and oleogels obtained, the predominantly elastic character of the systems must be noted, as they present values of the storage modulus higher than those of losses, also showing an important plateau zone, typical of structured systems. In the same way, if steady-state viscous flow tests have been analyzed on both emulsions and oleogels, the result is that, once again, the pressure used in the homogenizer is an important factor for obtaining emulsions with adequate droplet size and the subsequent oleogel. Thus, various routes for trapping oil inside a biopolymer matrix with adjustable mechanical properties could be applied for the creation of the three-dimensional network in order to the oil absorption and creating oleogel.

Keywords: basil seed gum, particle size, viscoelastic properties, whey protein

Procedia PDF Downloads 43
214 Variation of Warp and Binder Yarn Tension across the 3D Weaving Process and its Impact on Tow Tensile Strength

Authors: Reuben Newell, Edward Archer, Alistair McIlhagger, Calvin Ralph

Abstract:

Modern industry has developed a need for innovative 3D composite materials due to their attractive material properties. Composite materials are composed of a fibre reinforcement encased in a polymer matrix. The fibre reinforcement consists of warp, weft and binder yarns or tows woven together into a preform. The mechanical performance of composite material is largely controlled by the properties of the preform. As a result, the bulk of recent textile research has been focused on the design of high-strength preform architectures. Studies looking at optimisation of the weaving process have largely been neglected. It has been reported that yarns experience varying levels of damage during weaving, resulting in filament breakage and ultimately compromised composite mechanical performance. The weaving parameters involved in causing this yarn damage are not fully understood. Recent studies indicate that poor yarn tension control may be an influencing factor. As tension is increased, the yarn-to-yarn and yarn-to-weaving-equipment interactions are heightened, maximising damage. The correlation between yarn tension variation and weaving damage severity has never been adequately researched or quantified. A novel study is needed which accesses the influence of tension variation on the mechanical properties of woven yarns. This study has looked to quantify the variation of yarn tension throughout weaving and sought to link the impact of tension to weaving damage. Multiple yarns were randomly selected, and their tension was measured across the creel and shedding stages of weaving, using a hand-held tension meter. Sections of the same yarn were subsequently cut from the loom machine and tensile tested. A comparison study was made between the tensile strength of pristine and tensioned yarns to determine the induced weaving damage. Yarns from bobbins at the rear of the creel were under the least amount of tension (0.5-2.0N) compared to yarns positioned at the front of the creel (1.5-3.5N). This increase in tension has been linked to the sharp turn in the yarn path between bobbins at the front of the creel and creel I-board. Creel yarns under the lower tension suffered a 3% loss of tensile strength, compared to 7% for the greater tensioned yarns. During shedding, the tension on the yarns was higher than in the creel. The upper shed yarns were exposed to a decreased tension (3.0-4.5N) compared to the lower shed yarns (4.0-5.5N). Shed yarns under the lower tension suffered a 10% loss of tensile strength, compared to 14% for the greater tensioned yarns. Interestingly, the most severely damaged yarn was exposed to both the largest creel and shedding tensions. This study confirms for the first time that yarns under a greater level of tension suffer an increased amount of weaving damage. Significant variation of yarn tension has been identified across the creel and shedding stages of weaving. This leads to a variance of mechanical properties across the woven preform and ultimately the final composite part. The outcome from this study highlights the need for optimised yarn tension control during preform manufacture to minimize yarn-induced weaving damage.

Keywords: optimisation of preform manufacture, tensile testing of damaged tows, variation of yarn weaving tension, weaving damage

Procedia PDF Downloads 206
213 Survey Study of Key Motivations and Drivers for Students to Enroll in Online Programs of Study

Authors: Tina Stavredes

Abstract:

Increasingly borderless learning opportunities including online learning are expanding. Singapore University of Social Science (SUSS) conducted research in February of 2017 to determine the level of consumer interest in undertaking a completely online distance learning degree program across three countries in the Asian Pacific region. The target audience was potential bachelor degree and post-degree students from Malaysia, Indonesia, and Vietnam. The results gathered were used to assess the market size and ascertain the business potential of online degree programs in Malaysia, Indonesia and Vietnam. Secondly, the results were used to determine the most receptive markets to prioritise entry and identify the most receptive student segments. In order to achieve the key outcomes, the key points of understanding were as follows: -Motivations for higher education & factors that influence the choice of institution, -Interest in online learning, -Interest in online learning from a Singapore university relative to other foreign institutions, -Key drivers and barriers of interest in online learning. An online survey was conducted from from 7th Feb 2017 to 27th Feb 2017 amongst n=600 respondents aged 21yo-45yo, who have a basic command of English, A-level qualifications and above, and who have an intent to further their education in the next 12 months. Key findings from the study regarding enrolling in an online program include the need for a marriage between intrinsic and extrinsic motivation factors and the flexibility and support offered in an online program. Overall, there was a high interest for online learning. Survey participants stated they are intrinsically motivated to learn because of their interest in the program of study and the need for extrinsic rewards including opportunities for employment or salary increment in their current job. Seven out of ten survey participants reported they are motivated to further their education and expand their knowledge to become more employable. Eight in ten claims that the feasibility of furthering their education depends on cost and maintaining a work-life balance. The top 2 programs of interest are business and information and communication technology. They describe their choice of university as a marriage of both motivational and feasibility factors including cost, choice, quality of support facilities, and the reputation of the institution. Survey participants reported flexibility as important and stated that appropriate support assures and grows their intent to enrol in an online program. Respondents also reported the importance of being able to work while studying as the main perceived advantage of online learning. Factors related to the choice of an online university emphasized the quality of support services. Despite concerns, overall there was a high interest for online learning. One in two expressed strong intent to enrol in an online programme of study. However, unfamiliarity with online learning is a concern including the concern with the lack of face-to-face interactions. Overall, the findings demonstrated an interest in online learning. A main driver was the ability to earn a recognised degree while still being able to be with the family and the ability to achieve a ‘better’ early career growth.

Keywords: distance education, student motivations, online learning, online student needs

Procedia PDF Downloads 104
212 Circulating Public Perception on Agroforestry: Discourse Networks Analysis Using Social Media and Online News Media in Four Countries of the Sahel Region

Authors: Luisa Müting, Wisnu Harto Adiwijoyo

Abstract:

Agroforestry systems transform the agricultural landscapes in the Sahel region of Africa, providing food and farming products consumed for subsistence or sold for income. In the incrementally dry climate of the Sahel region, the spreading of agroforestry practices is integral for policymaker efforts to counteract land degradation and provide soil restoration in the region. Several measures on agroforestry practices have been implemented in the region by governmental and non-governmental institutions in recent years. However, despite the efforts, past research shows that awareness of how policies and interventions are being consumed and perceived by the public remains low. Therefore, interpreting public policy dilemmas by analyzing the public perception regarding agroforestry concepts and practices is necessary. Public perceptions and discourses can be an essential driver or constraint for the adoption of agroforestry practices in the region. Thus, understanding the public discourse behavior of crucial stakeholders could assist policymakers in developing inclusive and contextual policies that are relevant to the context of agroforestry adoption in Sahel region. To answer how information about agroforestry spreads and is perceived by the public. As internet usage increased drastically over the past decade, reaching a share of 33 percent of the population being connected to the internet, this research is based on online conversation data. Social media data from Facebook are gathered daily between April 2021 and April 2022 in Djibouti, Senegal, Mali, and Nigeria based on their share of active internet users compared to other countries in the Sahel region. A systematic methodology was applied to the extracted social media using discourse network analysis (DNA). This study then clustered the data by the types of agroforestry practices, sentiments, and country. Additionally, this research extracted the text data from online news media during the same period to pinpoint events related to the topic of agroforestry. The preliminary result indicates that tree management, crops, and livestock integration, diversifying species and genetic resources, and focusing on interactions and productivity across the agricultural system; are the most notable keywords in agroforestry-related conversations within the four countries in the Sahel region. Additionally, approximately 84 percent of the discussions were still dominated by big actors, such as NGO or government actors. Furthermore, as a subject of communication within agroforestry discourse, the Great Green Wall initiative generates almost 60 percent positive sentiment within the captured social media data, effectively having a more significant outreach than general agroforestry topics. This study provides an understanding for scholars and policymakers with a springboard for further research or policy design on agroforestry in the four countries of the Sahel region with systematically uncaptured novel data from the internet.

