Search results for: optical band gap
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2485

Search results for: optical band gap

145 A Nonlinear Feature Selection Method for Hyperspectral Image Classification

Authors: Pei-Jyun Hsieh, Cheng-Hsuan Li, Bor-Chen Kuo

Abstract:

For hyperspectral image classification, feature reduction is an important pre-processing for avoiding the Hughes phenomena due to the difficulty for collecting training samples. Hence, lots of researches developed feature selection methods such as F-score, HSIC (Hilbert-Schmidt Independence Criterion), and etc., to improve hyperspectral image classification. However, most of them only consider the class separability in the original space, i.e., a linear class separability. In this study, we proposed a nonlinear class separability measure based on kernel trick for selecting an appropriate feature subset. The proposed nonlinear class separability was formed by a generalized RBF kernel with different bandwidths with respect to different features. Moreover, it considered the within-class separability and the between-class separability. A genetic algorithm was applied to tune these bandwidths such that the smallest with-class separability and the largest between-class separability simultaneously. This indicates the corresponding feature space is more suitable for classification. In addition, the corresponding nonlinear classification boundary can separate classes very well. These optimal bandwidths also show the importance of bands for hyperspectral image classification. The reciprocals of these bandwidths can be viewed as weights of bands. The smaller bandwidth, the larger weight of the band, and the more importance for classification. Hence, the descending order of the reciprocals of the bands gives an order for selecting the appropriate feature subsets. In the experiments, three hyperspectral image data sets, the Indian Pine Site data set, the PAVIA data set, and the Salinas A data set, were used to demonstrate the selected feature subsets by the proposed nonlinear feature selection method are more appropriate for hyperspectral image classification. Only ten percent of samples were randomly selected to form the training dataset. All non-background samples were used to form the testing dataset. The support vector machine was applied to classify these testing samples based on selected feature subsets. According to the experiments on the Indian Pine Site data set with 220 bands, the highest accuracies by applying the proposed method, F-score, and HSIC are 0.8795, 0.8795, and 0.87404, respectively. However, the proposed method selects 158 features. F-score and HSIC select 168 features and 217 features, respectively. Moreover, the classification accuracies increase dramatically only using first few features. The classification accuracies with respect to feature subsets of 10 features, 20 features, 50 features, and 110 features are 0.69587, 0.7348, 0.79217, and 0.84164, respectively. Furthermore, only using half selected features (110 features) of the proposed method, the corresponding classification accuracy (0.84168) is approximate to the highest classification accuracy, 0.8795. For other two hyperspectral image data sets, the PAVIA data set and Salinas A data set, we can obtain the similar results. These results illustrate our proposed method can efficiently find feature subsets to improve hyperspectral image classification. One can apply the proposed method to determine the suitable feature subset first according to specific purposes. Then researchers can only use the corresponding sensors to obtain the hyperspectral image and classify the samples. This can not only improve the classification performance but also reduce the cost for obtaining hyperspectral images.

Keywords: hyperspectral image classification, nonlinear feature selection, kernel trick, support vector machine

Procedia PDF Downloads 241
144 Tuning the Surface Roughness of Patterned Nanocellulose Films: An Alternative to Plastic Based Substrates for Circuit Priniting in High-Performance Electronics

Authors: Kunal Bhardwaj, Christine Browne

Abstract:

With the increase in global awareness of the environmental impacts of plastic-based products, there has been a massive drive to reduce our use of these products. Use of plastic-based substrates in electronic circuits has been a matter of concern recently. Plastics provide a very smooth and cheap surface for printing high-performance electronics due to their non-permeability to ink and easy mouldability. In this research, we explore the use of nano cellulose (NC) films in electronics as they provide an advantage of being 100% recyclable and eco-friendly. The main hindrance in the mass adoption of NC film as a substitute for plastic is its higher surface roughness which leads to ink penetration, and dispersion in the channels on the film. This research was conducted to tune the RMS roughness of NC films to a range where they can replace plastics in electronics(310-470nm). We studied the dependence of the surface roughness of the NC film on the following tunable aspects: 1) composition by weight of the NC suspension that is sprayed on a silicon wafer 2) the width and the depth of the channels on the silicon wafer used as a base. Various silicon wafers with channel depths ranging from 6 to 18 um and channel widths ranging from 5 to 500um were used as a base. Spray coating method for NC film production was used and two solutions namely, 1.5wt% NC and a 50-50 NC-CNC (cellulose nanocrystal) mixture in distilled water, were sprayed through a Wagner sprayer system model 117 at an angle of 90 degrees. The silicon wafer was kept on a conveyor moving at a velocity of 1.3+-0.1 cm/sec. Once the suspension was uniformly sprayed, the mould was left to dry in an oven at 50°C overnight. The images of the films were taken with the help of an optical profilometer, Olympus OLS 5000. These images were converted into a ‘.lext’ format and analyzed using Gwyddion, a data and image analysis software. Lowest measured RMS roughness of 291nm was with a 50-50 CNC-NC mixture, sprayed on a silicon wafer with a channel width of 5 µm and a channel depth of 12 µm. Surface roughness values of 320+-17nm were achieved at lower (5 to 10 µm) channel widths on a silicon wafer. This research opened the possibility of the usage of 100% recyclable NC films with an additive (50% CNC) in high-performance electronics. Possibility of using additives like Carboxymethyl Cellulose (CMC) is also being explored due to the hypothesis that CMC would reduce friction amongst fibers, which in turn would lead to better conformations amongst the NC fibers. CMC addition would thus be able to help tune the surface roughness of the NC film to an even greater extent in future.

Keywords: nano cellulose films, electronic circuits, nanocrystals and surface roughness

Procedia PDF Downloads 99
143 Poly(ε-caprolactone)/Halloysite Nanotube Nanocomposites Scaffolds for Tissue Engineering

Authors: Z. Terzopoulou, I. Koliakou, D. Bikiaris

Abstract:

Tissue engineering offers a new approach to regenerate diseased or damaged tissues such as bone. Great effort is devoted to eliminating the need of removing non-degradable implants at the end of their life span, with biodegradable polymers playing a major part. Poly(ε-caprolactone) (PCL) is one of the best candidates for this purpose due to its high permeability, good biodegradability and exceptional biocompatibility, which has stimulated extensive research into its potential application in the biomedical fields. However, PCL degrades much slower than other known biodegradable polymers and has a total degradation of 2-4 years depending on the initial molecular weight of the device. This is due to its relatively hydrophobic character and high crystallinity. Consequently, much attention has been given to the tunable degradation of PCL to meet the diverse requirements of biomedicine. Poly(ε-caprolactone) (PCL) is a biodegradable polyester that lacks bioactivity, so when used in bone tissue engineering, new bone tissue cannot bond tightly on the polymeric surface. Therefore, it is important to incorporate reinforcing fillers into PCL matrix in order to result in a promising combination of bioactivity, biodegradability, and strength. Natural clay halloysite nanotubes (HNTs) were incorporated into PCL polymeric matrix, via in situ ring-opening polymerization of caprolactone, in concentrations 0.5, 1 and 2.5 wt%. Both unmodified and modified with aminopropyltrimethoxysilane (APTES) HNTs were used in this study. The effect of nanofiller concentration and functionalization with end-amino groups on the physicochemical properties of the prepared nanocomposites was studied. Mechanical properties were found enhanced after the incorporation of nanofillers, while the modification increased further the values of tensile and impact strength. Thermal stability of PCL was not affected by the presence of nanofillers, while the crystallization rate that was studied by Differential Scanning Calorimetry (DSC) and Polarized Light Optical Microscopy (POM) increased. All materials were subjected to enzymatic hydrolysis in phosphate buffer in the presence of lipases. Due to the hydrophilic nature of HNTs, the biodegradation rate of nanocomposites was higher compared to neat PCL. In order to confirm the effect of hydrophilicity, contact angle measurements were also performed. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. All scaffolds were tested in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibility

Keywords: biomaterials, nanocomposites, scaffolds, tissue engineering

Procedia PDF Downloads 287
142 Study of Open Spaces in Urban Residential Clusters in India

Authors: Renuka G. Oka

Abstract:

From chowks to streets to verandahs to courtyards; residential open spaces are very significantly placed in traditional urban neighborhoods of India. At various levels of intersection, the open spaces with their attributes like juxtaposition with the built fabric, scale, climate sensitivity and response, multi-functionality, etc. reflect and respond to the patterns of human interactions. Also, these spaces tend to be quite well utilized. On the other hand, it is a common specter to see an imbalanced utilization of open spaces in newly/recently planned residential clusters. This is maybe due to lack of activity generators around or wrong locations or excess provisions or improper incorporation of aforementioned design attributes. These casual observations suggest the necessity for a systematic study of current residential open spaces. The exploratory study thus attempts to draw lessons through a structured inspection of residential open spaces to understand the effective environment as revealed through their use patterns. Here, residential open spaces are considered in a wider sense to incorporate all the un-built fabric around. These thus, include both use spaces and access space. For the study, open spaces in ten exemplary housing clusters/societies built during the last ten years across India are studied. A threefold inquiry is attempted in this direction. The first relates to identifying and determining the effects of various physical functions like space organization, size, hierarchy, thermal and optical comfort, etc. on the performance of residential open spaces. The second part sets out to understand socio-cultural variations in values, lifestyle, and beliefs which determine activity choices and behavioral preferences of users for respective residential open spaces. The third inquiry further observes the application of these research findings to the design process to derive meaningful and qualitative design advice. However, the study also emphasizes to develop a suitable framework of analysis and to carve out appropriate methods and approaches to probe into these aspects of the inquiry. Given this emphasis, a considerable portion of the research details out the conceptual framework for the study. This framework is supported by an in-depth search of available literature. The findings are worked out for design solutions which integrate the open space systems with the overall design process for residential clusters. The open spaces in residential areas present great complexities both in terms of their use patterns and determinants of their functional responses. The broad aim of the study is, therefore, to arrive at reconsideration of standards and qualitative parameters used by designers – on the basis of more substantial inquiry into the use patterns of open spaces in residential areas.

