Search results for: nano silver
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1475

Search results for: nano silver

1175 Evaluation of Shock Sensitivity of Nano-Scaled 1,3,5-Trinitro-1,3,5-Triazacyclohexane Using Small Scale Gap Test

Authors: Kang-In Lee, Woo-Jin Lee, Keun-Deuk Lee, Ju-Seung Chae

Abstract:

In this study, small scale gap test (SSGT) was performed to measure shock sensitivity of nano-scaled 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) samples. The shock sensitivity of energetic materials is usually evaluated by the method of large-scale gap test (LSGT) that has a higher reliability than other methods. But LSGT has the disadvantage that it takes a high cost and time by using a large amount of explosive. In this experiment, nano-scaled RDX samples were prepared by spray crystallization in two different drying methods. In addition, 30μm RDX sample produced by precipitation crystallization and 5μm RDX sample produced by fluid energy mill process were tested to compare shock sensitivity. The study of shock sensitivity measured by small-scale gap test shows that small sized RDX particles have greater insensitivity. As a result, we infer SSGT method has higher reliability compared to the literature as measurement of shock sensitivity of energetic materials.

Keywords: nano-scaled RDX, SSGT(small scale gap test), shock sensitivity, RDX

Procedia PDF Downloads 229
1174 Gas Sensor Based On a One-Dimensional Nano-Grating Au/ Co/ Au/ TiO2 Magneto-Plasmonic Structure

Authors: S. M. Hamidi, M. Afsharnia

Abstract:

Gas sensors based on magneto-plasmonic (MP) structures have attracted much attention due to the high signal to noise ratio in these type of sensors. In these sensors, both the plasmonic and the MO properties of the resulting MP structure become interrelated because the surface Plasmon resonance (SPR) of the metallic medium. This interconnection can be modified the sensor responses and enhanced the signal to noise ratio. So far the sensor features of multilayered structures made of noble and ferromagnetic metals as Au/Co/Au MP multilayer with TiO2 sensor layer have been extensively studied, but their SPR assisted sensor response need to the krestchmann configuration. Here, we present a systematic study on the new MP structure based on one-dimensional nano-grating Au/ Co/ Au/ TiO2 multilayer to utilize as an inexpensive and easy to use gas sensor.

Keywords: Magneto-plasmonic structures, Gas sensor, nano-garting

Procedia PDF Downloads 422
1173 High Gain Broadband Plasmonic Slot Nano-Antenna

Authors: H. S. Haroyan, V. R. Tadevosyan

Abstract:

High gain broadband plasmonic slot nano-antenna has been considered. The theory of plasmonic slot nano-antenna (PSNA) has been developed. The analytical model takes into account also the electrical field inside the metal due to imperfectness of metal in optical range, as well as numerical investigation based on FEM method has been realized. It should be mentioned that Yagi-Uda configuration improves directivity in the plane of structure. In contrast, in this paper the possibility of directivity improvement of proposed PSNA in perpendicular plane of structure by using reflection metallic surface placed under the slot in fixed distance has been demonstrated. It is well known that a directivity improvement brings to the antenna gain increasing. This method of diagram improving is also well known from RF antenna design theory. Moreover the improvement of directivity in the perpendicular plane gives more flexibility in such application as improving the light and atom, ion, molecule interactions by using such type of plasmonic slot antenna. By the analogy of dipole type optical antennas the widening of working wavelengths has been realized by using bowtie geometry of slots, which made the antenna broadband.

Keywords: broadband antenna, high gain, slot nano-antenna, plasmonics.

Procedia PDF Downloads 347
1172 Polymer Solar Cells Synthesized with Copper Oxide Nanoparticles

Authors: Nidal H. Abu-Zahra, Aruna P. Wanninayake

Abstract:

Copper Oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nano particles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nano particles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA/cm2 and it seemed to increase to 6.484 mA/cm2 in cells containing 0.6 mg of CuO NPs; in addition the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nano particles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nano particles.

Keywords: copper oxide nanoparticle, UV-visible spectroscopy, polymer solar cells, P3HT/PCBM

Procedia PDF Downloads 398
1171 Two-Dimensional WO₃ and TiO₂ Semiconductor Oxides Developed by Atomic Layer Deposition with Controllable Nano-Thickness on Wafer-Scale

Authors: S. Zhuiykov, Z. Wei

Abstract:

Conformal defect-free two-dimensional (2D) WO₃ and TiO₂ semiconductors have been developed by the atomic layer deposition (ALD) technique on wafer scale with unique approach to the thickness control with precision of ± 10% from the monolayer of nanomaterial (less than 1.0 nm thick) to the nano-layered 2D structures with thickness of ~3.0-7.0 nm. Developed 2D nanostructures exhibited unique, distinguishable properties at nanoscale compare to their thicker counterparts. Specifically, 2D TiO₂-Au bilayer demonstrated improved photocatalytic degradation of palmitic acid under UV and visible light illumination. Improved functional capabilities of 2D semiconductors would be advantageous to various environmental, nano-energy and bio-sensing applications. The ALD-enabled approach is proven to be versatile, scalable and applicable to the broader range of 2D semiconductors.