Keywords: sahel, djibouti, senegal, mali, nigeria, social networks analysis, public discourse analysis, sentiment analysis, content analysis, social media, online news, agroforestry, land restoration

Procedia PDF Downloads 69
211 Outdoor Thermal Comfort Strategies: The Case of Cool Facades

Authors: Noelia L. Alchapar, Cláudia C. Pezzuto, Erica N. Correa

Abstract:

Mitigating urban overheating is key to achieving the environmental and energy sustainability of cities. The management of the optical properties of the materials that make up the urban envelope -roofing, pavement, and facades- constitutes a profitable and effective tool to improve the urban microclimate and rehabilitate urban areas. Each material that makes up the urban envelope has a different capacity to reflect received solar radiation, which alters the fraction of solar radiation absorbed by the city. However, the paradigm of increasing solar reflectance in all areas of the city without distinguishing their relative position within the urban canyon can cause serious problems of overheating and discomfort among its inhabitants. The hypothesis that supports the research postulates that not all reflective technologies that contribute to urban radiative cooling favor the thermal comfort conditions of pedestrians to equal measure. The objective of this work is to determine to what degree the management of the optical properties of the facades modifies outdoor thermal comfort, given that the mitigation potential of materials with high reflectance in facades is strongly conditioned by geographical variables and by the geometric characteristics of the urban profile aspect ratio (H/W). This research was carried out under two climatic contexts, that of the city of Mendoza-Argentina and that of the city of Campinas-Brazil, according to the Köppen climate classification: BWk and Cwa, respectively. Two areas in two different climatic contexts (Mendoza - Argentina and Campinas - Brazil) were selected. Both areas have comparable urban morphology patterns. These areas are located in a region with low horizontal building density and residential zoning. The microclimatic conditions were monitored during the summer period with temperature and humidity fixed sensors inside vial channels. The microclimate model was simulated in ENVI-Met V5. A grid resolution of 3.5 x 3.5 x 3.5m was used for both cities, totaling an area of 145x145x30 grids. Based on the validated theoretical model, ten scenarios were simulated, modifying the height of buildings and the solar reflectivity of facades. The solar reflectivity façades ranges were: low (0.3) and high (0.75). The density scenarios range from 1th to the 5th level. The study scenarios' performance was assessed by comparing the air temperature, physiological equivalent temperature (PET), and thermal climate index (UTCI). As a result, it is observed that the behavior of the materials of the urban outdoor space depends on complex interactions. Many urban environmental factors influence including constructive characteristics, urban morphology, geographic locations, local climate, and so forth. The role of the vertical urban envelope is decisive for the reduction of urban overheating. One of the causes of thermal gain is the multiple reflections within the urban canyon, which affects not only the air temperature but also the pedestrian thermal comfort. One of the main findings of this work leads to the remarkable importance of considering both the urban warming and the thermal comfort aspects of pedestrians in urban mitigation strategies.

Keywords: materials facades, solar reflectivity, thermal comfort, urban cooling

Procedia PDF Downloads 65
210 Humanitarian Storytelling through Photographs with and for Resettled Refugees in Wellington

Authors: Ehsan K. Hazaveh

Abstract:

This research project explores creative methods of storytelling through photography to portray a vulnerable and marginalised community: former refugees living in Wellington, New Zealand. The project explores photographic representational techniques that can not only empower and give voice to those communities but also challenge dominant stereotypes about refugees and support humanitarian actions. The aims of this study are to develop insights surrounding issues associated with the photographic representation of refugees and to explore the collaborative construction of possible counter-narratives that might lead to the formulation of a practice framework for representing refugees using photography. In other words, the goal of this study is to explore representational and narrative strategies that frame refugees as active community members and as individuals with specific histories and expertise. These counter-narratives will bring the diversity of refugees to the surface by offering personal stories, contextualising their experience, raising awareness about the plight and human rights of the refugee community in New Zealand, evoking empathy and, therefore, facilitating the process of social change. The study has designed a photographic narrative framework by determining effective methods of photo storytelling, framing, and aesthetic techniques, focusing on different ways of taking, selecting, editing and curating photographs. Photo elicitation interviews have been used to ‘explore’, ‘produce’ and ‘co-curate’ the counter-narrative along with participants. Photo elicitation is a qualitative research method that employs images to evoke data in order to find out how other people experience their world - the researcher shows photographs to the participant and asks open-ended questions to get them to talk about their life experiences and the world around them. The qualitative data have been collected and produced through interactions with four former refugees living in Wellington, New Zealand. In this way, this project offers a unique account of their conditions and basic knowledge about their living experience and their stories. The participants of this study have engaged with PhotoVoice, a photo elicitation methodology that employs photography and storytelling, to share activities, emotions, hopes, and aspects of their lived experiences. PhotoVoice was designed to empower members of marginalised populations. It involves a series of meeting sessions, in which participants share photographs they have taken and discuss stories about the photographs to identify, represent, and enhance the issues important to their lives and communities. Finally, the data provide a basis for systematically producing visual counter-narratives that highlight the experiences of former- refugees. By employing these methods, refugees can represent their world as well as interpret it. The process of developing this research framing has enabled the development of powerful counter-narratives that challenge prevailing stereotypical depictions which in turn have the potential to shape improved humanitarian outcomes, shifts in public attitudes and political perspectives in New Zealand.