Keywords: open spaces, physical and social determinants, residential clusters, use patterns

Procedia PDF Downloads 110
141 Hybridization of Mathematical Transforms for Robust Video Watermarking Technique

Authors: Harpal Singh, Sakshi Batra

Abstract:

The widespread and easy accesses to multimedia contents and possibility to make numerous copies without loss of significant fidelity have roused the requirement of digital rights management. Thus this problem can be effectively solved by Digital watermarking technology. This is a concept of embedding some sort of data or special pattern (watermark) in the multimedia content; this information will later prove ownership in case of a dispute, trace the marked document’s dissemination, identify a misappropriating person or simply inform user about the rights-holder. The primary motive of digital watermarking is to embed the data imperceptibly and robustly in the host information. Extensive counts of watermarking techniques have been developed to embed copyright marks or data in digital images, video, audio and other multimedia objects. With the development of digital video-based innovations, copyright dilemma for the multimedia industry increases. Video watermarking had been proposed in recent years to serve the issue of illicit copying and allocation of videos. It is the process of embedding copyright information in video bit streams. Practically video watermarking schemes have to address some serious challenges as compared to image watermarking schemes like real-time requirements in the video broadcasting, large volume of inherently redundant data between frames, the unbalance between the motion and motionless regions etc. and they are particularly vulnerable to attacks, for example, frame swapping, statistical analysis, rotation, noise, median and crop attacks. In this paper, an effective, robust and imperceptible video watermarking algorithm is proposed based on hybridization of powerful mathematical transforms; Fractional Fourier Transform (FrFT), Discrete Wavelet transforms (DWT) and Singular Value Decomposition (SVD) using redundant wavelet. This scheme utilizes various transforms for embedding watermarks on different layers by using Hybrid systems. For this purpose, the video frames are portioned into layers (RGB) and the watermark is being embedded in two forms in the video frames using SVD portioning of the watermark, and DWT sub-band decomposition of host video, to facilitate copyright safeguard as well as reliability. The FrFT orders are used as the encryption key that allows the watermarking method to be more robust against various attacks. The fidelity of the scheme is enhanced by introducing key generation and wavelet based key embedding watermarking scheme. Thus, for watermark embedding and extraction, same key is required. Therefore the key must be shared between the owner and the verifier via some safe network. This paper demonstrates the performance by considering different qualitative metrics namely Peak Signal to Noise ratio, Structure similarity index and correlation values and also apply some attacks to prove the robustness. The Experimental results are presented to demonstrate that the proposed scheme can withstand a variety of video processing attacks as well as imperceptibility.

Keywords: discrete wavelet transform, robustness, video watermarking, watermark

Procedia PDF Downloads 207
140 Enhancement of Fracture Toughness for Low-Temperature Applications in Mild Steel Weldments

Authors: Manjinder Singh, Jasvinder Singh

Abstract:

Existing theories of Titanic/Liberty ship, Sydney bridge accidents and practical experience generated an interest in developing weldments those has high toughness under sub-zero temperature conditions. The purpose was to protect the joint from undergoing DBT (Ductile to brittle transition), when ambient temperature reach sub-zero levels. Metallurgical improvement such as low carbonization or addition of deoxidization elements like Mn and Si was effective to prevent fracture in weldments (crack) at low temperature. In the present research, an attempt has been made to investigate the reason behind ductile to brittle transition of mild steel weldments when subjected to sub-zero temperatures and method of its mitigation. Nickel is added to weldments using manual metal arc welding (MMAW) preventing the DBT, but progressive reduction in charpy impact values as temperature is lowered. The variation in toughness with respect to nickel content being added to the weld pool is analyzed quantitatively to evaluate the rise in toughness value with increasing nickel amount. The impact performance of welded specimens was evaluated by Charpy V-notch impact tests at various temperatures (20 °C, 0 °C, -20 °C, -40 °C, -60 °C). Notch is made in the weldments, as notch sensitive failure is particularly likely to occur at zones of high stress concentration caused by a notch. Then the effect of nickel to weldments is investigated at various temperatures was studied by mechanical and metallurgical tests. It was noted that a large gain in impact toughness could be achieved by adding nickel content. The highest yield strength (462J) in combination with good impact toughness (over 220J at – 60 °C) was achieved with an alloying content of 16 wt. %nickel. Based on metallurgical behavior it was concluded that the weld metals solidify as austenite with increase in nickel. The microstructure was characterized using optical and high resolution SEM (scanning electron microscopy). At inter-dendritic regions mainly martensite was found. In dendrite core regions of the low carbon weld metals a mixture of upper bainite, lower bainite and a novel constituent coalesced bainite formed. Coalesced bainite was characterized by large bainitic ferrite grains with cementite precipitates and is believed to form when the bainite and martensite start temperatures are close to each other. Mechanical properties could be rationalized in terms of micro structural constituents as a function of nickel content.

Keywords: MMAW, Toughness, DBT, Notch, SEM, Coalesced bainite

Procedia PDF Downloads 498
139 Reduce the Environmental Impacts of the Intensive Use of Glass in New Buildings in Khartoum, Sudan

Authors: Sawsan Domi

Abstract:

Khartoum is considering as one of the hottest cities all over the world, the mean monthly outdoor temperature remains above 30 ºC. Solar Radiation on Building Surfaces considered within the world highest values. Buildings in Khartoum is receiving huge amounts of watts/m2. Northern, eastern and western facades always receive a greater amount than the south ones. Therefore, these facades of the building must be better protected than the others. One of the most important design limits affecting indoor thermal comfort and energy conservation are building envelope design, self-efficiency in building materials and optical and thermo-physical properties of the building envelope. A small sun-facing glazing area is very important to provide thermal comfort in hot dry climates because of the intensive sunshine. This study aims to propose a work plan to help minimize the negative environmental effect of the climate on buildings taking the intensive use of glazing. In the last 15 years, there was a rapid growth in building sector in Khartoum followed by many of wrong strategies getting away of being environmental friendly. The intensive use of glazing on facades increased to commercial, industrial and design aspects, while the glass envelope led to quick increase in temperature by the reflection affects the sun on faces, cars and bodies. Logically, being transparent by using glass give a sense of open spaces, allowing natural lighting and sometimes natural ventilation keeping dust and insects away. In the other hand, it costs more and give more overheated. And this is unsuitable for a hot dry climate city like Khartoum. Many huge projects permitted every year from the Ministry of Planning in Khartoum state, with a design based on the intensive use of glazing on facades. There are no Laws or Regulations to control using materials in construction, the last building code -building code 2008- Khartoum state- only focused in using sustainable materials with no consider to any environmental aspects. Results of the study will help increase the awareness for architects, engineers and public about this environmentally problem. Objectives vary between Improve energy performance in buildings and Provide high levels of thermal comfort in the inner environment. As a future project, what are the changes that can happen in building permits codes and regulations. There could be recommendations for the governmental sector such as Obliging the responsible authorities to version environmental friendly laws in building construction fields and Support Renewable energy sector in buildings.