Keywords: two-dimensional (2D) semiconductors, ALD, WO₃, TiO₂, wafer scale

Procedia PDF Downloads 134
1170 Thermal and Mechanical Properties of Powder Injection Molded Alumina Nano-Powder

Authors: Mostafa Rezaee Saraji, Ali Keshavarz Panahi

Abstract:

In this work, the processing steps for producing alumina parts using powder injection molding (PIM) technique and nano-powder were investigated and the thermal conductivity and flexural strength of samples were determined as a function of sintering temperature and holding time. In the first step, the feedstock with 58 vol. % of alumina nano-powder with average particle size of 100nm was prepared using Extrumixing method to obtain appropriate homogeneity. This feedstock was injection molded into the two cavity mold with rectangular shape. After injection molding step, thermal and solvent debinding methods were used for debinding of molded samples and then these debinded samples were sintered in different sintering temperatures and holding times. From the results, it was found that the flexural strength and thermal conductivity of samples increased by increasing sintering temperature and holding time; in sintering temperature of 1600ºC and holding time of 5h, the flexural strength and thermal conductivity of sintered samples reached to maximum values of 488MPa and 40.8 W/mK, respectively.

Keywords: alumina nano-powder, thermal conductivity, flexural strength, powder injection molding

Procedia PDF Downloads 306
1169 Acute Hepatotoxicity of Nano and Micro-Sized Iron Particles in Adult Albino Rats

Authors: Ghada Hasabo, Mahmoud Saber Elbasiouny, Mervat Abdelsalam, Sherin Ghaleb, Niveen Eldessouky

Abstract:

In the near future, nanotechnology is envisaged for large scale use. Hence health and safety issues of nanoparticles should be promptly addressed. In the present study the acute hepatoxicity assessment due to high single oral dose of nano iron and micro iron particles were studied. The normal daily activities, biochemical alterations, blood coagulation, histopathological changes in Wister rats were the aspect of the toxicological assessment.This work found that significant alterations in biochemical enzymes (serum iron level, liver enzymes, albumin, and bilirubin levels), blood coagulation (PT, PC, INR), and histopathological changes occurred more prominently in the nano iron particle treated group.

Keywords: nanobiotechnology, nanosystems, nanomaterials, nanotechnology

Procedia PDF Downloads 474
1168 Simulation of Nano Drilling Fluid in an Extended Reach Well

Authors: Lina Jassim, Robiah Yunus, , Amran Salleh

Abstract:

Since nano particles have been assessed as thermo stabilizer, rheology enhancer, and ecology safer, nano drilling fluid can be utilized to overcome the complexity of hole cleaning in highly deviated interval of an extended reach wells. The eccentric annular flow is a flow with special considerations; it forms a vital part of drilling fluid flow analysis in an extended reach wells. In this work eccentric, dual phase flow (different types of rock cuttings with different size were blended with nano fluid) through horizontal well (an extended reach well) are simulated with the help of CFD, Fluent package. In horizontal wells flow occurs in an adverse pressure gradient condition, that makes the particle inside it susceptible to reversed flow. Thus the flow has to be analyzed in a three dimensional manner. Moreover the non-Newtonian behavior of the nano fluid makes the problem really challenging in numerical and physical aspects. The primary objective of the work is to establish a relationship between different flow characteristics with the speed of inner wall rotation. The nano fluid flow characteristics include swirl of flow and its effect on wellbore cleaning ability , wall shear stress and its effect on fluid viscosity to suspend and carry the rock cuttings, axial velocity and its effect on transportation of rock cuttings to the wellbore surface, finally pressure drop and its effect on managed of drilling pressure. The importance of eccentricity of the inner cylinder has to be analyzed as a part of it. Practical horizontal well flows contain a good amount of particles (rock cuttings) with moderate axial velocity, which verified nano drilling fluid ability of carrying and transferring cuttings particles in the highly deviated eccentric annular flow is also of utmost importance.

Keywords: Non-Newtonian, dual phase, eccentric annular, CFD

Procedia PDF Downloads 409
1167 Enhancing the Oxidation Resistance of Copper at High Temperature by Surface Fluorination

Authors: Jae-Ho Kim, Ryosuke Yokochi, Miho Fuzihashi, Susumu Yonezawa

Abstract:

The use of silver nanoparticles in conductive inks and their printing by injecting technology has been known for years. However, the very high cost of silver limits wide industrial applications. Since copper is much cheaper but possesses a very high conductivity (only 6% less than that of Ag), Cu nanoparticles can be considered as a replacement for silver nanoparticles. However, a major problem in utilizing their copper nanoparticles is their inherent tendency to oxidize in ambient conditions. In conductive printing applications, the presence of copper oxide on the surface of nanoparticles has two negative consequences: it increases the required sintering temperature and reduces the electrical conductivity. Only a limited number of reports have attempted to address the oxidation problem, which in general is based on minimizing the exposure of the copper nanoparticles to oxygen by a protective layer composed of a second material at the surface of the particles. To form the protective layer on the surface, carbon-based materials, surfactants, metals, and so on. In this study, we tried to modify the oxide on Cu particles using fluorine gas. And the creation effects of oxyfluorides or fluorides on the oxidation resistance of Cu particles were investigated. Compared with untreated sample (a), the fluorinated samples can restrain the weight increase even at 200℃ from the TG-DTA results. It might be considered that the substantial oxyfluorides on the surface play a role in protecting metal oxidation.