Keywords: media, photography, refugees, photo-elicitation, storytelling

Procedia PDF Downloads 115
209 Nondestructive Monitoring of Atomic Reactions to Detect Precursors of Structural Failure

Authors: Volodymyr Rombakh

Abstract:

This article was written to substantiate the possibility of detecting the precursors of catastrophic destruction of a structure or device and stopping operation before it. Damage to solids results from breaking the bond between atoms, which requires energy. Modern theories of strength and fracture assume that such energy is due to stress. However, in a letter to W. Thomson (Lord Kelvin) dated December 18, 1856, J.C. Maxwell provided evidence that elastic energy cannot destroy solids. He proposed an equation for estimating a deformable body's energy, equal to the sum of two energies. Due to symmetrical compression, the first term does not change, but the second term is distortion without compression. Both types of energy are represented in the equation as a quadratic function of strain, but Maxwell repeatedly wrote that it is not stress but strain. Furthermore, he notes that the nature of the energy causing the distortion is unknown to him. An article devoted to theories of elasticity was published in 1850. Maxwell tried to express mechanical properties with the help of optics, which became possible only after the creation of quantum mechanics. However, Maxwell's work on elasticity is not cited in the theories of strength and fracture. The authors of these theories and their associates are still trying to describe the phenomena they observe based on classical mechanics. The study of Faraday's experiments, Maxwell's and Rutherford's ideas, made it possible to discover a previously unknown area of electromagnetic radiation. The properties of photons emitted in this reaction are fundamentally different from those of photons emitted in nuclear reactions and are caused by the transition of electrons in an atom. The photons released during all processes in the universe, including from plants and organs in natural conditions; their penetrating power in metal is millions of times greater than that of one of the gamma rays. However, they are not non-invasive. This apparent contradiction is because the chaotic motion of protons is accompanied by the chaotic radiation of photons in time and space. Such photons are not coherent. The energy of a solitary photon is insufficient to break the bond between atoms, one of the stages of which is ionization. The photographs registered the rail deformation by 113 cars, while the Gaiger Counter did not. The author's studies show that the cause of damage to a solid is the breakage of bonds between a finite number of atoms due to the stimulated emission of metastable atoms. The guarantee of the reliability of the structure is the ratio of the energy dissipation rate to the energy accumulation rate, but not the strength, which is not a physical parameter since it cannot be measured or calculated. The possibility of continuous control of this ratio is due to the spontaneous emission of photons by metastable atoms. The article presents calculation examples of the destruction of energy and photographs due to the action of photons emitted during the atomic-proton reaction.

Keywords: atomic-proton reaction, precursors of man-made disasters, strain, stress

Procedia PDF Downloads 62
208 Assessing the Efficiency of Pre-Hospital Scoring System with Conventional Coagulation Tests Based Definition of Acute Traumatic Coagulopathy

Authors: Venencia Albert, Arulselvi Subramanian, Hara Prasad Pati, Asok K. Mukhophadhyay

Abstract:

Acute traumatic coagulopathy in an endogenous dysregulation of the intrinsic coagulation system in response to the injury, associated with three-fold risk of poor outcome, and is more amenable to corrective interventions, subsequent to early identification and management. Multiple definitions for stratification of the patients' risk for early acute coagulopathy have been proposed, with considerable variations in the defining criteria, including several trauma-scoring systems based on prehospital data. We aimed to develop a clinically relevant definition for acute coagulopathy of trauma based on conventional coagulation assays and to assess its efficacy in comparison to recently established prehospital prediction models. Methodology: Retrospective data of all trauma patients (n = 490) presented to our level I trauma center, in 2014, was extracted. Receiver operating characteristic curve analysis was done to establish cut-offs for conventional coagulation assays for identification of patients with acute traumatic coagulopathy was done. Prospectively data of (n = 100) adult trauma patients was collected and cohort was stratified by the established definition and classified as "coagulopathic" or "non-coagulopathic" and correlated with the Prediction of acute coagulopathy of trauma score and Trauma-Induced Coagulopathy Clinical Score for identifying trauma coagulopathy and subsequent risk for mortality. Results: Data of 490 trauma patients (average age 31.85±9.04; 86.7% males) was extracted. 53.3% had head injury, 26.6% had fractures, 7.5% had chest and abdominal injury. Acute traumatic coagulopathy was defined as international normalized ratio ≥ 1.19; prothrombin time ≥ 15.5 s; activated partial thromboplastin time ≥ 29 s. Of the 100 adult trauma patients (average age 36.5±14.2; 94% males), 63% had early coagulopathy based on our conventional coagulation assay definition. Overall prediction of acute coagulopathy of trauma score was 118.7±58.5 and trauma-induced coagulopathy clinical score was 3(0-8). Both the scores were higher in coagulopathic than non-coagulopathic patients (prediction of acute coagulopathy of trauma score 123.2±8.3 vs. 110.9±6.8, p-value = 0.31; trauma-induced coagulopathy clinical score 4(3-8) vs. 3(0-8), p-value = 0.89), but not statistically significant. Overall mortality was 41%. Mortality rate was significantly higher in coagulopathic than non-coagulopathic patients (75.5% vs. 54.2%, p-value = 0.04). High prediction of acute coagulopathy of trauma score also significantly associated with mortality (134.2±9.95 vs. 107.8±6.82, p-value = 0.02), whereas trauma-induced coagulopathy clinical score did not vary be survivors and non-survivors. Conclusion: Early coagulopathy was seen in 63% of trauma patients, which was significantly associated with mortality. Acute traumatic coagulopathy defined by conventional coagulation assays (international normalized ratio ≥ 1.19; prothrombin time ≥ 15.5 s; activated partial thromboplastin time ≥ 29 s) demonstrated good ability to identify coagulopathy and subsequent mortality, in comparison to the prehospital parameter-based scoring systems. Prediction of acute coagulopathy of trauma score may be more suited for predicting mortality rather than early coagulopathy. In emergency trauma situations, where immediate corrective measures need to be taken, complex multivariable scoring algorithms may cause delay, whereas coagulation parameters and conventional coagulation tests will give highly specific results.

Keywords: trauma, coagulopathy, prediction, model

Procedia PDF Downloads 155
207 Gamifying Content and Language Integrated Learning: A Study Exploring the Use of Game-Based Resources to Teach Primary Mathematics in a Second Language

Authors: Sarah Lister, Pauline Palmer

Abstract:

Research findings presented within this paper form part of a larger scale collaboration between academics at Manchester Metropolitan University and a technology company. The overarching aims of this project focus on developing a series of game-based resources to promote the teaching of aspects of mathematics through a second language (L2) in primary schools. This study explores the potential of game-based learning (GBL) as a dynamic way to engage and motivate learners, making learning fun and purposeful. The research examines the capacity of GBL resources to provide a meaningful and purposeful context for CLIL. GBL is a powerful learning environment and acts as an effective vehicle to promote the learning of mathematics through an L2. The fun element of GBL can minimise stress and anxiety associated with mathematics and L2 learning that can create barriers. GBL provides one of the few safe domains where it is acceptable for learners to fail. Games can provide a life-enhancing experience for learners, revolutionizing the routinized ways of learning through fusing learning and play. This study argues that playing games requires learners to think creatively to solve mathematical problems, using the L2 in order to progress, which can be associated with the development of higher-order thinking skills and independent learning. GBL requires learners to engage appropriate cognitive processes with increased speed of processing, sensitivity to environmental inputs, or flexibility in allocating cognitive and perceptual resources. At surface level, GBL resources provide opportunities for learners to learn to do things. Games that fuse subject content and appropriate learning objectives have the potential to make learning academic subjects more learner-centered, promote learner autonomy, easier, more enjoyable, more stimulating and engaging and therefore, more effective. Data includes observations of the children playing the games and follow up group interviews. Given that learning as a cognitive event cannot be directly observed or measured. A Cognitive Discourse Functions (CDF) construct was used to frame the research, to map the development of learners’ conceptual understanding in an L2 context and as a framework to observe the discursive interactions that occur learner to learner and between learner and teacher. Cognitively, the children were required to engage with mathematical content, concepts and language to make decisions quickly, to engage with the gameplay to reason, solve and overcome problems and learn through experimentation. The visual elements of the games supported the learning of new concepts. Children recognised the value of the games to consolidate their mathematical thinking and develop their understanding of new ideas. The games afforded them time to think and reflect. The teachers affirmed that the games provided meaningful opportunities for the learners to practise the language. The findings of this research support the view that using the game-based resources supported children’s grasp of mathematical ideas and their confidence and ability to use the L2. Engaging with the content and language through the games led to deeper learning.