Keywords: building envelope, building regulations, glazed facades, solar radiation

Procedia PDF Downloads 180
138 A Green Optically Active Hydrogen and Oxygen Generation System Employing Terrestrial and Extra-Terrestrial Ultraviolet Solar Irradiance

Authors: H. Shahid

Abstract:

Due to Ozone layer depletion on earth, the incoming ultraviolet (UV) radiation is recorded at its high index levels such as 25 in South Peru (13.5° S, 3360 m a.s.l.) Also, the planning of human inhabitation on Mars is under discussion where UV radiations are quite high. The exposure to UV is health hazardous and is avoided by UV filters. On the other hand, artificial UV sources are in use for water thermolysis to generate Hydrogen and Oxygen, which are later used as fuels. This paper presents the utility of employing UVA (315-400nm) and UVB (280-315nm) electromagnetic radiation from the solar spectrum to design and implement an optically active, Hydrogen and Oxygen generation system via thermolysis of desalinated seawater. The proposed system finds its utility on earth and can be deployed in the future on Mars (UVB). In this system, by using Fresnel lens arrays as an optical filter and via active tracking, the ultraviolet light from the sun is concentrated and then allowed to fall on two sub-systems of the proposed system. The first sub-system generates electrical energy by using UV based tandem photovoltaic cells such as GaAs/GaInP/GaInAs/GaInAsP and the second elevates temperature of water to lower the electric potential required to electrolyze the water. An empirical analysis is performed at 30 atm and an electrical potential is observed to be the main controlling factor for the rate of production of Hydrogen and Oxygen and hence the operating point (Q-Point) of the proposed system. The hydrogen production rate in the case of the commercial system in static mode (650ᵒC, 0.6V) is taken as a reference. The silicon oxide electrolyzer cell (SOEC) is used in the proposed (UV) system for the Hydrogen and Oxygen production. To achieve the same amount of Hydrogen as in the case of the reference system, with minimum chamber operating temperature of 850ᵒC in static mode, the corresponding required electrical potential is calculated as 0.3V. However, practically, the Hydrogen production rate is observed to be low in comparison to the reference system at 850ᵒC at 0.3V. However, it has been shown empirically that the Hydrogen production can be enhanced and by raising the electrical potential to 0.45V. It increases the production rate to the same level as is of the reference system. Therefore, 850ᵒC and 0.45V are assigned as the Q-point of the proposed system which is actively stabilized via proportional integral derivative controllers which adjust the axial position of the lens arrays for both subsystems. The functionality of the controllers is based on maintaining the chamber fixed at 850ᵒC (minimum operating temperature) and 0.45V; Q-Point to realize the same Hydrogen production rate as-is for the reference system.

Keywords: hydrogen, oxygen, thermolysis, ultraviolet

Procedia PDF Downloads 104
137 Holographic Art as an Approach to Enhance Visual Communication in Egyptian Community: Experimental Study

Authors: Diaa Ahmed Mohamed Ahmedien

Abstract:

Nowadays, it cannot be denied that the most important interactive arts trends have appeared as a result of significant scientific mutations in the modern sciences, and holographic art is not an exception, where it is considered as a one of the most important major contemporary interactive arts trends in visual arts. Holographic technique had been evoked through the modern physics application in late 1940s, for the improvement of the quality of electron microscope images by Denis Gabor, until it had arrived to Margaret Benyon’s art exhibitions, and then it passed through a lot of procedures to enhance its quality and artistic applications technically and visually more over 70 years in visual arts. As a modest extension to these great efforts, this research aimed to invoke extraordinary attempt to enroll sample of normal people in Egyptian community in holographic recording program to record their appreciated objects or antiques, therefore examine their abilities to interact with modern techniques in visual communication arts. So this research tried to answer to main three questions: 'can we use the analog holographic techniques to unleash new theoretical and practical knowledge in interactive arts for public in Egyptian community?', 'to what extent holographic art can be familiar with public and make them able to produce interactive artistic samples?', 'are there possibilities to build holographic interactive program for normal people which lead them to enhance their understanding to visual communication in public and, be aware of interactive arts trends?' This research was depending in its first part on experimental methods, where it conducted in Laser lab at Cairo University, using Nd: Yag Laser 532 nm, and holographic optical layout, with selected samples of Egyptian people that they have been asked to record their appreciated object, after they had already learned recording methods, and in its second part on a lot of discussion panel had conducted to discuss the result and how participants felt towards their holographic artistic products through survey, questionnaires, take notes and critiquing holographic artworks. Our practical experiments and final discussions have already lead us to say that this experimental research was able to make most of participants pass through paradigm shift in their visual and conceptual experiences towards more interaction with contemporary visual arts trends, as an attempt to emphasize to the role of mature relationship between the art, science and technology, to spread interactive arts out in our community through the latest scientific and artistic mutations around the world and the role of this relationship in our societies particularly with those who have never been enrolled in practical arts programs before.

Keywords: Egyptian community, holographic art, laser art, visual art

Procedia PDF Downloads 454
136 Magnetic Navigation in Underwater Networks

Authors: Kumar Divyendra

Abstract:

Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.

Keywords: clustering, deep learning, network backbone, parallel computing

Procedia PDF Downloads 63
135 Intriguing Modulations in the Excited State Intramolecular Proton Transfer Process of Chrysazine Governed by Host-Guest Interactions with Macrocyclic Molecules

Authors: Poojan Gharat, Haridas Pal, Sharmistha Dutta Choudhury

Abstract:

Tuning photophysical properties of guest dyes through host-guest interactions involving macrocyclic hosts are the attractive research areas since past few decades, as these changes can directly be implemented in chemical sensing, molecular recognition, fluorescence imaging and dye laser applications. Excited state intramolecular proton transfer (ESIPT) is an intramolecular prototautomerization process display by some specific dyes. The process is quite amenable to tunability by the presence of different macrocyclic hosts. The present study explores the interesting effect of p-sulfonatocalix[n]arene (SCXn) and cyclodextrin (CD) hosts on the excited-state prototautomeric equilibrium of Chrysazine (CZ), a model antitumour drug. CZ exists exclusively in its normal form (N) in the ground state. However, in the excited state, the excited N* form undergoes ESIPT along with its pre-existing intramolecular hydrogen bonds, giving the excited state prototautomer (T*). Accordingly, CZ shows a single absorption band due to N form, but two emission bands due to N* and T* forms. Facile prototautomerization of CZ is considerably inhibited when the dye gets bound to SCXn hosts. However, in spite of lower binding affinity, the inhibition is more profound with SCX6 host as compared to SCX4 host. For CD-CZ system, while prototautomerization process is hindered by the presence of β-CD, it remains unaffected in the presence of γCD. Reduction in the prototautomerization process of CZ by SCXn and βCD hosts is unusual, because T* form is less dipolar in nature than the N*, hence binding of CZ within relatively hydrophobic hosts cavities should have enhanced the prototautomerization process. At the same time, considering the similar chemical nature of two CD hosts, their effect on prototautomerization process of CZ would have also been similar. The atypical effects on the prototautomerization process of CZ by the studied hosts are suggested to arise due to the partial inclusion or external binding of CZ with the hosts. As a result, there is a strong possibility of intermolecular H-bonding interaction between CZ dye and the functional groups present at the portals of SCXn and βCD hosts. Formation of these intermolecular H-bonds effectively causes the pre-existing intramolecular H-bonding network within CZ molecule to become weak, and this consequently reduces the prototautomerization process for the dye. Our results suggest that rather than the binding affinity between the dye and host, it is the orientation of CZ in the case of SCXn-CZ complexes and the binding stoichiometry in the case of CD-CZ complexes that play the predominant role in influencing the prototautomeric equilibrium of the dye CZ. In the case of SCXn-CZ complexes, the results obtained through experimental findings are well supported by quantum chemical calculations. Similarly for CD-CZ systems, binding stoichiometries obtained through geometry optimization studies on the complexes between CZ and CD hosts correlate nicely with the experimental results. Formation of βCD-CZ complexes with 1:1 stoichiometry while formation of γCD-CZ complexes with 1:1, 1:2 and 2:2 stoichiometries are revealed from geometry optimization studies and these results are in good accordance with the observed effects by the βCD and γCD hosts on the ESIPT process of CZ dye.

Keywords: intermolecular proton transfer, macrocyclic hosts, quantum chemical studies, photophysical studies

Procedia PDF Downloads 85
134 Multi-Agent System Based Distributed Voltage Control in Distribution Systems

Authors: A. Arshad, M. Lehtonen. M. Humayun

Abstract:

With the increasing Distributed Generation (DG) penetration, distribution systems are advancing towards the smart grid technology for least latency in tackling voltage control problem in a distributed manner. This paper proposes a Multi-agent based distributed voltage level control. In this method a flat architecture of agents is used and agents involved in the whole controlling procedure are On Load Tap Changer Agent (OLTCA), Static VAR Compensator Agent (SVCA), and the agents associated with DGs and loads at their locations. The objectives of the proposed voltage control model are to minimize network losses and DG curtailments while maintaining voltage value within statutory limits as close as possible to the nominal. The total loss cost is the sum of network losses cost, DG curtailment costs, and voltage damage cost (which is based on penalty function implementation). The total cost is iteratively calculated for various stricter limits by plotting voltage damage cost and losses cost against varying voltage limit band. The method provides the optimal limits closer to nominal value with minimum total loss cost. In order to achieve the objective of voltage control, the whole network is divided into multiple control regions; downstream from the controlling device. The OLTCA behaves as a supervisory agent and performs all the optimizations. At first, a token is generated by OLTCA on each time step and it transfers from node to node until the node with voltage violation is detected. Upon detection of such a node, the token grants permission to Load Agent (LA) for initiation of possible remedial actions. LA will contact the respective controlling devices dependent on the vicinity of the violated node. If the violated node does not lie in the vicinity of the controller or the controlling capabilities of all the downstream control devices are at their limits then OLTC is considered as a last resort. For a realistic study, simulations are performed for a typical Finnish residential medium-voltage distribution system using Matlab ®. These simulations are executed for two cases; simple Distributed Voltage Control (DVC) and DVC with optimized loss cost (DVC + Penalty Function). A sensitivity analysis is performed based on DG penetration. The results indicate that costs of losses and DG curtailments are directly proportional to the DG penetration, while in case 2 there is a significant reduction in total loss. For lower DG penetration, losses are reduced more or less 50%, while for higher DG penetration, loss reduction is not very significant. Another observation is that the newer stricter limits calculated by cost optimization moves towards the statutory limits of ±10% of the nominal with the increasing DG penetration as for 25, 45 and 65% limits calculated are ±5, ±6.25 and 8.75% respectively. Observed results conclude that the novel voltage control algorithm proposed in case 1 is able to deal with the voltage control problem instantly but with higher losses. In contrast, case 2 make sure to reduce the network losses through proposed iterative method of loss cost optimization by OLTCA, slowly with time.