Keywords: copper metal, electrical conductivity, oxidation resistance, surface fluorination

Procedia PDF Downloads 82
1166 Study of Nano Clay Based on Pet

Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachoura

Abstract:

A (PET)/clay nano composites has been successfully performed in one step by reactive melt extrusion. The PEN was first mixed in the melt state with different amounts of functionalized clay. It was observed that the composition PET/4 wt% clay showed total exfoliation. These completely exfoliated composition called nPET, was used to prepare new nPET nano composites in the same mixing batch. The nPEN was compared to neat PET. The nanocomposites were characterized by different techniques: differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS). The micro and nanostructure/properties relationships were investigated. From the different WAXS patterns, it is seen that all samples are amorphous phase. In addition, nPET blends present lower Tc values and higher Tm values than the corresponding neat PET. The present study allowed establishing good correlations between the different measured properties.

Keywords: PET, montmorillonite, nanocomposites, exfoliation, reactive melt-mixing

Procedia PDF Downloads 371
1165 A Novel Nano-Chip Card Assay as Rapid Test for Diagnosis of Lymphatic Filariasis Compared to Nano-Based Enzyme Linked Immunosorbent Assay

Authors: Ibrahim Aly, Manal Ahmed, Mahmoud M. El-Shall

Abstract:

Filariasis is a parasitic disease caused by small roundworms. The filarial worms are transmitted and spread by blood-feeding black flies and mosquitoes. Lymphatic filariasis (Elephantiasis) is caused by Wuchereriabancrofti, Brugiamalayi, and Brugiatimori. Elimination of Lymphatic filariasis necessitates an increasing demand for valid, reliable, and rapid diagnostic kits. Nanodiagnostics involve the use of nanotechnology in clinical diagnosis to meet the demands for increased sensitivity, specificity, and early detection in less time. The aim of this study was to evaluate the nano-based enzymelinked immunosorbent assay (ELISA) and novel nano-chip card as a rapid test for detection of filarial antigen in serum samples of human filariasis in comparison with traditional -ELISA. Serum samples were collected from an infected human with filarial gathered across Egypt's governorates. After receiving informed consenta total of 45 blood samples of infected individuals residing in different villages in Gharbea governorate, which isa nonendemic region for bancroftianfilariasis, healthy persons living in nonendemic locations (20 persons), as well as sera from 20 other parasites, affected patients were collected. The microfilaria was checked in thick smears of 20 µl night blood samples collected during 20-22 hrs. All of these individuals underwent the following procedures: history taking, clinical examination, and laboratory investigations, which included examination of blood samples for microfilaria using thick blood film and serological tests for detection of the circulating filarial antigen using polyclonal antibody- ELISA, nano-based ELISA, and nano-chip card. In the present study, a recently reported polyoclonal antibody specific to tegumental filarial antigen was used in developing nano-chip card and nano-ELISA compared to traditional ELISA for the detection of circulating filarial antigen in sera of patients with bancroftianfilariasis. The performance of the ELISA was evaluated using 45 serum samples. The ELISA was positive with sera from microfilaremicbancroftianfilariasis patients (n = 36) with a sensitivity of 80 %. Circulating filarial antigen was detected in 39/45 patients who were positive for circulating filarial antigen using nano-ELISA with a sensitivity of 86.6 %. On the other hand, 42 out of 45 patients were positive for circulating filarial antigen using nano-chip card with a sensitivity of 93.3%.In conclusion, using a novel nano-chip assay could potentially be a promising alternative antigen detection test for bancroftianfilariasis.

Keywords: lymphatic filariasis, nanotechnology, rapid diagnosis, elisa technique

Procedia PDF Downloads 92
1164 An Overview of Nano-Particles Effect on Mechanical Properties of Composites

Authors: Ganiyu I. Lawal, Olatunde I. Sekunowo, Stephen I. Durowaye

Abstract:

Composites depending on the nature of their constituents and mode of production are regarded as one of the advanced materials that drive today’s technology. This paper attempts a short review of the subject matter with a general aim of pushing to the next level the frontier of knowledge as it impacts the technology of nano-particles manufacturing. The objectives entail an effort to; aggregate recent research efforts in this field, analyse research findings and observations, streamline research efforts and support industry in taking decision on areas of fund deployment. It is envisaged that this work will serve as a quick hand-on compendium material for researchers in this field and a guide to relevant government departments wishing to fund a research whose outcomes have the potential of improving the nation’s GDP.

Keywords: advanced materials, composites, mechanical properties, nano-particles

Procedia PDF Downloads 252
1163 Nanohybride Porphyrin and Silver as an Efficient Catalyst for Oxidation of Alcohols by Tetrabutylammonium Peroxomonosulfate

Authors: Atena Naeimi, Asghar Amiri, Zahra Ghasemi

Abstract:

A stable suspension of nanocomposite simple manganese(III) meso-tetraphenylporphyrin nanoaggregates and Ag was prepared by a host–guest procedure, in which ethanol and water are used as ‘green’ solvents. The oxidation of alcohols by tetrabutylammonium Peroxomonosulfate(TP) were efficiently enhanced with excellent selectivity under the influence of simple Mn(TPP)OAc (TPP = meso-tetraphenylporphyrin) nanoparticles. Enhanced stabilities and activities were achieved with nanostructured Mn catalysts compared to those of the individual counterparts in solution according to turnover numbers and UV/Vis studies. The title nanocatalyst facilitates a greener reaction because the reaction solvent is water and TP is safe to use. The efficiency of the oxidation system depends critically upon the steric hindrances and electronic structures of both nitrogen donor ligand sand porphyrin nanoparticles.