Keywords: CLIL, gaming, language, mathematics

Procedia PDF Downloads 111
206 The Cadence of Proximity: Indigenous Resilience as Caring for Country-in-the-City

Authors: Jo Anne Rey

Abstract:

Caring for Country (Ngurrain Dharug language) is core to Aboriginal identity, Law/Lore, practice, and resilience within the continent called ‘Australia’. It is the basis of thousands of years of sustainability. However, when Ngurra is a city known as Sydney, due to 235 years of colonial impact, caring for the Country is limited, being controlled by the State and private ownership of the land title. Recent research indicates that localised Indigenous activism is most successful when community members are geographically proximate to the presences and places of connection, caring, and belonging. This article frames these findings through the cadence that proximity provides. This presentation is centred on the proximate agency that is being exercised by Dharug community through three significant sites within the Sydney basin. Those sites include, firstly, Shaw’s Creek Aboriginal Place, at the foot of the Blue Mountains in far western Sydney. Second inclusion is the site of Blacktown Native Institution, that was the part of the authoritarian colonial governance of British Governor Lachlan Macquarie (after who Macquarie University is named), which saw the beginnings of the removal of children from their families and culture to ‘civilize’ them. The third site is that of the so-called Brown’s Waterhole in the State government administered Lane Cove National Park. Each of these sites is being activated through Dharug and, more broadly, Aboriginalways of knowing, doing, and being. These ways involvethe land, water, wind, and star-based ecologies interwoven with traditional transgenerational storying of the presences (Ancestral and spiritual) creating them. Activations include, but are not limited to, the return of cultural fire for reviving plants, soils, animals, and birds. These fire practices have traditionally been at the basis of sustainable, regenerative biodiversity. These practices involve the literacy of reading Ngurra and the seasonal interactions across the ecologies. Together, they both care for the Country and support humanity, and have done so across thousands of years. However, when the cost of real-estate and rental accommodation prevents community members from being able to live on Dharug Ngurra when bureaucratic governance restricts and/or excludes traditional custodial relationships, and when private treaty land title destroys the presences and places while disconnecting people from their Ancestral practices, it becomes clear that caring for Country is only possible when the community can afford to live nearby. Recognising the cadence of proximityas the agency that underpinscaring for Country-in-the-city, sustainable change opportunities don’t have to only focus on regional and remote areas. Urban-based Aboriginal relationality offers an alternative to the unsustainable practices that underpin human-centric disconnection. Weaving Indigenous cadence offers opportunities for sustainable futures even when facing the extremes of climate changing catastrophes.

Keywords: australian aboriginal, biocultural knowledges, climate change, dharug ngurra, sustainability, resilience

Procedia PDF Downloads 64
205 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator

Authors: Yildiz Stella Dak, Jale Tezcan

Abstract:

Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.

Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection

Procedia PDF Downloads 305
204 The Asymptotic Hole Shape in Long Pulse Laser Drilling: The Influence of Multiple Reflections

Authors: Torsten Hermanns, You Wang, Stefan Janssen, Markus Niessen, Christoph Schoeler, Ulrich Thombansen, Wolfgang Schulz

Abstract:

In long pulse laser drilling of metals, it can be demonstrated that the ablation shape approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from ultra short pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in long pulse drilling of metals is identified, a model for the description of the asymptotic hole shape numerically implemented, tested and clearly confirmed by comparison with experimental data. The model assumes a robust process in that way that the characteristics of the melt flow inside the arising melt film does not change qualitatively by changing the laser or processing parameters. Only robust processes are technically controllable and thus of industrial interest. The condition for a robust process is identified by a threshold for the mass flow density of the assist gas at the hole entrance which has to be exceeded. Within a robust process regime the melt flow characteristics can be captured by only one model parameter, namely the intensity threshold. In analogy to USP ablation (where it is already known for a long time that the resulting hole shape results from a threshold for the absorbed laser fluency) it is demonstrated that in the case of robust long pulse ablation the asymptotic shape forms in that way that along the whole contour the absorbed heat flux density is equal to the intensity threshold. The intensity threshold depends on the special material and radiation properties and has to be calibrated be one reference experiment. The model is implemented in a numerical simulation which is called AsymptoticDrill and requires such a few amount of resources that it can run on common desktop PCs, laptops or even smart devices. Resulting hole shapes can be calculated within seconds what depicts a clear advantage over other simulations presented in literature in the context of industrial every day usage. Against this background the software additionally is equipped with a user-friendly GUI which allows an intuitive usage. Individual parameters can be adjusted using sliders while the simulation result appears immediately in an adjacent window. A platform independent development allow a flexible usage: the operator can use the tool to adjust the process in a very convenient manner on a tablet during the developer can execute the tool in his office in order to design new processes. Furthermore, at the best knowledge of the authors AsymptoticDrill is the first simulation which allows the import of measured real beam distributions and thus calculates the asymptotic hole shape on the basis of the real state of the specific manufacturing system. In this paper the emphasis is placed on the investigation of the effect of multiple reflections on the asymptotic hole shape which gain in importance when drilling holes with large aspect ratios.

Keywords: asymptotic hole shape, intensity threshold, long pulse laser drilling, robust process

Procedia PDF Downloads 190
203 Synthesis of Carbon Nanotubes from Coconut Oil and Fabrication of a Non Enzymatic Cholesterol Biosensor

Authors: Mitali Saha, Soma Das

Abstract:

The fabrication of nanoscale materials for use in chemical sensing, biosensing and biological analyses has proven a promising avenue in the last few years. Cholesterol has aroused considerable interest in recent years on account of its being an important parameter in clinical diagnosis. There is a strong positive correlation between high serum cholesterol level and arteriosclerosis, hypertension, and myocardial infarction. Enzyme-based electrochemical biosensors have shown high selectivity and excellent sensitivity, but the enzyme is easily denatured during its immobilization procedure and its activity is also affected by temperature, pH, and toxic chemicals. Besides, the reproducibility of enzyme-based sensors is not very good which further restrict the application of cholesterol biosensor. It has been demonstrated that carbon nanotubes could promote electron transfer with various redox active proteins, ranging from cytochrome c to glucose oxidase with a deeply embedded redox center. In continuation of our earlier work on the synthesis and applications of carbon and metal based nanoparticles, we have reported here the synthesis of carbon nanotubes (CCNT) by burning coconut oil under insufficient flow of air using an oil lamp. The soot was collected from the top portion of the flame, where the temperature was around 6500C which was purified, functionalized and then characterized by SEM, p-XRD and Raman spectroscopy. The SEM micrographs showed the formation of tubular structure of CCNT having diameter below 100 nm. The XRD pattern indicated the presence of two predominant peaks at 25.20 and 43.80, which corresponded to (002) and (100) planes of CCNT respectively. The Raman spectrum (514 nm excitation) showed the presence of 1600 cm-1 (G-band) related to the vibration of sp2-bonded carbon and at 1350 cm-1 (D-band) responsible for the vibrations of sp3-bonded carbon. A nonenzymatic cholesterol biosensor was then fabricated on an insulating Teflon material containing three silver wires at the surface, covered by CCNT, obtained from coconut oil. Here, CCNTs worked as working as well as counter electrodes whereas reference electrode and electric contacts were made of silver. The dimensions of the electrode was 3.5 cm×1.0 cm×0.5 cm (length× width × height) and it is ideal for working with 50 µL volume like the standard screen printed electrodes. The voltammetric behavior of cholesterol at CCNT electrode was investigated by cyclic voltammeter and differential pulse voltammeter using 0.001 M H2SO4 as electrolyte. The influence of the experimental parameters on the peak currents of cholesterol like pH, accumulation time, and scan rates were optimized. Under optimum conditions, the peak current was found to be linear in the cholesterol concentration range from 1 µM to 50 µM with a sensitivity of ~15.31 μAμM−1cm−2 with lower detection limit of 0.017 µM and response time of about 6s. The long-term storage stability of the sensor was tested for 30 days and the current response was found to be ~85% of its initial response after 30 days.