Keywords: distributed voltage control, distribution system, multi-agent systems, smart grids

Procedia PDF Downloads 283
133 Structural and Microstructural Analysis of White Etching Layer Formation by Electrical Arcing Induced on the Surface of Rail Track

Authors: Ali Ahmed Ali Al-Juboori, H. Zhu, D. Wexler, H. Li, C. Lu, J. McLeod, S. Pannila, J. Barnes

Abstract:

A number of studies have focused on the formation mechanics of white etching layer and its origin in the railway operation. Until recently, the following hypotheses consider the precise mechanics of WELs formation: (i) WELs are the result of thermal process caused by wheel slip; (ii) WELs are mechanically induced by severe plastic deformation; (iii) WELs are caused by a combination of thermo-mechanical process. The mechanisms discussed above lead to occurrence of white etching layers on the area of wheel and rail contact. This is because the contact patch which is the active point of the wheel on the rail is exposed to highest shear stresses which result in localised severe plastic deformation; and highest rate of heat caused by wheel slipe during excessive traction or braking effort. However, if the WELs are not on the running band area, it would suggest that there is another cause of WELs formation. In railway system, particularly electrified railway, arcing phenomenon has been occurring more often and regularly on the rails. In electrified railway, the current is delivered to the train traction motor via contact wires and then returned to the station via the contact between the wheel and the rail. If the contact between the wheel and the rail is temporarily losing, due to dynamic vibration, entrapped dirt or water, lubricant effect or oxidation occurrences, high current can jump through the gap and results in arcing. The other resources of arcing also include the wheel passage the insulated joint and lightning on a train during bad weather. During the arcing, an extensive heat is generated and speared over a large area of top surface of rail. Thus, arcing is considered another heat source in the rail head (rather than wheel slipe) that results in microstructural changes and white etching layer formation. A head hardened (HH) rail steel, cut from a curved rail truck was used for the investigation. Samples were sectioned from a depth of 10 mm below the rail surface, where the material is considered to be still within the hardened layer but away from any microstructural changes on the top surface layer caused by train passage. These samples were subjected to electrical discharges by using Gas Tungsten Arc Welding (GTAW) machine. The arc current was controlled and moved along the samples surface in the direction of travel, as indicated by an arrow. Five different conditions were applied on the surface of the samples. Samples containing pre-existed WELs, taken from ex-service rail surface, were also considered in this study for comparison. Both simulated and ex-serviced WELs were characterised by advanced methods including SEM, TEM, TKD, EDS, XRD. Samples for TEM and TKFD were prepared by Focused Ion Beam (FIB) milling. The results showed that both simulated WELs by electrical arcing and ex-service WEL comprise similar microstructure. Brown etching layer was found with WELs and likely induced by a concurrent tempering process. This study provided a clear understanding of new formation mechanics of WELs which contributes to track maintenance procedure.

Keywords: white etching layer, arcing, brown etching layer, material characterisation

Procedia PDF Downloads 97
132 Foslip Loaded and CEA-Affimer Functionalised Silica Nanoparticles for Fluorescent Imaging of Colorectal Cancer Cells

Authors: Yazan S. Khaled, Shazana Shamsuddin, Jim Tiernan, Mike McPherson, Thomas Hughes, Paul Millner, David G. Jayne

Abstract:

Introduction: There is a need for real-time imaging of colorectal cancer (CRC) to allow tailored surgery to the disease stage. Fluorescence guided laparoscopic imaging of primary colorectal cancer and the draining lymphatics would potentially bring stratified surgery into clinical practice and realign future CRC management to the needs of patients. Fluorescent nanoparticles can offer many advantages in terms of intra-operative imaging and therapy (theranostic) in comparison with traditional soluble reagents. Nanoparticles can be functionalised with diverse reagents and then targeted to the correct tissue using an antibody or Affimer (artificial binding protein). We aimed to develop and test fluorescent silica nanoparticles and targeted against CRC using an anti-carcinoembryonic antigen (CEA) Affimer (Aff). Methods: Anti-CEA and control Myoglobin Affimer binders were subcloned into the expressing vector pET11 followed by transformation into BL21 Star™ (DE3) E.coli. The expression of Affimer binders was induced using 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). Cells were harvested, lysed and purified using nickle chelating affinity chromatography. The photosensitiser Foslip (soluble analogue of 5,10,15,20-Tetra(m-hydroxyphenyl) chlorin) was incorporated into the core of silica nanoparticles using water-in-oil microemulsion technique. Anti-CEA or control Affs were conjugated to silica nanoparticles surface using sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo SMCC) chemical linker. Binding of CEA-Aff or control nanoparticles to colorectal cancer cells (LoVo, LS174T and HC116) was quantified in vitro using confocal microscopy. Results: The molecular weights of the obtained band of Affimers were ~12.5KDa while the diameter of functionalised silica nanoparticles was ~80nm. CEA-Affimer targeted nanoparticles demonstrated 9.4, 5.8 and 2.5 fold greater fluorescence than control in, LoVo, LS174T and HCT116 cells respectively (p < 0.002) for the single slice analysis. A similar pattern of successful CEA-targeted fluorescence was observed in the maximum image projection analysis, with CEA-targeted nanoparticles demonstrating 4.1, 2.9 and 2.4 fold greater fluorescence than control particles in LoVo, LS174T, and HCT116 cells respectively (p < 0.0002). There was no significant difference in fluorescence for CEA-Affimer vs. CEA-Antibody targeted nanoparticles. Conclusion: We are the first to demonstrate that Foslip-doped silica nanoparticles conjugated to anti-CEA Affimers via SMCC allowed tumour cell-specific fluorescent targeting in vitro, and had shown sufficient promise to justify testing in an animal model of colorectal cancer. CEA-Affimer appears to be a suitable targeting molecule to replace CEA-Antibody. Targeted silica nanoparticles loaded with Foslip photosensitiser is now being optimised to drive photodynamic killing, via reactive oxygen generation.

Keywords: colorectal cancer, silica nanoparticles, Affimers, antibodies, imaging

Procedia PDF Downloads 214
131 Fabrication of High Energy Hybrid Capacitors from Biomass Waste-Derived Activated Carbon

Authors: Makhan Maharjan, Mani Ulaganathan, Vanchiappan Aravindan, Srinivasan Madhavi, Jing-Yuan Wang, Tuti Mariana Lim

Abstract:

There is great interest to exploit sustainable, low-cost, renewable resources as carbon precursors for energy storage applications. Research on development of energy storage devices has been growing rapidly due to mismatch in power supply and demand from renewable energy sources This paper reported the synthesis of porous activated carbon from biomass waste and evaluated its performance in supercapicators. In this work, we employed orange peel (waste material) as the starting material and synthesized activated carbon by pyrolysis of KOH impregnated orange peel char at 800 °C in argon atmosphere. The resultant orange peel-derived activated carbon (OP-AC) exhibited a high BET surface area of 1,901 m2 g-1, which is the highest surface area so far reported for the orange peel. The pore size distribution (PSD) curve exhibits the pores centered at 11.26 Å pore width, suggesting dominant microporosity. The OP-AC was studied as positive electrode in combination with different negative electrode materials, such as pre-lithiated graphite (LiC6) and Li4Ti5O12 for making different hybrid capacitors. The lithium ion capacitor (LIC) fabricated using OP-AC with pre-lithiated graphite delivered a high energy density of ~106 Wh kg–1. The energy density for OP-AC||Li4Ti5O12 capacitor was ~35 Wh kg–1. For comparison purpose, configuration of OP-AC||OP-AC capacitors were studied in both aqueous (1M H2SO4) and organic (1M LiPF6 in EC-DMC) electrolytes, which delivered the energy density of 6.6 Wh kg-1 and 16.3 Wh kg-1, respectively. The cycling retentions obtained at current density of 1 A g–1 were ~85.8, ~87.0 ~82.2 and ~58.8% after 2500 cycles for OP-AC||OP-AC (aqueous), OP-AC||OP-AC (organic), OP-AC||Li4Ti5O12 and OP-AC||LiC6 configurations, respectively. In addition, characterization studies were performed by elemental and proximate composition, thermogravimetry, field emission-scanning electron microscopy, Raman spectra, X-ray diffraction (XRD) pattern, Fourier transform-infrared, X-ray photoelectron spectroscopy (XPS) and N2 sorption isotherms. The morphological features from FE-SEM exhibited well-developed porous structures. Two typical broad peaks observed in the XRD framework of the synthesized carbon implies amorphous graphitic structure. The ratio of 0.86 for ID/IG in Raman spectra infers high degree of graphitization in the sample. The band spectra of C 1s in XPS display the well resolved peaks related to carbon atoms in various chemical environments; for instances, the characteristics binding energies appeared at ~283.83, ~284.83, ~286.13, ~288.56, and ~290.70 eV which correspond to sp2 -graphitic C, sp3 -graphitic C, C-O, C=O and π-π*, respectively. Characterization studies revealed the synthesized carbon to be promising electrode material towards the application for energy storage devices. The findings opened up the possibility of developing high energy LICs from abundant, low-cost, renewable biomass waste.