Keywords: oxidation, nanoaggregates, porphyrinoids, silver

Procedia PDF Downloads 261
1162 Treatment and Conservation of an Antique Stone Stela by Nano Calcium Hydroxide with Nano Silica in Egyptian Museum of Cairo

Authors: Elhussein Ahmed Elsayed

Abstract:

An ancient limestone stela dating back to the epoch of the middle kingdom and displayed in the exhibition hall of the middle kingdom, it was discovered in Lisht in Giza, registered with No. 3045 and as a result of its display in an inappropriate display as a result of the use of natural lighting in the display, Represented in sunlight through windows opened day and night. The alternation of these daily changes between the temperature degrees of night and day, both daily and seasonally, causes the expansion and contraction of the rocks and then weakens their cohesion, causing fragmentation. This is indeed the current situation of this stela displayed in the hall, in addition to the damage and fading of colors, as well as the use of a high-viscosity restoration material in the consolidation that led to the attraction of dust and dirt and its adhesion to the surface. The color faded as a result of the lack of lighting control inside the exhibition hall, the remnants of the existing colors were blurred as a result of applying a consolidation material with a high viscosity, which led to the attraction of dust and dirt, and then blurring the colors on the inscription. Examinations and analyzes were carried out on the block, and the results of the examination with a polarized microscope showed that it is of primitive limestone, which contains fossils and microorganisms, which helps to damage. The analysis using the Raman device also showed that the high-viscosity material used in restoration in the past is Paralloid B72. The stone stela was consolidated by using two materials; Nano calcium hydroxide with Nano silica in the form of (Core-shell) at a concentration of 10% and it was applied using the brush.

Keywords: Egyptian museum, stone stela, treatment, nano materials, nano silica

Procedia PDF Downloads 54
1161 Antibiofilm Activities of Biogenic Silver Nanoparticles against Human Pathogenic Bacteria

Authors: Muhammad Shahzad Tufail, Iram Liaqat, Umer Sohail Meer, Muhammad Ishtaiq, Muhammad Sattar

Abstract:

Nanotechnology is a vibrant field with numerous applications in many different branches of science and technology. Several methods are used to synthesize nanoparticles (NPs), which have multiple range of applications. Comparatively, the biogenic synthesis of NPs is a more economical and environmentally favourable method than the traditional chemical method. The current study aims to synthesize biogenically silver nanoparticles (AgNPs) using bacterial isolates. Four bacterial strains Escherichia coli (MT448673), Pseudomonas aeruginosa (MN900691), Bacillus subtilis (MN900684) and Bacillus licheniformis (MN900686) were used for the synthesis of AgNPs from silver nitrate (AgNO3) solution. The biofilm time kinetics of four bacterial isolates (P. aeruginosa, E. coli, B. licheniformis and B. subtilis) was analysed by incubating bacterial cultures at 37◦C in test tubes over a period of different time intervals i.e., 2, 3, 5 and 7 days following crystal violet staining method. All the four strains had ability to form strong biofilms between 48 to 72 hours of incubation. Two strains (B. subtilis and B. licheniformis) formed significant (p < 0.05) biofilm after 3 days of incubation period. The other two strains (E. coli and P. aeruginosa) showed strong biofilm formation after 2 days of incubation. Next, the antibiofilm activity of biogenically synthesized AgNPs (10 - 100 µgmL-1) was analysed against biofilm forming human pathogenic bacteria. Findings of the work revealed that 60-90% inhibition was observed at 60 µgmL-1 of AgNPs, while maximum inhibition (i.e.,100%) was found at highest concentration (90 µgmL-1). It was evident that highly significant (p < 0.05) decrease in biofilm formation was observed with increasing concentration of AgNPs.

Keywords: antibiofilm, biofilm formation, nanotechnology, pathogenic bacteria, silver nanoparticles

Procedia PDF Downloads 62
1160 A Flexible High Energy Density Zn-Air Battery by Screen Printing Technique

Authors: Sira Suren, Soorathep Kheawhom

Abstract:

This work investigates the development of a high energy density zinc-air battery. Printed and flexible thin film zinc-air battery with an overall thickness of about 350 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder, ZnO, and Bi2O3 was used to prepare the anode electrode. The suitable concentration of Bi2O3 and types of binders (styrene-butadiene and sodium silicate) were investigated. Results showed that battery using 20% Bi2O3 and sodium silicate binder provided the best performance. The open-circuit voltage and energy density observed were 1.59 V and 690 Wh/kg, respectively. When the battery was discharged at 20 mA/cm2, the potential voltage observed was 1.3 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed.