Keywords: coconut oil, CCNT, cholesterol, biosensor

Procedia PDF Downloads 258
202 Colocalization Analysis to Understand Yttrium Uptake in Saxifraga paniculata Using Complementary Imaging Technics

Authors: Till Fehlauer, Blanche Collin, Bernard Angeletti, Andrea Somogyi, Claire Lallemand, Perrine Chaurand, Cédric Dentant, Clement Levard, Jerome Rose

Abstract:

Over the last decades, yttrium (Y) has gained importance in high-tech applications. It is an essential part of alloys and compounds used for lasers, displays, or cell phones, for example. Due to its chemical similarities with the lanthanides, Y is often considered a rare earth element (REE). Despite their increased usage, the environmental behavior of REEs remains poorly understood. Especially regarding their interactions with plants, many uncertainties exist. On the one hand, Y is known to have a negative effect on root development and germination, but on the other hand, it appears to promote plant growth at low concentrations. In order to understand these phenomena, a precise knowledge is necessary about how Y is absorbed by the plant and how it is handled once inside the organism. Contradictory studies exist, stating that due to a similar ionic radius, Y and the other REEs might be absorbed through Ca²⁺-channels, while others suspect that Y has a shared pathway with Al³⁺. In this study, laser ablation coupled ICP-MS, and synchrotron-based micro-X-ray fluorescence (µXRF, beamline Nanoscopium, SOLEIL, France) have been used in order to localize Y within the plant tissue and identify associated elements. The plant used in this study is Saxifraga paniculata, a rugged alpine plant that has shown an affinity for Y in previous studies (in prep.). Furthermore, Saxifraga paniculata performs guttation, which means that it possesses phloem sap secreting openings on the leaf surface that serve to regulate root pressure. These so-called hydathodes could provide special insights in elemental transport in plants. The plants have been grown on Y doped soil (500mg/kg DW) for four months. The results showed that Y was mainly concentrated in the roots of Saxifraga paniculata (260 ± 85mg/kg), and only a small amount was translocated to the leaves (10 ± 7.8mg/kg). µXRF analysis indicated that within the root transects, the majority of Y remained in the epidermis and hardly penetrated the stele. Laser ablation coupled ICP-MS confirmed this finding and showed a positive correlation in the roots between Y, Fe, Al, and to a lesser extent Ca. In the stem transect, Y was mainly detected in a hotspot of approximately 40µm in diameter situated in the endodermis area. Within the stem and especially in the hotspot, Y was highly colocalized with Al and Fe. Similar-sized Y hotspots have been detected in/on the leaves. All of them were strongly colocalized with Al and Fe, except for those situated within the hydathodes, which showed no colocalization with any of the measured elements. Accordingly, a relation between Y and Ca during root uptake remains possible, whereas a correlation to Fe and Al appears to be dominant in the aerial parts, suggesting common storage compartments, the formation of complexes, or a shared pathway during translocation.

Keywords: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Phytoaccumulation, Rare earth elements, Saxifraga paniculata, Synchrotron-based micro-X-ray fluorescence, Yttrium

Procedia PDF Downloads 127
201 Seismic Assessment of Flat Slab and Conventional Slab System for Irregular Building Equipped with Shear Wall

Authors: Muhammad Aji Fajari, Ririt Aprilin Sumarsono

Abstract:

Particular instability of structural building under lateral load (e.g earthquake) will rise due to irregularity in vertical and horizontal direction as stated in SNI 03-1762-2012. The conventional slab has been considered for its less contribution in increasing the stability of the structure, except special slab system such as flat slab turned into account. In this paper, the analysis of flat slab system at Sequis Tower located in South Jakarta will be assessed its performance under earthquake. It consists of 6 floors of the basement where the flat slab system is applied. The flat slab system will be the main focus in this paper to be compared for its performance with conventional slab system under earthquake. Regarding the floor plan of Sequis Tower basement, re-entrant corner signed for this building is 43.21% which exceeded the allowable re-entrant corner is 15% as stated in ASCE 7-05 Based on that, the horizontal irregularity will be another concern for analysis, otherwise vertical irregularity does not exist for this building. Flat slab system is a system where the slabs use drop panel with shear head as their support instead of using beams. Major advantages of flat slab application are decreasing dead load of structure, removing beams so that the clear height can be maximized, and providing lateral resistance due to lateral load. Whilst, deflection at middle strip and punching shear are problems to be detail considered. Torsion usually appears when the structural member under flexure such as beam or column dimension is improper in ratio. Considering flat slab as alternative slab system will keep the collapse due to torsion down. Common seismic load resisting system applied in the building is a shear wall. Installation of shear wall will keep the structural system stronger and stiffer affecting in reduced displacement under earthquake. Eccentricity of shear wall location of this building resolved the instability due to horizontal irregularity so that the earthquake load can be absorbed. Performing linear dynamic analysis such as response spectrum and time history analysis due to earthquake load is suitable as the irregularity arise so that the performance of structure can be significantly observed. Utilization of response spectrum data for South Jakarta which PGA 0.389g is basic for the earthquake load idealization to be involved in several load combinations stated on SNI 03-1726-2012. The analysis will result in some basic seismic parameters such as period, displacement, and base shear of the system; besides the internal forces of the critical member will be presented. Predicted period of a structure under earthquake load is 0.45 second, but as different slab system applied in the analysis then the period will show a different value. Flat slab system will probably result in better performance for the displacement parameter compare to conventional slab system due to higher contribution of stiffness to the whole system of the building. In line with displacement, the deflection of the slab will result smaller for flat slab than a conventional slab. Henceforth, shear wall will be effective to strengthen the conventional slab system than flat slab system.