Keywords: lithium-ion capacitors, orange peel, pre-lithiated graphite, supercapacitors

Procedia PDF Downloads 204
130 Analysis of Metamaterial Permeability on the Performance of Loosely Coupled Coils

Authors: Icaro V. Soares, Guilherme L. F. Brandao, Ursula D. C. Resende, Glaucio L. Siqueira

Abstract:

Electrical energy can be wirelessly transmitted through resonant coupled coils that operate in the near-field region. Once in this region, the field has evanescent character, the efficiency of Resonant Wireless Power Transfer (RWPT) systems decreases proportionally with the inverse cube of distance between the transmitter and receiver coils. The commercially available RWPT systems are restricted to short and mid-range applications in which the distance between coils is lesser or equal to the coil size. An alternative to overcome this limitation is applying metamaterial structures to enhance the coupling between coils, thus reducing the field decay along the distance between them. Metamaterials can be conceived as composite materials with periodic or non-periodic structure whose unconventional electromagnetic behaviour is due to its unit cell disposition and chemical composition. This new kind of material has been used in frequency selective surfaces, invisibility cloaks, leaky-wave antennas, among other applications. However, for RWPT it is mainly applied as superlenses which are lenses that can overcome the optical limitation and are made of left-handed media, that is, a medium with negative magnetic permeability and electric permittivity. As RWPT systems usually operate at wavelengths of hundreds of meters, the metamaterial unit cell size is much smaller than the wavelength. In this case, electric and magnetic field are decoupled, therefore the double negative condition for superlenses are not required and the negative magnetic permeability is enough to produce an artificial magnetic medium. In this work, the influence of the magnetic permeability of a metamaterial slab inserted between two loosely coupled coils is studied in order to find the condition that leads to the maximum transmission efficiency. The metamaterial used is formed by a subwavelength unit cell that consist of a capacitor-loaded split ring with an inner spiral that is designed and optimized using the software Computer Simulation Technology. The unit cell permeability is experimentally characterized by the ratio of the transmission parameters between coils measured with and without the presence of the metamaterial slab. Early measurements results show that the transmission coefficient at the resonant frequency after the inclusion of the metamaterial is about three times higher than with just the two coils, which confirms the enhancement that this structure brings to RWPT systems.

Keywords: electromagnetic lens, loosely coupled coils, magnetic permeability, metamaterials, resonant wireless power transfer, subwavelength unit cells

Procedia PDF Downloads 124
129 Temperature-Dependent Post-Mortem Changes in Human Cardiac Troponin-T (cTnT): An Approach in Determining Postmortem Interval

Authors: Sachil Kumar, Anoop Kumar Verma, Wahid Ali, Uma Shankar Singh

Abstract:

Globally approximately 55.3 million people die each year. In the India there were 95 lakh annual deaths in 2013. The number of deaths resulted from homicides, suicides and unintentional injuries in the same period was about 5.7 lakh. The ever-increasing crime rate necessitated the development of methods for determining time since death. An erroneous time of death window can lead investigators down the wrong path or possibly focus a case on an innocent suspect. In this regard a research was carried out by analyzing the temperature dependent degradation of a Cardiac Troponin-T protein (cTnT) in the myocardium postmortem as a marker for time since death. Cardiac tissue samples were collected from (n=6) medico-legal autopsies, (in the Department of Forensic Medicine and Toxicology, King George’s Medical University, Lucknow India) after informed consent from the relatives and studied post-mortem degradation by incubation of the cardiac tissue at room temperature (20±2 OC), 12 0C, 25 0C and 37 0C for different time periods ((~5, 26, 50, 84, 132, 157, 180, 205, and 230 hours). The cases included were the subjects of road traffic accidents (RTA) without any prior history of disease who died in the hospital and their exact time of death was known. The analysis involved extraction of the protein, separation by denaturing gel electrophoresis (SDS-PAGE) and visualization by Western blot using cTnT specific monoclonal antibodies. The area of the bands within a lane was quantified by scanning and digitizing the image using Gel Doc. The data shows a distinct temporal profile corresponding to the degradation of cTnT by proteases found in cardiac muscle. The disappearance of intact cTnT and the appearance of lower molecular weight bands are easily observed. Western blot data clearly showed the intact protein at 42 kDa, two major (27 kDa, 10kDa) fragments, two additional minor fragments (32 kDa) and formation of low molecular weight fragments as time increases. At 12 0C the intensity of band (intact cTnT) decreased steadily as compared to RT, 25 0C and 37 0C. Overall, both PMI and temperature had a statistically significant effect where the greatest amount of protein breakdown was observed within the first 38 h and at the highest temperature, 37 0C. The combination of high temperature (37 0C) and long Postmortem interval (105.15 hrs) had the most drastic effect on the breakdown of cTnT. If the percent intact cTnT is calculated from the total area integrated within a Western blot lane, then the percent intact cTnT shows a pseudo-first order relationship when plotted against the log of the time postmortem. These plots show a good coefficient of correlation of r = 0.95 (p=0.003) for the regression of the human heart at different temperature conditions. The data presented demonstrates that this technique can provide an extended time range during which Postmortem interval can be more accurately estimated.

Keywords: degradation, postmortem interval, proteolysis, temperature, troponin

Procedia PDF Downloads 357
128 Nondestructive Inspection of Reagents under High Attenuated Cardboard Box Using Injection-Seeded THz-Wave Parametric Generator

Authors: Shin Yoneda, Mikiya Kato, Kosuke Murate, Kodo Kawase

Abstract:

In recent years, there have been numerous attempts to smuggle narcotic drugs and chemicals by concealing them in international mail. Combatting this requires a non-destructive technique that can identify such illicit substances in mail. Terahertz (THz) waves can pass through a wide variety of materials, and many chemicals show specific frequency-dependent absorption, known as a spectral fingerprint, in the THz range. Therefore, it is reasonable to investigate non-destructive mail inspection techniques that use THz waves. For this reason, in this work, we tried to identify reagents under high attenuation shielding materials using injection-seeded THz-wave parametric generator (is-TPG). Our THz spectroscopic imaging system using is-TPG consisted of two non-linear crystals for emission and detection of THz waves. A micro-chip Nd:YAG laser and a continuous wave tunable external cavity diode laser were used as the pump and seed source, respectively. The pump beam and seed beam were injected to the LiNbO₃ crystal satisfying the noncollinear phase matching condition in order to generate high power THz-wave. The emitted THz wave was irradiated to the sample which was raster scanned by the x-z stage while changing the frequencies, and we obtained multispectral images. Then the transmitted THz wave was focused onto another crystal for detection and up-converted to the near infrared detection beam based on nonlinear optical parametric effects, wherein the detection beam intensity was measured using an infrared pyroelectric detector. It was difficult to identify reagents in a cardboard box because of high noise levels. In this work, we introduce improvements for noise reduction and image clarification, and the intensity of the near infrared detection beam was converted correctly to the intensity of the THz wave. A Gaussian spatial filter is also introduced for a clearer THz image. Through these improvements, we succeeded in identification of reagents hidden in a 42-mm thick cardboard box filled with several obstacles, which attenuate 56 dB at 1.3 THz, by improving analysis methods. Using this system, THz spectroscopic imaging was possible for saccharides and may also be applied to cases where illicit drugs are hidden in the box, and multiple reagents are mixed together. Moreover, THz spectroscopic imaging can be achieved through even thicker obstacles by introducing an NIR detector with higher sensitivity.

Keywords: nondestructive inspection, principal component analysis, terahertz parametric source, THz spectroscopic imaging

Procedia PDF Downloads 148
127 Multiscale Modelization of Multilayered Bi-Dimensional Soils

Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur

Abstract:

Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.