Keywords: flexible, printed battery, screen printing, Zn-air

Procedia PDF Downloads 248
1159 Using The Flight Heritage From >150 Electric Propulsion Systems To Design The Next Generation Field Emission Electric Propulsion Thrusters

Authors: David Krejci, Tony Schönherr, Quirin Koch, Valentin Hugonnaud, Lou Grimaud, Alexander Reissner, Bernhard Seifert

Abstract:

In 2018 the NANO thruster became the first Field Emission Electric Propulsion (FEEP) system ever to be verified in space in an In-Orbit Demonstration mission conducted together with Fotec. Since then, 160 additional ENPULSION NANO propulsion systems have been deployed in orbit on 73 different spacecraft across multiple customers and missions. These missions included a variety of different satellite bus sizes ranging from 3U Cubesats to >100kg buses, and different orbits in Low Earth Orbit and Geostationary Earth orbit, providing an abundance of on orbit data for statistical analysis. This large-scale industrialization and flight heritage allows for a holistic way of gathering data from testing, integration and operational phases, deriving lessons learnt over a variety of different mission types, operator approaches, use cases and environments. Based on these lessons learnt a new generation of propulsion systems is developed, addressing key findings from the large NANO heritage and adding new capabilities, including increased resilience, thrust vector steering and increased power and thrust level. Some of these successor products have already been validated in orbit, including the MICRO R3 and the NANO AR3. While the MICRO R3 features increased power and thrust level, the NANO AR3 is a successor of the heritage NANO thruster with added thrust vectoring capability. 5 NANO AR3 have been launched to date on two different spacecraft. This work presents flight telemetry data of ENPULSION NANO systems and onorbit statistical data of the ENPULSION NANO as well as lessons learnt during onorbit operations, customer assembly, integration and testing support and ground test campaigns conducted at different facilities. We discuss how transfer of lessons learnt and operational improvement across independent missions across customers has been accomplished. Building on these learnings and exhaustive heritage, we present the design of the new generation of propulsion systems that increase the power and thrust level of FEEP systems to address larger spacecraft buses.

Keywords: FEEP, field emission electric propulsion, electric propulsion, flight heritage

Procedia PDF Downloads 59
1158 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

Authors: Ziya Uddin

Abstract:

This paper deals with the theoretical and numerical investigation of magneto-hydrodynamic boundary layer flow of a nano fluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nano thermal layer formed around the nanoparticle and Brownian motion of nano particles etc., appropriate models are used for the effective thermal and physical properties of nano fluids. To model the rotation of nano particles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

Keywords: nanofluids, wedge shaped wick, heat pipe, numerical modeling, particle swarm optimization, nanofluid applications, Heat transfer

Procedia PDF Downloads 358
1157 Freshwater Cyanobacterial Bioactive Insights: Planktothricoides raciorskii Compounds vs. Green Synthesized Silver Nanoparticles: Characterization, in vitro Cytotoxicity, and Antibacterial Exploration

Authors: Sujatha Edla

Abstract:

Introduction: New compounds and possible uses for the bioactive substances produced by freshwater cyanobacteria are constantly being discovered through research. Certain molecules are hazardous to the environment and human health, but others have potential applications in industry, biotechnology, and pharmaceuticals. These discoveries advance our knowledge of the varied functions these microbes perform in different ecosystems. Cyanobacterial silver nanoparticles (AgNPs) have special qualities and possible therapeutic advantages, which make them very promising for a range of medicinal uses. Aim: In our study; the attention was focused on the analysis and characterization of bioactive compounds extracted from freshwater cyanobacteria Planktothricoides raciorskii and its comparative study on Cyanobacteria-mediated silver nanoparticles synthesized by cell-free extract of Planktothricoides raciorskii. Material and Methods: A variety of bioactive secondary metabolites have been extracted, purified, and identified from cyanobacterial species using column chromatography, FTIR, and GC-MS/MS chromatography techniques and evaluated for antibacterial and cytotoxic studies, where the Cyanobacterial silver nanoparticles (CSNPs) were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) analysis and were further tested for antibacterial and cytotoxic efficiency. Results: The synthesis of CSNPs was confirmed through visible color change and shift of peaks at 430–445 nm by UV-Vis spectroscopy. The size of CSNPs was between 22 and 34 nm and oval-shaped which were confirmed by SEM and TEM analyses. The FTIR spectra showed a new peak at the range of 3,400–3,460 cm−1 compared to the control, confirming the reduction of silver nitrate. The antibacterial activity of both crude bioactive compound extract and CSNPs showed remarkable activity with Zone of inhibition against E. coli with 9.5mm and 10.2mm, 13mm and 14.5mm against S. paratyphi, 9.2mm and 9.8mm zone of inhibition against K. pneumonia by both crude extract and CSNPs, respectively. The cytotoxicity as evaluated by extracts of Planktothricoides raciorskii against MCF7-Human Breast Adenocarcinoma cell line and HepG2- Human Hepatocellular Carcinoma cell line employing MTT assay gave IC50 value of 47.18ug/ml, 110.81ug/ml against MCF7cell line and HepG2 cell line, respectively. The cytotoxic evaluation of Planktothricoides raciorskii CSNPs against the MCF7cell line was 43.37 ug/ml and 20.88 ug/ml against the HepG2 cell line. Our ongoing research in this field aims to uncover the full therapeutic potential of cyanobacterial silver nanoparticles and address any associated challenges.