Keywords: conventional slab, flat slab, horizontal irregularity, response spectrum, shear wall

Procedia PDF Downloads 167
200 Single Cell and Spatial Transcriptomics: A Beginners Viewpoint from the Conceptual Pipeline

Authors: Leo Nnamdi Ozurumba-Dwight

Abstract:

Messenger ribooxynucleic acid (mRNA) molecules are compositional, protein-based. These proteins, encoding mRNA molecules (which collectively connote the transcriptome), when analyzed by RNA sequencing (RNAseq), unveils the nature of gene expression in the RNA. The obtained gene expression provides clues of cellular traits and their dynamics in presentations. These can be studied in relation to function and responses. RNAseq is a practical concept in Genomics as it enables detection and quantitative analysis of mRNA molecules. Single cell and spatial transcriptomics both present varying avenues for expositions in genomic characteristics of single cells and pooled cells in disease conditions such as cancer, auto-immune diseases, hematopoietic based diseases, among others, from investigated biological tissue samples. Single cell transcriptomics helps conduct a direct assessment of each building unit of tissues (the cell) during diagnosis and molecular gene expressional studies. A typical technique to achieve this is through the use of a single-cell RNA sequencer (scRNAseq), which helps in conducting high throughput genomic expressional studies. However, this technique generates expressional gene data for several cells which lack presentations on the cells’ positional coordinates within the tissue. As science is developmental, the use of complimentary pre-established tissue reference maps using molecular and bioinformatics techniques has innovatively sprung-forth and is now used to resolve this set back to produce both levels of data in one shot of scRNAseq analysis. This is an emerging conceptual approach in methodology for integrative and progressively dependable transcriptomics analysis. This can support in-situ fashioned analysis for better understanding of tissue functional organization, unveil new biomarkers for early-stage detection of diseases, biomarkers for therapeutic targets in drug development, and exposit nature of cell-to-cell interactions. Also, these are vital genomic signatures and characterizations of clinical applications. Over the past decades, RNAseq has generated a wide array of information that is igniting bespoke breakthroughs and innovations in Biomedicine. On the other side, spatial transcriptomics is tissue level based and utilized to study biological specimens having heterogeneous features. It exposits the gross identity of investigated mammalian tissues, which can then be used to study cell differentiation, track cell line trajectory patterns and behavior, and regulatory homeostasis in disease states. Also, it requires referenced positional analysis to make up of genomic signatures that will be sassed from the single cells in the tissue sample. Given these two presented approaches to RNA transcriptomics study in varying quantities of cell lines, with avenues for appropriate resolutions, both approaches have made the study of gene expression from mRNA molecules interesting, progressive, developmental, and helping to tackle health challenges head-on.

Keywords: transcriptomics, RNA sequencing, single cell, spatial, gene expression.

Procedia PDF Downloads 99
199 Development of Biosensor Chip for Detection of Specific Antibodies to HSV-1

Authors: Zatovska T. V., Nesterova N. V., Baranova G. V., Zagorodnya S. D.

Abstract:

In recent years, biosensor technologies based on the phenomenon of surface plasmon resonance (SPR) are becoming increasingly used in biology and medicine. Their application facilitates exploration in real time progress of binding of biomolecules and identification of agents that specifically interact with biologically active substances immobilized on the biosensor surface (biochips). Special attention is paid to the use of Biosensor analysis in determining the antibody-antigen interaction in the diagnostics of diseases caused by viruses and bacteria. According to WHO, the diseases that are caused by the herpes simplex virus (HSV), take second place (15.8%) after influenza as a cause of death from viral infections. Current diagnostics of HSV infection include PCR and ELISA assays. The latter allows determination the degree of immune response to viral infection and respective stages of its progress. In this regard, the searches for new and available diagnostic methods are very important. This work was aimed to develop Biosensor chip for detection of specific antibodies to HSV-1 in the human blood serum. The proteins of HSV1 (strain US) were used as antigens. The viral particles were accumulated in cell culture MDBK and purified by differential centrifugation in cesium chloride density gradient. Analysis of the HSV1 proteins was performed by polyacrylamide gel electrophoresis and ELISA. The protein concentration was measured using De Novix DS-11 spectrophotometer. The device for detection of antigen-antibody interactions was an optoelectronic two-channel spectrometer ‘Plasmon-6’, using the SPR phenomenon in the Krechman optical configuration. It was developed at the Lashkarev Institute of Semiconductor Physics of NASU. The used carrier was a glass plate covered with 45 nm gold film. Screening of human blood serums was performed using the test system ‘HSV-1 IgG ELISA’ (GenWay, USA). Development of Biosensor chip included optimization of conditions of viral antigen sorption and analysis steps. For immobilization of viral proteins 0.2% solution of Dextran 17, 200 (Sigma, USA) was used. Sorption of antigen took place at 4-8°C within 18-24 hours. After washing of chip, three times with citrate buffer (pH 5,0) 1% solution of BSA was applied to block the sites not occupied by viral antigen. It was found direct dependence between the amount of immobilized HSV1 antigen and SPR response. Using obtained biochips, panels of 25 positive and 10 negative for the content of antibodies to HSV-1 human sera were analyzed. The average value of SPR response was 185 a.s. for negative sera and from 312 to. 1264 a.s. for positive sera. It was shown that SPR data were agreed with ELISA results in 96% of samples proving the great potential of SPR in such researches. It was investigated the possibility of biochip regeneration and it was shown that application of 10 mM NaOH solution leads to rupture of intermolecular bonds. This allows reuse the chip several times. Thus, in this study biosensor chip for detection of specific antibodies to HSV1 was successfully developed expanding a range of diagnostic methods for this pathogen.

Keywords: biochip, herpes virus, SPR

Procedia PDF Downloads 397
198 Organic Rankine Cycles (ORC) for Mobile Applications: Economic Feasibility in Different Transportation Sectors

Authors: Roberto Pili, Alessandro Romagnoli, Hartmut Spliethoff, Christoph Wieland

Abstract:

Internal combustion engines (ICE) are today the most common energy system to drive vehicles and transportation systems. Numerous studies state that 50-60% of the fuel energy content is lost to the ambient as sensible heat. ORC offers a valuable alternative to recover such waste heat from ICE, leading to fuel energy savings and reduced emissions. In contrast, the additional weight of the ORC affects the net energy balance of the overall system and the ORC occupies additional volume that competes with vehicle transportation capacity. Consequently, a lower income from delivered freight or passenger tickets can be achieved. The economic feasibility of integrating an ORC into an ICE and the resulting economic impact of weight and volume have not been analyzed in open literature yet. This work intends to define such a benchmark for ORC applications in the transportation sector and investigates the current situation on the market. The applied methodology refers to the freight market, but it can be extended to passenger transportation as well. The economic parameter X is defined as the ratio between the variation of the freight revenues and the variation of fuel costs when an ORC is installed as a bottoming cycle for an ICE with respect to a reference case without ORC. A good economic situation is obtained when the reduction in fuel costs is higher than the reduction of revenues for the delivered freight, i.e. X<1. Through this constraint, a maximum allowable change of transport capacity for a given relative reduction in fuel consumption is determined. The specific fuel consumption is influenced by the ORC in two ways. Firstly because the transportable freight is reduced and secondly because the total weight of the vehicle is increased. Note, that the generated electricity of the ORC influences the size of the ICE and the fuel consumption as well. Taking the above dependencies into account, the limiting condition X = 1 results in a second order equation for the relative change in transported cargo. The described procedure is carried out for a typical city bus, a truck of 24-40 t of payload capacity, a middle-size freight train (1000 t), an inland water vessel (Va RoRo, 2500 t) and handysize-like vessel (25000 t). The maximum allowable mass and volume of the ORC are calculated in dependence of its efficiency in order to satisfy X < 1. Subsequently, these values are compared with weight and volume of commercial ORC products. For ships of any size, the situation appears already highly favorable. A different result is obtained for road and rail vehicles. For trains, the mass and the volume of common ORC products have to be reduced at least by 50%. For trucks and buses, the situation looks even worse. The findings of the present study show a theoretical and practical approach for the economic application of ORC in the transportation sector. In future works, the potential for volume and mass reduction of the ORC will be addressed, together with the integration of an economic assessment for the ORC.