Keywords: multiscale, bidimensional, wavelets, backscattering, multilayer, SPM, air pockets

Procedia PDF Downloads 100
126 Modeling of in 738 LC Alloy Mechanical Properties Based on Microstructural Evolution Simulations for Different Heat Treatment Conditions

Authors: M. Tarik Boyraz, M. Bilge Imer

Abstract:

Conventionally cast nickel-based super alloys, such as commercial alloy IN 738 LC, are widely used in manufacturing of industrial gas turbine blades. With carefully designed microstructure and the existence of alloying elements, the blades show improved mechanical properties at high operating temperatures and corrosive environment. The aim of this work is to model and estimate these mechanical properties of IN 738 LC alloy solely based on simulations for projected heat treatment conditions or service conditions. The microstructure (size, fraction and frequency of gamma prime- γ′ and carbide phases in gamma- γ matrix, and grain size) of IN 738 LC needs to be optimized to improve the high temperature mechanical properties by heat treatment process. This process can be performed at different soaking temperature, time and cooling rates. In this work, micro-structural evolution studies were performed experimentally at various heat treatment process conditions, and these findings were used as input for further simulation studies. The operation time, soaking temperature and cooling rate provided by experimental heat treatment procedures were used as micro-structural simulation input. The results of this simulation were compared with the size, fraction and frequency of γ′ and carbide phases, and grain size provided by SEM (EDS module and mapping), EPMA (WDS module) and optical microscope for before and after heat treatment. After iterative comparison of experimental findings and simulations, an offset was determined to fit the real time and theoretical findings. Thereby, it was possible to estimate the final micro-structure without any necessity to carry out the heat treatment experiment. The output of this microstructure simulation based on heat treatment was used as input to estimate yield stress and creep properties. Yield stress was calculated mainly as a function of precipitation, solid solution and grain boundary strengthening contributors in microstructure. Creep rate was calculated as a function of stress, temperature and microstructural factors such as dislocation density, precipitate size, inter-particle spacing of precipitates. The estimated yield stress values were compared with the corresponding experimental hardness and tensile test values. The ability to determine best heat treatment conditions that achieve the desired microstructural and mechanical properties were developed for IN 738 LC based completely on simulations.

Keywords: heat treatment, IN738LC, simulations, super-alloys

Procedia PDF Downloads 222
125 Synthesis and Analytical Characterisation of Polymer-Silica Nanoparticles Composite for the Protection and Preservation of Stone Monuments

Authors: Sayed M. Ahmed, Sawsan S. Darwish, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Mahmoud A. Adam, Nadia A. Al-Mouallimi

Abstract:

Historical stone surfaces and architectural heritage may undergo unwanted changes due to the exposure to many physical and chemical deterioration factors, the innovative properties of the nano - materials can have advantageous application in the restoration and conservation of the cultural heritage with relation to the tailoring of new products for protection and consolidation of stone. The current work evaluates the effectiveness of inorganic compatible treatments; based on nanosized particles of silica (SiO2) dispersed in silicon based product, commonly used as a water-repellent/ consolidation for the construction materials affected by different kinds of decay. The nanocomposites obtained by dispersing the silica nanoparticles in polymeric matrices SILRES® BS OH 100 (solventless mixtures of ethyl silicates), in order to obtain a new nanocomposite, with hydrophobic and consolidation properties, to improve the physical and mechanical properties of the stone material. The nanocomposites obtained and pure SILRES® BS OH 100 were applied by brush Experimental stone blocks. The efficacy of the treatments has been evaluated after consolidation and artificial Thermal aging, through capillary water absorption measurements, Ultraviolet-light exposure to evaluate photo-induced and the hydrophobic effects of the treated surface, Scanning electron microscopy (SEM) examination is performed to evaluate penetration depth, re-aggregating effects of the deposited phase and the surface morphology before and after artificialaging. Sterio microscopy investigation is performed to evaluate the resistant to the effects of the erosion, acids and salts. Improving of stone mechanical properties were evaluated by compressive strength tests, colorimetric measurements were used to evaluate the optical appearance. All the results get together with the apparent effect that, silica/polymer nanocomposite is efficient material for the consolidation of artistic and architectural sandstone monuments, completely compatible, enhanced the durability of sandstone toward thermal and UV aging. In addition, the obtained nanocomposite improved the stone mechanical properties and the resistant to the effects of the erosion, acids and salts compared to the samples treated with pure SILRES® BS OH 100 without silica nanoparticles.

Keywords: colorimetric measurements, compressive strength, nanocomposites, porous stone consolidation, silica nanoparticles, sandstone

Procedia PDF Downloads 228
124 Characterization and Evaluation of the Dissolution Increase of Molecular Solid Dispersions of Efavirenz

Authors: Leslie Raphael de M. Ferraz, Salvana Priscylla M. Costa, Tarcyla de A. Gomes, Giovanna Christinne R. M. Schver, Cristóvão R. da Silva, Magaly Andreza M. de Lyra, Danilo Augusto F. Fontes, Larissa A. Rolim, Amanda Carla Q. M. Vieira, Miracy M. de Albuquerque, Pedro J. Rolim-Neto

Abstract:

Efavirenz (EFV) is a drug used as first-line treatment of AIDS. However, it has poor aqueous solubility and wettability, presenting problems in the gastrointestinal tract absorption and bioavailability. One of the most promising strategies to improve the solubility is the use of solid dispersions (SD). Therefore, this study aimed to characterize SD EFZ with the polymers: PVP-K30, PVPVA 64 and SOLUPLUS in order to find an optimal formulation to compose a future pharmaceutical product for AIDS therapy. Initially, Physical Mixtures (PM) and SD with the polymers were obtained containing 10, 20, 50 and 80% of drug (w/w) by the solvent method. The best formulation obtained between the SD was selected by in vitro dissolution test. Finally, the drug-carrier system chosen, in all ratios obtained, were analyzed by the following techniques: Differential Scanning Calorimetry (DSC), polarization microscopy, Scanning Electron Microscopy (SEM) and spectrophotometry of absorption in the region of infrared (IR). From the dissolution profiles of EFV, PM and SD, the values of area Under The Curve (AUC) were calculated. The data showed that the AUC of all PM is greater than the isolated EFV, this result is derived from the hydrophilic properties of the polymers thus favoring a decrease in surface tension between the drug and the dissolution medium. In adittion, this ensures an increasing of wettability of the drug. In parallel, it was found that SD whom had higher AUC values, were those who have the greatest amount of polymer (with only 10% drug). As the amount of drug increases, it was noticed that these results either decrease or are statistically similar. The AUC values of the SD using the three different polymers, followed this decreasing order: SD PVPVA 64-EFV 10% > SD PVP-K30-EFV 10% > SD Soluplus®-EFV 10%. The DSC curves of SD’s did not show the characteristic endothermic event of drug melt process, suggesting that the EFV was converted to its amorphous state. The analysis of polarized light microscopy showed significant birefringence of the PM’s, but this was not observed in films of SD’s, thus suggesting the conversion of the drug from the crystalline to the amorphous state. In electron micrographs of all PM, independently of the percentage of the drug, the crystal structure of EFV was clearly detectable. Moreover, electron micrographs of the SD with the two polymers in different ratios investigated, we observed the presence of particles with irregular size and morphology, also occurring an extensive change in the appearance of the polymer, not being possible to differentiate the two components. IR spectra of PM corresponds to the overlapping of polymer and EFV bands indicating thereby that there is no interaction between them, unlike the spectra of all SD that showed complete disappearance of the band related to the axial deformation of the NH group of EFV. Therefore, this study was able to obtain a suitable formulation to overcome the solubility limitations of the EFV, since SD PVPVA 64-EFZ 10% was chosen as the best system in delay crystallization of the prototype, reaching higher levels of super saturation.

Keywords: characterization, dissolution, Efavirenz, solid dispersions

Procedia PDF Downloads 610
123 Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend

Authors: Hendrick Maxil Zárate Rocha, Ricardo da Silva Pereira, Manoel Fernandes Martins Nogueira, Carlos R. Pereira Belchior, Maria Emilia de Lima Tostes

Abstract:

This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators.