Keywords: cyanobacteria, silvernanoparticles, pharmaceuticals, bioactive compounds, cytotoxic

Procedia PDF Downloads 30
1156 Propylene Self-Metathesis to Ethylene and Butene over WOx/SiO2, Effect of Nano-Sized Extra Supports (SiO2 and TiO2)

Authors: Adisak Guntida

Abstract:

Propylene self-metathesis to ethylene and butene was studied over WOx/SiO2 catalysts at 450 °C and atmospheric pressure. The WOx/SiO2 catalysts were prepared by incipient wetness impregnation of ammonium metatungstate aqueous solution. It was found that, adding nano-sized extra supports (SiO2 and TiO2) by physical mixing with the WOx/SiO2 enhanced propylene conversion. The UV-Vis and FT-Raman results revealed that WOx could migrate from the original silica support to the extra support, leading to a better dispersion of WOx. The ICP-OES results also indicate that WOx existed on the extra support. Coke formation was investigated on the catalysts after 10 h time-on-stream by TPO. However, adding nano-sized extra supports led to higher coke formation which may be related to acidity as characterized by NH3-TPD.

Keywords: extra support, nanomaterial, propylene self-metathesis, tungsten oxide

Procedia PDF Downloads 214
1155 Green Synthesis of Silver Nanoparticles Mediated by Plant by-Product Extracts

Authors: Cristian Moisa, Andreea Lupitu, Adriana Csakvari, Dana G. Radu, Leonard Marian Olariu, Georgeta Pop, Dorina Chambre, Lucian Copolovici, Dana Copolovici

Abstract:

Green synthesis of nanoparticles (NPs) represents a promising, accessible, eco-friendly, and safe process with significant applications in biotechnology, pharmaceutical sciences, and farming. The aim of our study was to obtain silver nanoparticles, using plant wastes extracts resulted in the essential oils extraction process: Thymus vulgaris L., Origanum vulgare L., Lavandula angustifolia L., and in hemp processing for seed and fibre, Cannabis sativa. Firstly, we obtained aqueous extracts of thyme, oregano, lavender, and hemp (two monoicous and one dioicous varieties), all harvested in western part of Romania. Then, we determined the chemical composition of the extracts by liquid-chromatography coupled with diode array and mass spectrometer detectors. The compounds identified in the extracts were in agreement with earlier published data, and the determination of the antioxidant activity of the obtained extracts by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assays confirmed their antioxidant activity due to their total polyphenolic content evaluated by Folin-Ciocalteu assay. Then, the silver nanoparticles (AgNPs) were successfully biosynthesised, as was demonstrated by UV-VIS, FT-IR spectroscopies, and SEM, by reacting AgNO₃ solution and plant extracts. AgNPs were spherical in shape, with less than 30 nm in diameter, and had a good bactericidal activity against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens).

Keywords: plant wastes extracts, chemical composition, high performance liquid chromatography mass spectrometer, HPLC-MS, scanning electron microscopy, SEM, silver nanoparticles

Procedia PDF Downloads 155
1154 Liposomal Encapsulation of Silver Nanoparticle for Improved Delivery and Enhanced Anticancer Properties

Authors: Azeez Yusuf, Alan Casey

Abstract:

Silver nanoparticles (AgNP) are one of the most widely investigated metallic nanoparticles due to their promising antibacterial activities. In recent years, AgNP research has shifted beyond antimicrobial use to potential applications in the medical arena. This shift coupled with the extensive commercial applications of AgNP will further increase human exposure, and the subsequent risk of adverse effects that may result from repeated exposures and inefficient delivery meaning research into improved AgNP delivery is of paramount importance. In this study, AgNP were encapsulated in a natural bio-surfactant, dipalmitoylphosphatyidyl choline (DPPC), in an attempt to enhance the intracellular delivery and simultaneously mediate the associated cytotoxicity of the AgNP. It was noted that as a result of the encapsulation, liposomal-AgNP (Lipo-AgNP) at 0.625 μg/ml induced significant cell death in THP1 cell lines a notably lower dose than that of the uncoated AgNP induced cytotoxicity. The induced cytotoxicity was shown to result in an increased level of DNA fragmentation resulting in a cell cycle interruption at the S phase of the cell cycle. It was shown that the predominate form of cell death upon exposure to both uncoated and Lipo-AgNP was apoptosis, however, a ROS-independent activation of the executioner caspases 3/7 occurred when exposed to the Lipo-AgNP. These findings showed that encapsulation of AgNP enhances AgNP cytotoxicity and mediates an ROS-independent induction of apoptosis.

Keywords: silver nanoparticles, AgNP, cytotoxicity, encapsulation, liposome

Procedia PDF Downloads 124
1153 Effects of Gelatin on Characteristics and Dental Pathogen Inhibition by Silver Nanoparticles Synthesized from Ascorbic Acid

Authors: Siriporn Okonogi, Temsiri Suwan, Sakornrat Khongkhunthian, Jakkapan Sirithunyalug

Abstract:

In this study, silver nanoparticles (AgNPs) were prepared using ascorbic acid as a reducing agent and silver nitrate as a precursor. The effects of gelatin (G) on particle characteristics and dental pathogen inhibition were investigated. The spectra of AgNPs and G-AgNPs were compared using UV-Vis and Energy-dispersive X-ray (EDX) spectroscopy. The obtained AgNPs and G-AgNPs showed the maximum absorption at 410 and 430 nm, respectively, and EDX spectra of both systems confirmed Ag element. Scanning electron microscope showed that AgNPs and G-AgNPs were spherical in shape. Particles size, size distribution, and zeta potential were determined using dynamic light scattering approach. The size of AgNPs and G-AgNPs were 56 ± 2.4 and 67 ± 3.6 nm, respectively with a size distribution of 0.23 ± 0.03 and 0.19 ± 0.02, respectively. AgNPs and G-AgNPs exhibited negative zeta potential of 24.1 ± 2.7 mV and 32.7 ± 1.2 mV, respectively. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the obtained AgNPs and G-AgNPs against three strains of dental pathogenic bacteria; Streptococcus gordonii, Streptococcus mutans, and Staphylococcus aureus were determined using broth dilution method. AgNPs and G-AgNPs showed the strongest inhibition against S. gordonii with the MIC of 0.05 and 0.025 mg/mL, respectively and the MBC of 0.1 and 0.05 mg/mL, respectively. Cytotoxicity test of AgNPs and G-AgNPs on human breast cancer cells using MTT assay indicated that G-AgNPs (0.1 mg/mL) was significantly stronger toxic than AgNPs with the cell inhibition of 91.1 ± 5.4%. G-AgNPs showed significantly less aggregation after storage at room temperature for 90 days than G-AgNPs.

Keywords: antipathogenic activity, ascorbic acid, cytotoxicity, stability

Procedia PDF Downloads 119
1152 Antimicrobial Activity of Functionalized Alpaca Fabrics with Silver Nanoparticles

Authors: Gina Zavaleta-Espejo, Segundo R. Jáuregui-Rosas, Fanny V. Samanamud-Moreno, José Saldaña Jiménez, Anibal Felix-Quintero, Víctor Montero-Del Aguila, Elsi Mejía-Uriarte

Abstract:

Vicugnapacos "alpaca" fabrics are considered special for their finesse, and the garments in the textile market are very luxurious. It has many special characteristics such as antiallergic, soft, hygroscopic, among others. In this sense, the research aimed to evaluate the antimicrobial activity of alpaca fabrics functionalized with silver nanoparticles on the bacteria Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. For the functionalization of the fabrics, AgNO3 and different concentrations of trisodium citrate (TSC) 2, 6, and 10 mg. Tissue characterization was performed using Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The determination of the antimicrobial activity of the alpaca tissues was made by the Kirby-Bauer method with alpaca tissue discs functionalized with silver nanoparticles, an experimental design was made in completely randomized blocks with three treatments and a negative control with three repetitions. The results showed that inhibition halos were formed for both bacteria, therefore, the functionalized tissues have a high antimicrobial activity, whose mechanism of action is attributed to the free radicals (ROS) generated by the nanoparticles that cause oxidative damage to the bacteria. proteins and lipids of the bacterial cell wall.

Keywords: antimicrobial, animal fibers, fabrics, functionalization, trisodium citrate

Procedia PDF Downloads 111
1151 Development and Characterization of Bio-Tribological, Nano- Multilayer Coatings for Medical Tools Application

Authors: L. Major, J. M. Lackner, M. Dyner, B. Major

Abstract:

Development of new generation bio- tribological, multilayer coatings, opens an avenue for fabrication of future high- tech functional surfaces. In the presented work, nano- composite, Cr/CrN+[Cr/ a-C:H implanted by metallic nanocrystals] multilayer coatings have been developed for surface protection of medical tools. Thin films were fabricated by a hybrid Pulsed Laser Deposition technique. Complex microstructure analysis of nano- multilayer coatings, subjected to mechanical and biological tests, were performed by means of transmission electron microscopy (TEM). Microstructure characterization revealed the layered arrangement of Cr23C6 nanoparticles in multilayer structure. Influence of deposition conditions on bio- tribological properties of the coatings were studied. The bio-tests were used as a screening tool for the analyzed nano- multilayer coatings before they could be deposited on medical tools. Bio- medical tests were done using fibroblasts. The mechanical properties of the coatings were investigated by means of a ball-on-disc mechanical test. The microhardness was done using Berkovich indenter. The scratch adhesion test was done using Rockwell indenter. From the bio- tribological point of view, the optimal properties had the C106_1 material.

Keywords: bio- tribological coatings, cell- material interaction, hybrid PLD, tribology

Procedia PDF Downloads 350
1150 Tensile strength and Elastic Modulus of Nanocomposites Based on Polypropylene/Linear Low Density Polyethylene/Titanium Dioxide Nanoparticles

Authors: Faramarz Ashenai Ghasemi, Ismail Ghasemi, Sajad Daneshpayeh

Abstract:

In this study, tensile strength and elastic modulus of nanocomposites based on polypropylene/ linear low density polyethylene/ nano titanium dioxide (PP/LLDPE/TiO2) were studied. The samples were produced using a co-rotating twin screw extruder including 0, 2, 4 Wt .% of nano particles, and 20, 40, 60 Wt.% of LLDPE. The styrene-ethylene-butylene-styrene (SEBS) was used as comptabiliser. Tensile strength and elastic modulus were evaluated. The results showed that modulus was increased by 7% with addition of nano particles in comparison to PP/LLDPE. In addition, tensile strength was decreased.