Keywords: ORC, transportation, volume, weight

Procedia PDF Downloads 202
197 Biomimetic Dinitrosyl Iron Complexes: A Synthetic, Structural, and Spectroscopic Study

Authors: Lijuan Li

Abstract:

Nitric oxide (NO) has become a fascinating entity in biological chemistry over the past few years. It is a gaseous lipophilic radical molecule that plays important roles in several physiological and pathophysiological processes in mammals, including activating the immune response, serving as a neurotransmitter, regulating the cardiovascular system, and acting as an endothelium-derived relaxing factor. NO functions in eukaryotes both as a signal molecule at nanomolar concentrations and as a cytotoxic agent at micromolar concentrations. The latter arises from the ability of NO to react readily with a variety of cellular targets leading to thiol S-nitrosation, amino acid N-nitrosation, and nitrosative DNA damage. Nitric oxide can readily bind to metals to give metal-nitrosyl (M-NO) complexes. Some of these species are known to play roles in biological NO storage and transport. These complexes have different biological, photochemical, or spectroscopic properties due to distinctive structural features. These recent discoveries have spawned a great interest in the development of transition metal complexes containing NO, particularly its iron complexes that are central to the role of nitric oxide in the body. Spectroscopic evidence would appear to implicate species of “Fe(NO)2+” type in a variety of processes ranging from polymerization, carcinogenesis, to nitric oxide stores. Our research focuses on isolation and structural studies of non-heme iron nitrosyls that mimic biologically active compounds and can potentially be used for anticancer drug therapy. We have shown that reactions between Fe(NO)2(CO)2 and a series of imidazoles generated new non-heme iron nitrosyls of the form Fe(NO)2(L)2 [L = imidazole, 1-methylimidazole, 4-methylimidazole, benzimidazole, 5,6-dimethylbenzimidazole, and L-histidine] and a tetrameric cluster of [Fe(NO)2(L)]4 (L=Im, 4-MeIm, BzIm, and Me2BzIm), resulted from the interactions of Fe(NO)2 with a series of substituted imidazoles was prepared. Recently, a series of sulfur bridged iron di nitrosyl complexes with the general formula of [Fe(µ-RS)(NO)2]2 (R = n-Pr, t-Bu, 6-methyl-2-pyridyl, and 4,6-dimethyl-2-pyrimidyl), were synthesized by the reaction of Fe(NO)2(CO)2 with thiols or thiolates. Their structures and properties were studied by IR, UV-vis, 1H-NMR, EPR, electrochemistry, X-ray diffraction analysis and DFT calculations. IR spectra of these complexes display one weak and two strong NO stretching frequencies (νNO) in solution, but only two strong νNO in solid. DFT calculations suggest that two spatial isomers of these complexes bear 3 Kcal energy difference in solution. The paramagnetic complexes [Fe2(µ-RS)2(NO)4]-, have also been investigated by EPR spectroscopy. Interestingly, the EPR spectra of complexes exhibit an isotropic signal of g = 1.998 - 2.004 without hyperfine splitting. The observations are consistent with the results of calculations, which reveal that the unpaired electron dominantly delocalize over the two sulfur and two iron atoms. The difference of the g values between the reduced form of iron-sulfur clusters and the typical monomeric di nitrosyl iron complexes is explained, for the first time, by of the difference in unpaired electron distributions between the two types of complexes, which provides the theoretical basis for the use of g value as a spectroscopic tool to differentiate these biologically active complexes.

Keywords: di nitrosyl iron complex, metal nitrosyl, non-heme iron, nitric oxide

Procedia PDF Downloads 279
196 Using Structural Equation Modeling to Measure the Impact of Young Adult-Dog Personality Characteristics on Dog Walking Behaviours during the COVID-19 Pandemic

Authors: Renata Roma, Christine Tardif-Williams

Abstract:

Engaging in daily walks with a dog (f.e. Canis lupus familiaris) during the COVID-19 pandemic may be linked to feelings of greater social-connectedness and global self-worth, and lower stress after controlling for mental health issues, lack of physical contact with others, and other stressors associated with the current pandemic. Therefore, maintaining a routine of dog walking might mitigate the effects of stressors experienced during the pandemic and promote well-being. However, many dog owners do not walk their dogs for many reasons, which are related to the owner’s and the dog’s personalities. Note that the consistency of certain personality characteristics among dogs demonstrates that it is possible to accurately measure different dimensions of personality in both dogs and their human counterparts. In addition, behavioural ratings (e.g., the dog personality questionnaire - DPQ) are reliable tools to assess the dog’s personality. Clarifying the relevance of personality factors in the context of young adult-dog relationships can shed light on interactional aspects that can potentially foster protective behaviours and promote well-being among young adults during the pandemic. This study examines if and how nine combinations of dog- and young adult-related personality characteristics (e.g., neuroticism-fearfulness) can amplify the influence of personality factors in the context of dog walking during the COVID-19 pandemic. Responses to an online large-scale survey among 440 (389 females; 47 males; 4 nonbinaries, Mage=20.7, SD= 2.13 range=17-25) young adults living with a dog in Canada were analyzed using structural equation modeling (SEM). As extraversion, conscientiousness, and neuroticism, measured through the five-factor model (FFM) inventory, are related to maintaining a routine of physical activities, these dimensions were selected for this analysis. Following an approach successfully adopted in the field of dog-human interactions, the FFM was used as the organizing framework to measure and compare the human’s and the dog’s personality in the context of dog walking. The dog-related personality dimensions activity/excitability, responsiveness to training, and fearful were correlated dimensions captured through DPQ and were added to the analysis. Two questions were used to assess dog walking. The actor-partner interdependence model (APIM) was used to check if the young adult’s responses about the dog were biased; no significant bias was observed. Activity/excitability and responsiveness to training in dogs were greatly associated with dog walking. For young adults, high scores in conscientiousness and extraversion predicted more walks with the dog. Conversely, higher scores in neuroticism predicted less engagement in dog walking. For participants high in conscientiousness, the dog’s responsiveness to training (standardized=0.14, p=0.02) and the dog’s activity/excitability (standardized=0.15, p=0.00) levels moderated dog walking behaviours by promoting more daily walks. These results suggest that some combinations in young adult and dog personality characteristics are associated with greater synergy in the young adult-dog dyad that might amplify the impact of personality factors on young adults’ dog-walking routines. These results can inform programs designed to promote the mental and physical health of young adults during the Covid-19 pandemic by highlighting the impact of synergy and reciprocity in personality characteristics between young adults and dogs.