Keywords: diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions

Procedia PDF Downloads 329
122 Development and Evaluation of Economical Self-cleaning Cement

Authors: Anil Saini, Jatinder Kumar Ratan

Abstract:

Now a day, the key issue for the scientific community is to devise the innovative technologies for sustainable control of urban pollution. In urban cities, a large surface area of the masonry structures, buildings, and pavements is exposed to the open environment, which may be utilized for the control of air pollution, if it is built from the photocatalytically active cement-based constructional materials such as concrete, mortars, paints, and blocks, etc. The photocatalytically active cement is formulated by incorporating a photocatalyst in the cement matrix, and such cement is generally known as self-cleaning cement In the literature, self-cleaning cement has been synthesized by incorporating nanosized-TiO₂ (n-TiO₂) as a photocatalyst in the formulation of the cement. However, the utilization of n-TiO₂ for the formulation of self-cleaning cement has the drawbacks of nano-toxicity, higher cost, and agglomeration as far as the commercial production and applications are concerned. The use of microsized-TiO₂ (m-TiO₂) in place of n-TiO₂ for the commercial manufacture of self-cleaning cement could avoid the above-mentioned problems. However, m-TiO₂ is less photocatalytically active as compared to n- TiO₂ due to smaller surface area, higher band gap, and increased recombination rate. As such, the use of m-TiO₂ in the formulation of self-cleaning cement may lead to a reduction in photocatalytic activity, thus, reducing the self-cleaning, depolluting, and antimicrobial abilities of the resultant cement material. So improvement in the photoactivity of m-TiO₂ based self-cleaning cement is the key issue for its practical applications in the present scenario. The current work proposes the use of surface-fluorinated m-TiO₂ for the formulation of self-cleaning cement to enhance its photocatalytic activity. The calcined dolomite, a constructional material, has also been utilized as co-adsorbent along with the surface-fluorinated m-TiO₂ in the formulation of self-cleaning cement to enhance the photocatalytic performance. The surface-fluorinated m-TiO₂, calcined dolomite, and the formulated self-cleaning cement were characterized using diffuse reflectance spectroscopy (DRS), X-ray diffraction analysis (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive x-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), BET (Brunauer–Emmett–Teller) surface area, and energy dispersive X-ray fluorescence spectrometry (EDXRF). The self-cleaning property of the as-prepared self-cleaning cement was evaluated using the methylene blue (MB) test. The depolluting ability of the formulated self-cleaning cement was assessed through a continuous NOX removal test. The antimicrobial activity of the self-cleaning cement was appraised using the method of the zone of inhibition. The as-prepared self-cleaning cement obtained by uniform mixing of 87% clinker, 10% calcined dolomite, and 3% surface-fluorinated m-TiO₂ showed a remarkable self-cleaning property by providing 53.9% degradation of the coated MB dye. The self-cleaning cement also depicted a noteworthy depolluting ability by removing 5.5% of NOx from the air. The inactivation of B. subtiltis bacteria in the presence of light confirmed the significant antimicrobial property of the formulated self-cleaning cement. The self-cleaning, depolluting, and antimicrobial results are attributed to the synergetic effect of surface-fluorinated m-TiO₂ and calcined dolomite in the cement matrix. The present study opens an idea and route for further research for acile and economical formulation of self-cleaning cement.

Keywords: microsized-titanium dioxide (m-TiO₂), self-cleaning cement, photocatalysis, surface-fluorination

Procedia PDF Downloads 135
121 Meso-Scopic Structural Analysis of Chaura Thrust, Himachal Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

Jhakri Thrust (JT) coeval of Sarahan Thrust (ST) was later considered to be part of Chaura Thrust (CT). The Main Central Thrust (MCT) delimits the southern extreme of Higher Himalaya, whereas the northern boundary defines by South Tibetan Detachment System (STDS). STDS is parallel set of north dipping extensional faults. The activation timing of MCT and STDS. MCT activated in two parts (MCT-L during 15- 0.7 Ma, and MCT-U during 25-14 Ma). Similarly, STDS triggered in two parts (STDS-L during 24-12 Ma, and STDS-U during 19-14 Ma). The activation ages for MBT and MFT. Besides, the MBT occurred during 11-9 Ma, and MFT followed as <2.5 Ma. There are two mylonitised zones (zone of S-C fabric) found under the microscope. Dynamic and bulging recrystallization and sub-grain formation was documented under the optical microscope from samples collected from these zones. The varieties of crenulated schistosity are shown in photomicrographs. In a rare and uncommon case, crenulation cleavage and sigmoid Muscovite were found together side-by-side. Recrystallized quartzo-feldspathic grains exist in between crenulation cleavages. These thin-section studies allow three possible hypotheses for such variations in crenulation cleavages. S/SE verging meso- and micro-scale box folds around Chaura might be a manifestation of some structural upliftment. Near Chaura, kink folds are visible. Prominent asymmetric shear sense indicators in augen mylonite are missing in meso-scale but dominantly present under the microscope. The main foliation became steepest (range of dip ~ 65 – 80 º) at this place. The aim of this section is to characterize the box fold and its signature in the regional geology of Himachal Himalaya. Grain Boundary Migration (GBM) associated temperature range (400–750 ºC) from microstructural studies in grain scale along Jhakri-Wangtu transect documented. Oriented samples were collected from the Jhakri-Chaura transect at a regular interval of ~ 1km for strain analysis. The Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh is documented a decade ago. The OOST in other parts of the Himalayas is represented as a line in between MCTL and MCTU. But In Himachal Pradesh area, OOST activated the MCTL as well as in between a zone located south of MCTU. The expectations for strain variation near the OOST are very obvious. But multiple sets of OOSTs may produce a zigzag pattern of strain accumulation for this area and figure out the overprinting structures for multiple sets of OOSTs.

Keywords: Chaura Thrust, out-of-sequence thrust, Main Central Thrust, Sarahan Thrust

Procedia PDF Downloads 50
120 Molecular Dynamics Study of Ferrocene in Low and Room Temperatures

Authors: Feng Wang, Vladislav Vasilyev

Abstract:

Ferrocene (Fe(C5H5)2, i.e., di-cyclopentadienyle iron (FeCp2) or Fc) is a unique example of ‘wrong but seminal’ in chemistry history. It has significant applications in a number of areas such as homogeneous catalysis, polymer chemistry, molecular sensing, and nonlinear optical materials. However, the ‘molecular carousel’ has been a ‘notoriously difficult example’ and subject to long debate for its conformation and properties. Ferrocene is a dynamic molecule. As a result, understanding of the dynamical properties of ferrocene is very important to understand the conformational properties of Fc. In the present study, molecular dynamic (MD) simulations are performed. In the simulation, we use 5 geometrical parameters to define the overall conformation of Fc and all the rest is a thermal noise. The five parameters are defined as: three parameters d---the distance between two Cp planes, α and δ to define the relative positions of the Cp planes, in which α is the angle of the Cp tilt and δ the angle the two Cp plane rotation like a carousel. Two parameters to position the Fe atom between two Cps, i.e., d1 for Fe-Cp1 and d2 for Fe-Cp2 distances. Our preliminary MD simulation discovered the five parameters behave differently. Distances of Fe to the Cp planes show that they are independent, practically identical without correlation. The relative position of two Cp rings, α, indicates that the two Cp planes are most likely not in a parallel position, rather, they tilt in a small angle α≠ 0°. The mean plane dihedral angle δ ≠ 0°. Moreover, δ is neither 0° nor 36°, indicating under those conditions, Fc is neither in a perfect eclipsed structure nor a perfect staggered structure. The simulations show that when the temperature is above 80K, the conformers are virtually in free rotations, A very interesting result from the MD simulation is the five C-Fe bond distances from the same Cp ring. They are surprisingly not identical but in three groups of 2, 2 and 1. We describe the pentagon formed by five carbon atoms as ‘turtle swimming’ for the motion of the Cp rings of Fc as shown in their dynamical animation video. The Fe- C(1) and Fe-C(2) which are identical as ‘the turtle back legs’, Fe-C(3) and Fe-C(4) which are also identical as turtle front paws’, and Fe-C(5) ---’the turtle head’. Such as ‘turtle swimming’ analog may be able to explain the single substituted derivatives of Fc. Again, the mean Fe-C distance obtained from MD simulation is larger than the quantum mechanically calculated Fe-C distances for eclipsed and staggered Fc, with larger deviation with respect to the eclipsed Fc than the staggered Fc. The same trend is obtained for the five Fe-C-H angles from same Cp ring of Fc. The simulated mean IR spectrum at 7K shows split spectral peaks at approximately 470 cm-1 and 488 cm-1, in excellent agreement with quantum mechanically calculated gas phase IR spectrum for eclipsed Fc. As the temperature increases over 80K, the clearly splitting IR spectrum become a very board single peak. Preliminary MD results will be presented.

Keywords: ferrocene conformation, molecular dynamics simulation, conformer orientation, eclipsed and staggered ferrocene

Procedia PDF Downloads 188
119 Pyridine-N-oxide Based AIE-active Triazoles: Synthesis, Morphology and Photophysical Properties

Authors: Luminita Marin, Dalila Belei, Carmen Dumea

Abstract:

Aggregation induced emission (AIE) is an intriguing optical phenomenon recently evidenced by Tang and his co-workers, for which aggregation works constructively in the improving of light emission. The AIE challenging phenomenon is quite opposite to the notorious aggregation caused quenching (ACQ) of light emission in the condensed phase, and comes in line with requirements of photonic and optoelectronic devices which need solid state emissive substrates. This paper reports a series of ten new aggregation induced emission (AIE) low molecular weight compounds based on triazole and pyridine-N-oxide heterocyclic units bonded by short flexible chains, obtained by a „click” chemistry reaction. The compounds present extremely weak luminescence in solution but strong light emission in solid state. To distinguish the influence of the crystallinity degree on the emission efficiency, the photophysical properties were explored by UV-vis and photoluminescence spectroscopy in solution, water suspension, amorphous and crystalline films. On the other hand, the compound morphology of the up mentioned states was monitored by dynamic light scattering, scanning electron microscopy, atomic force microscopy and polarized light microscopy methods. To further understand the structural design – photophysical properties relationship, single crystal X-ray diffraction on some understudy compounds was performed too. The UV-vis absorption spectra of the triazole water suspensions indicated a typical behaviour for nanoparticle formation, while the photoluminescence spectra revealed an emission intensity enhancement up to 921-fold higher of the crystalline films compared to solutions, clearly indicating an AIE behaviour. The compounds have the tendency to aggregate forming nano- and micro- crystals in shape of rose-like and fibres. The crystals integrity is kept due to the strong lateral intermolecular forces, while the absence of face-to-face forces explains the enhanced luminescence in crystalline state, in which the intramolecular rotations are restricted. The studied flexible triazoles draw attention to a new structural design in which small biologically friendly luminophore units are linked together by small flexible chains. This design enlarges the variety of the AIE luminogens to the flexible molecules, guiding further efforts in development of new AIE structures for appropriate applications, the biological ones being especially envisaged.