Keywords: PP/LLDPE/TiO2, nanocomposites, elastic modulus, tensile strength

Procedia PDF Downloads 506
1149 Mimicking of Various ECM Tangible Cues for the Manipulation of Hepatocellular Behaviours

Authors: S. A. Abdellatef, A. Taniguchi, Namiki, Tsukuba, Ibaraki

Abstract:

The alterations in the physicochemical characteristics of bio-materials are renowned for their impact in cellular behaviors. Surface chemistry and substratum topography are separately considered as mutable characteristics with deep impact on the overall cell behaviors. In our recent work, we examined the manipulation of the physical cues on hepatic cellular behaviors. We have proven that the geometrical or dimensional characteristics of nano features are essential for the optimum hepatocellular functions. While here, the collective impact of both physical and chemical cues on hepatocellular behaviors was investigated. On which RGD peptide was immobilized on a TiO2 nano pattern that imitates the hierarchically extend collagen nano fibrillar structures. The hepatocytes morphological and functional changes induced by simultaneously combining the diversified cues were investigated. TiO2 substrates that integrate nano topography with the adhesive peptide motif (RGD) had showed an increase in the hepatocellular functionality to the maximum extent. While a significant enhancement in expression of these liver specific markers on RGD coated surfaces were observed compared to uncoated substrates regardless of topography. Consequently in depth understanding of the relationship between various kind of cues and hepatocytes behaviors would be a paving step in the application of tissue engineering and bio reactor technology.

Keywords: biomaterial, tiO2, hepG2, RGD

Procedia PDF Downloads 369
1148 Bake Hardening Behavior of Ultrafine Grained and Nano-Grained AA6061 Aluminum Alloy

Authors: Hamid Alihosseini, Kamran Dehghani

Abstract:

In this study, the effects of grain size of AA6061 aluminum on the bake hardening have been investigated. The grains of sample sheets refined by applying 4, 8, and 12 passes of ECAP and their microstructures and mechanical properties were investigated. EBSD and TEM studies of the sheets showed grain refinement, and the EBSD micrograph of the alloy ECAPed for 12 passes showed nano-grained (NG) ∼95nm in size. Then, the bake hardenability of processed sheet was compared by pre-straining to 6% followed by baking at 200°C for 20 min. The results show that in case of baking at 200°C, there was an increase about 108%, 93%, and 72% in the bake hardening for 12, 8, and 4 passes, respectively. The maximum in bake hardenability (120 MPa) and final yield stress (583 MPa) were pertaining to the ultra-fine grain specimen pre-strained 6% followed by baking at 200◦C.

Keywords: bake hardening, ultrafine grain, nano grain, AA6061 aluminum,

Procedia PDF Downloads 312
1147 Dynamic Analysis of Functionally Graded Nano Composite Pipe with PZT Layers Subjected to Moving Load

Authors: Morteza Raminnia

Abstract:

In this study, dynamic analysis of functionally graded nano-composite pipe reinforced by single-walled carbon nano-tubes (SWCNTs) with simply supported boundary condition subjected to moving mechanical loads is investigated. The material properties of functionally graded carbon nano tube-reinforced composites (FG-CNTRCs) are assumed to be graded in the thickness direction and are estimated through a micro-mechanical model. In this paper polymeric matrix considered as isotropic material and for the CNTRC, uniform distribution (UD) and three types of FG distribution patterns of SWCNT reinforcements are considered. The system equation of motion is derived by using Hamilton's principle under the assumptions of first order shear deformation theory (FSDT).The thin piezoelectric layers embedded on inner and outer surfaces of FG-CNTRC layer are acted as distributed sensor and actuator to control dynamic characteristics of the FG-CNTRC laminated pipe. The modal analysis technique and Newmark's integration method are used to calculate the displacement and dynamic stress of the pipe subjected to moving loads. The effects of various material distribution and velocity of moving loads on dynamic behavior of the pipe is presented. This present approach is validated by comparing the numerical results with the published numerical results in literature. The results show that the above-mentioned effects play very important role on dynamic behavior of the pipe .This present work shows that some meaningful results that which are interest to scientific and engineering community in the field of FGM nano-structures.

Keywords: nano-composite, functionally garded material, moving load, active control, PZT layers

Procedia PDF Downloads 392
1146 Microstructures Evolution of a Nano/Ultrafine Grained Low Carbon Steel Produced by Martensite Treatment Using Accumulative Roll Bonding

Authors: Mehdi Salari

Abstract:

This work introduces a new experimental method of martensite treatment contains accumulative roll-bonding used for producing the nano/ultrafine grained structure in low carbon steel. The ARB process up to 4 cycles was performed under unlubricated conditions, while the annealing process was carried out in the temperature range of 450–550°C for 30–100 min. The microstructures of the deformed and annealed specimens were investigated. The results showed that in the annealed specimen at 450°C for 30 or 60 min, recrystallization couldn’t be completed. Decrease in time and temperature intensified the volume fraction of the martensite cell blocks. Fully equiaxed nano/ultrafine grained ferrite was developed from the martensite cell blocks during the annealing at temperature around 500°C for 100 min.

Keywords: martensite process, accumulative roll bonding, recrystallization, nanostructure, plain carbon steel

Procedia PDF Downloads 352