Keywords: Covid-19 pandemic, dog walking, personality, structural equation modeling, well-being

Procedia PDF Downloads 93
195 The Touch Sensation: Ageing and Gender Influences

Authors: A. Abdouni, C. Thieulin, M. Djaghloul, R. Vargiolu, H. Zahouani

Abstract:

A decline in the main sensory modalities (vision, hearing, taste, and smell) is well reported to occur with advancing age, it is expected a similar change to occur with touch sensation and perception. In this study, we have focused on the touch sensations highlighting ageing and gender influences with in vivo systems. The touch process can be divided into two main phases: The first phase is the first contact between the finger and the object, during this contact, an adhesive force has been created which is the needed force to permit an initial movement of the finger. In the second phase, the finger mechanical properties with their surface topography play an important role in the obtained sensation. In order to understand the age and gender effects on the touch sense, we develop different ideas and systems for each phase. To better characterize the contact, the mechanical properties and the surface topography of human finger, in vivo studies on the pulp of 40 subjects (20 of each gender) of four age groups of 26±3, 35+-3, 45+-2 and 58±6 have been performed. To understand the first touch phase a classical indentation system has been adapted to measure the finger contact properties. The normal force load, the indentation speed, the contact time, the penetration depth and the indenter geometry have been optimized. The penetration depth of a glass indenter is recorded as a function of the applied normal force. Main assessed parameter is the adhesive force F_ad. For the second phase, first, an innovative approach is proposed to characterize the dynamic finger mechanical properties. A contactless indentation test inspired from the techniques used in ophthalmology has been used. The test principle is to blow an air blast to the finger and measure the caused deformation by a linear laser. The advantage of this test is the real observation of the skin free return without any outside influence. Main obtained parameters are the wave propagation speed and the Young's modulus E. Second, negative silicon replicas of subject’s fingerprint have been analyzed by a probe laser defocusing. A laser diode transmits a light beam on the surface to be measured, and the reflected signal is returned to a set of four photodiodes. This technology allows reconstructing three-dimensional images. In order to study the age and gender effects on the roughness properties, a multi-scale characterization of roughness has been realized by applying continuous wavelet transform. After determining the decomposition of the surface, the method consists of quantifying the arithmetic mean of surface topographic at each scale SMA. Significant differences of the main parameters are shown with ageing and gender. The comparison between men and women groups reveals that the adhesive force is higher for women. The results of mechanical properties show a Young’s modulus higher for women and also increasing with age. The roughness analysis shows a significant difference in function of age and gender.

Keywords: ageing, finger, gender, touch

Procedia PDF Downloads 243
194 The System-Dynamic Model of Sustainable Development Based on the Energy Flow Analysis Approach

Authors: Inese Trusina, Elita Jermolajeva, Viktors Gopejenko, Viktor Abramov

Abstract:

Global challenges require a transition from the existing linear economic model to a model that will consider nature as a life support system for the development of the way to social well-being in the frame of the ecological economics paradigm. The objective of the article is to present the results of the analysis of socio-economic systems in the context of sustainable development using the systems power (energy flows) changes analyzing method and structural Kaldor's model of GDP. In accordance with the principles of life's development and the ecological concept was formalized the tasks of sustainable development of the open, non-equilibrium, stable socio-economic systems were formalized using the energy flows analysis method. The methodology of monitoring sustainable development and level of life were considered during the research of interactions in the system ‘human - society - nature’ and using the theory of a unified system of space-time measurements. Based on the results of the analysis, the time series consumption energy and economic structural model were formulated for the level, degree and tendencies of sustainable development of the system and formalized the conditions of growth, degrowth and stationarity. In order to design the future state of socio-economic systems, a concept was formulated, and the first models of energy flows in systems were created using the tools of system dynamics. During the research, the authors calculated and used a system of universal indicators of sustainable development in the invariant coordinate system in energy units. In order to design the future state of socio-economic systems, a concept was formulated, and the first models of energy flows in systems were created using the tools of system dynamics. In the context of the proposed approach and methods, universal sustainable development indicators were calculated as models of development for the USA and China. The calculations used data from the World Bank database for the period from 1960 to 2019. Main results: 1) In accordance with the proposed approach, the heterogeneous energy resources of countries were reduced to universal power units, summarized and expressed as a unified number. 2) The values of universal indicators of the life’s level were obtained and compared with generally accepted similar indicators.3) The system of indicators in accordance with the requirements of sustainable development can be considered as a basis for monitoring development trends. This work can make a significant contribution to overcoming the difficulties of forming socio-economic policy, which is largely due to the lack of information that allows one to have an idea of the course and trends of socio-economic processes. The existing methods for the monitoring of the change do not fully meet this requirement since indicators have different units of measurement from different areas and, as a rule, are the reaction of socio-economic systems to actions already taken and, moreover, with a time shift. Currently, the inconsistency or inconsistency of measures of heterogeneous social, economic, environmental, and other systems is the reason that social systems are managed in isolation from the general laws of living systems, which can ultimately lead to a systemic crisis.

Keywords: sustainability, system dynamic, power, energy flows, development

Procedia PDF Downloads 30
193 Non-Invasive Characterization of the Mechanical Properties of Arterial Walls

Authors: Bruno RamaëL, GwenaëL Page, Catherine Knopf-Lenoir, Olivier Baledent, Anne-Virginie Salsac

Abstract:

No routine technique currently exists for clinicians to measure the mechanical properties of vascular walls non-invasively. Most of the data available in the literature come from traction or dilatation tests conducted ex vivo on native blood vessels. The objective of the study is to develop a non-invasive characterization technique based on Magnetic Resonance Imaging (MRI) measurements of the deformation of vascular walls under pulsating blood flow conditions. The goal is to determine the mechanical properties of the vessels by inverse analysis, coupling imaging measurements and numerical simulations of the fluid-structure interactions. The hyperelastic properties are identified using Solidworks and Ansys workbench (ANSYS Inc.) solving an optimization technique. The vessel of interest targeted in the study is the common carotid artery. In vivo MRI measurements of the vessel anatomy and inlet velocity profiles was acquired along the facial vascular network on a cohort of 30 healthy volunteers: - The time-evolution of the blood vessel contours and, thus, of the cross-section surface area was measured by 3D imaging angiography sequences of phase-contrast MRI. - The blood flow velocity was measured using a 2D CINE MRI phase contrast (PC-MRI) method. Reference arterial pressure waveforms were simultaneously measured in the brachial artery using a sphygmomanometer. The three-dimensional (3D) geometry of the arterial network was reconstructed by first creating an STL file from the raw MRI data using the open source imaging software ITK-SNAP. The resulting geometry was then transformed with Solidworks into volumes that are compatible with Ansys softwares. Tetrahedral meshes of the wall and fluid domains were built using the ANSYS Meshing software, with a near-wall mesh refinement method in the case of the fluid domain to improve the accuracy of the fluid flow calculations. Ansys Structural was used for the numerical simulation of the vessel deformation and Ansys CFX for the simulation of the blood flow. The fluid structure interaction simulations showed that the systolic and diastolic blood pressures of the common carotid artery could be taken as reference pressures to identify the mechanical properties of the different arteries of the network. The coefficients of the hyperelastic law were identified using Ansys Design model for the common carotid. Under large deformations, a stiffness of 800 kPa is measured, which is of the same order of magnitude as the Young modulus of collagen fibers. Areas of maximum deformations were highlighted near bifurcations. This study is a first step towards patient-specific characterization of the mechanical properties of the facial vessels. The method is currently applied on patients suffering from facial vascular malformations and on patients scheduled for facial reconstruction. Information on the blood flow velocity as well as on the vessel anatomy and deformability will be key to improve surgical planning in the case of such vascular pathologies.

Keywords: identification, mechanical properties, arterial walls, MRI measurements, numerical simulations

Procedia PDF Downloads 292