Keywords: aggregation induced emission, pyridine-N-oxide, triazole

Procedia PDF Downloads 426
118 Influence of Controlled Retting on the Quality of the Hemp Fibres Harvested at the Seed Maturity by Using a Designed Lab-Scale Pilot Unit

Authors: Brahim Mazian, Anne Bergeret, Jean-Charles Benezet, Sandrine Bayle, Luc Malhautier

Abstract:

Hemp fibers are increasingly used as reinforcements in polymer matrix composites due to their competitive performance (low density, mechanical properties and biodegradability) compared to conventional fibres such as glass fibers. However, the huge variation of their biochemical, physical and mechanical properties limits the use of these natural fibres in structural applications when high consistency and homogeneity are required. In the hemp industry, traditional processes termed field retting are commonly used to facilitate the extraction and separation of stem fibers. This retting treatment consists to spread out the stems on the ground for a duration ranging from a few days to several weeks. Microorganisms (fungi and bacteria) grow on the stem surface and produce enzymes that degrade pectinolytic substances in the middle lamellae surrounding the fibers. This operation depends on the weather conditions and is currently carried out very empirically in the fields so that a large variability in the hemp fibers quality (mechanical properties, color, morphology, chemical composition…) is resulting. Nonetheless, if controlled, retting might be favorable for good properties of hemp fibers and then of hemp fibers reinforced composites. Therefore, the present study aims to investigate the influence of controlled retting within a designed environmental chamber (lab-scale pilot unit) on the quality of the hemp fibres harvested at the seed maturity growth stage. Various assessments were applied directly on fibers: color observations, morphological (optical microscope), surface (ESEM), biochemical (gravimetry) analysis, spectrocolorimetric measurements (pectins content), thermogravimetric analysis (TGA) and tensile testing. The results reveal that controlled retting leads to a rapid change of color from yellow to dark grey due to development of microbial communities (fungi and bacteria) at the stem surface. An increase of thermal stability of fibres due to the removal of non-cellulosic components along retting is also observed. A separation of bast fibers to elementary fibers occurred with an evolution of chemical composition (degradation of pectins) and a rapid decrease in tensile properties (380MPa to 170MPa after 3 weeks) due to accelerated retting process. The influence of controlled retting on the biocomposite material (PP / hemp fibers) properties is under investigation.

Keywords: controlled retting, hemp fibre, mechanical properties, thermal stability

Procedia PDF Downloads 129
117 Characterization of Potato Starch/Guar Gum Composite Film Modified by Ecofriendly Cross-Linkers

Authors: Sujosh Nandi, Proshanta Guha

Abstract:

Synthetic plastics are preferred for food packaging due to high strength, stretch-ability, good water vapor and gas barrier properties, transparency and low cost. However, environmental pollution generated by these synthetic plastics is a major concern of modern human civilization. Therefore, use of biodegradable polymers as a substitute for synthetic non-biodegradable polymers are encouraged to be used even after considering drawbacks related to mechanical and barrier properties of the films. Starch is considered one of the potential raw material for the biodegradable polymer, encounters poor water barrier property and mechanical properties due to its hydrophilic nature. That apart, recrystallization of starch molecules occurs during aging which decreases flexibility and increases elastic modulus of the film. The recrystallization process can be minimized by blending of other hydrocolloids having similar structural compatibility, into the starch matrix. Therefore, incorporation of guar gum having a similar structural backbone, into the starch matrix can introduce a potential film into the realm of biodegradable polymer. However, hydrophilic nature of both starch and guar gum, water barrier property of the film is low. One of the prospective solution to enhance this could be modification of the potato starch/guar gum (PSGG) composite film using cross-linker. Over the years, several cross-linking agents such as phosphorus oxychloride, sodium trimetaphosphate, etc. have been used to improve water vapor permeability (WVP) of the films. However, these chemical cross-linking agents are toxic, expensive and take longer time to degrade. Therefore, naturally available carboxylic acid (tartaric acid, malonic acid, succinic acid, etc.) had been used as a cross-linker and found that water barrier property enhanced substantially. As per our knowledge, no works have been reported with tartaric acid and succinic acid as a cross-linking agent blended with the PSGG films. Therefore, the objective of the present study was to examine the changes in water vapor barrier property and mechanical properties of the PSGG films after cross-linked with tartaric acid (TA) and succinic acid (SA). The cross-linkers were blended with PSGG film-forming solution at four different concentrations (4, 8, 12 & 16%) and cast on teflon plate at 37°C for 20 h. From the fourier-transform infrared spectroscopy (FTIR) study of the developed films, a band at 1720cm-1 was observed which is attributed to the formation of ester group in the developed films. On the other hand, it was observed that tensile strength (TS) of the cross-linked film decreased compared to non-cross linked films, whereas strain at break increased by several folds. Moreover, the results depicted that tensile strength diminished with increasing the concentration of TA or SA and lowest TS (1.62 MPa) was observed for 16% SA. That apart, maximum strain at break was also observed for TA at 16% and the reason behind this could be a lesser degree of crystallinity of the TA cross-linked films compared to SA. However, water vapor permeability of succinic acid cross-linked film was reduced significantly, but it was enhanced significantly by addition of tartaric acid.

Keywords: cross linking agent, guar gum, organic acids, potato starch

Procedia PDF Downloads 89
116 Dosimetric Comparison among Different Head and Neck Radiotherapy Techniques Using PRESAGE™ Dosimeter

Authors: Jalil ur Rehman, Ramesh C. Tailor, Muhammad Isa Khan, Jahnzeeb Ashraf, Muhammad Afzal, Geofferry S. Ibbott

Abstract:

Purpose: The purpose of this analysis was to investigate dose distribution of different techniques (3D-CRT, IMRT and VMAT) of head and neck cancer using 3-dimensional dosimeter called PRESAGETM Dosimeter. Materials and Methods: Computer tomography (CT) scans of radiological physics center (RPC) head and neck anthropomorphic phantom with both RPC standard insert and PRESAGETM insert were acquired separated with Philipp’s CT scanner and both CT scans were exported via DICOM to the Pinnacle version 9.4 treatment planning system (TPS). Each plan was delivered twice to the RPC phantom first containing the RPC standard insert having TLD and film dosimeters and then again containing the Presage insert having 3-D dosimeter (PRESAGETM) by using a Varian True Beam linear accelerator. After irradiation, the standard insert including point dose measurements (TLD) and planar Gafchromic® EBT film measurement were read using RPC standard procedure. The 3D dose distribution from PRESAGETM was read out with the Duke Midsized optical scanner dedicated to RPC (DMOS-RPC). Dose volume histogram (DVH), mean and maximal doses for organs at risk were calculated and compared among each head and neck technique. The prescription dose was same for all head and neck radiotherapy techniques which was 6.60 Gy/friction. Beam profile comparison and gamma analysis were used to quantify agreements among film measurement, PRESAGETM measurement and calculated dose distribution. Quality assurances of all plans were performed by using ArcCHECK method. Results: VMAT delivered the lowest mean and maximum doses to organ at risk (spinal cord, parotid) than IMRT and 3DCRT. Such dose distribution was verified by absolute dose distribution using thermoluminescent dosimeter (TLD) system. The central axial, sagittal and coronal planes were evaluated using 2D gamma map criteria(± 5%/3 mm) and results were 99.82% (axial), 99.78% (sagital), 98.38% (coronal) for VMAT plan and found the agreement between PRESAGE and pinnacle was better than IMRT and 3D-CRT plan excludes a 7 mm rim at the edge of the dosimeter. Profile showed good agreement for all plans between film, PRESAGE and pinnacle and 3D gamma was performed for PTV and OARs, VMAT and 3DCRT endow with better agreement than IMRT. Conclusion: VMAT delivered lowered mean and maximal doses to organs at risk and better PTV coverage during head and neck radiotherapy. TLD, EBT film and PRESAGETM dosimeters suggest that VMAT was better for the treatment of head and neck cancer than IMRT and 3D-CRT.

Keywords: RPC, 3DCRT, IMRT, VMAT, EBT2 film, TLD, PRESAGETM

Procedia PDF Downloads 362