Search results for: microRNA expression profiling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2171

Search results for: microRNA expression profiling

2171 Use of Pig as an Animal Model for Assessing the Differential MicroRNA Profiling in Kidney after Aristolochic Acid Intoxication

Authors: Daniela E. Marin, Cornelia Braicu, Gina C. Pistol, Roxana Cojocneanu-Petric, Ioana Berindan Neagoe, Mihail A. Gras, Ionelia Taranu

Abstract:

Aristolochic acid (AA) is a carcinogenic, mutagenic, and nephrotoxic compound commonly found in the Aristolochiaceae family of plants. AA is frequently associated with urothelial carcinoma of the upper urinary tract in human and animals and is considered as being responsible for Balkan Endemic Nephropathy. The pig provides a good animal model because the porcine urological system is very similar to that of humans, both in aspects of physiology and anatomy. MicroRNA (miRNA) are small non-coding RNAs that have an impact on a wide range of biological processes by regulating gene expression at post-transcriptional level. The objective of this study was to analyze the miRNA profiling in the kidneys of AA intoxicated swine. For this purpose, ten TOPIGS-40 crossbred weaned piglets, 4-week-old, male and females with an initial average body weight of 9.83 ± 0.5 kg were studied for 28 days. They were given ad libitum access to water and feed and randomly allotted to one of the following groups: control group (C) or aristolochic acid group (AA). They were fed a maize-soybean-meal-based diet contaminated or not with 0.25mgAA/kg. To profile miRNA in the kidneys of pigs, microarrays and bioinformatics approaches were applied to analyze the miRNA in the kidney of control and AA intoxicated pigs. After normalization, our results have shown that a total of 5 known miRNAs and 4 novel miRNAs had different profiling in the kidney of intoxicated animals versus control ones. Expression of miR-32-5p, miR-497-5p, miR-423-3p, miR-218-5p, miR-128-3p were up-regulated by 0.25mgAA/kg feed, while the expression of miR-9793-5p, miR-9835-3p, miR-9840-3p, miR-4334-5p was down-regulated. The microRNA profiling in kidney of intoxicated animals was associated with modified expression of target genes as: RICTOR, LASP1, SFRP2, DKK2, BMI1, RAF1, IGF1R, MAP2K1, WEE1, HDGF, BCL2, EIF4E etc, involved in cell division cycle, apoptosis, cell differentiation and cell migration, cell signaling, cancer etc. In conclusion, this study provides new data concerning the microRNA profiling in kidney after aristolochic acid intoxications with important implications for human and animal health.

Keywords: aristolochic acid, kidney, microRNA, swine

Procedia PDF Downloads 254
2170 MicroRNA Profiling Reveals Novel Circulating Biomarkers in Acute Phase of Myocardial Infarction

Authors: A. Maciejak, M. Kiliszek, G. Opolski, D. Tulacz, A. Segiet, K. Matlak, S. Dobrzycki, G. Sygitowicz, B. Burzynska, M. Gora

Abstract:

Introduction and aims: Acute myocardial infarction (AMI) is one of the most severe cardiovascular diseases affecting millions of patients each year worldwide. An early and accurate diagnosis of AMI is essential for optimal treatment. Therefore, new approaches that can complement and improve current strategies for AMI diagnosis are urgently needed. Recent studies have revealed the presence of stable circulating myocardial-derived microRNAs (miRNAs) in human peripheral blood, suggesting that such miRNAs could serve as potential biomarkers of infarction. The present study aimed to identify differentially expressed circulating miRNAs in ST-segment elevation myocardial infarction (STEMI) patients. Materials and methods: miRNA expression profile analysis was performed using Exiqon Serum/Plasma Focus microRNA PCR panel in plasma samples of n=16 patients on the first day of AMI (admission) and in samples from the same patients collected six months after AMI. Selected miRNAs were validated by RT-qPCR using serum samples from an independent set of n=14 AMI patients. Results: The profiling study identified 46 species of plasma miRNAs that were differentially expressed (p < 0.05) on admission compared to six months after AMI. The validation in the independent group of patients confirmed that miR-133b and miR-22-5p were significantly up-regulated upon AMI. Conclusions: Our results suggest that miRNA expression profiling provides better understanding of the changes that occur in the acute phase of MI in the myocardium and could be useful in determination of the potential role of extracellular miRNAs as paracrine signaling molecules. miR-22-5p represents a novel promising biomarker for the diagnosis of acute myocardial infarction.

Keywords: acute myocardial infarction, circulating microRNAs, microRNA expression profiling, miR-22-5p

Procedia PDF Downloads 305
2169 High-Throughput, Purification-Free, Multiplexed Profiling of Circulating miRNA for Discovery, Validation, and Diagnostics

Authors: J. Hidalgo de Quintana, I. Stoner, M. Tackett, G. Doran, C. Rafferty, A. Windemuth, J. Tytell, D. Pregibon

Abstract:

We have developed the Multiplexed Circulating microRNA assay that allows the detection of up to 68 microRNA targets per sample. The assay combines particle­based multiplexing, using patented Firefly hydrogel particles, with single­ step RT-PCR signal. Thus, the Circulating microRNA assay leverages PCR sensitivity while eliminating the need for separate reverse transcription reactions and mitigating amplification biases introduced by target­-specific qPCR. Furthermore, the ability to multiplex targets in each well eliminates the need to split valuable samples into multiple reactions. Results from the Circulating microRNA assay are interpreted using Firefly Analysis Workbench, which allows visualization, normalization, and export of experimental data. To aid discovery and validation of biomarkers, we have generated fixed panels for Oncology, Cardiology, Neurology, Immunology, and Liver Toxicology. Here we present the data from several studies investigating circulating and tumor microRNA, showcasing the ability of the technology to sensitively and specifically detect microRNA biomarker signatures from fluid specimens.

Keywords: biomarkers, biofluids, miRNA, photolithography, flowcytometry

Procedia PDF Downloads 330
2168 MicroRNA 200c-3p Regulates Autophagy Mediated Upregulation of Endoplasmic Reticulum Stress in PC-3 Cells

Authors: Eun Jung Sohn, Hwan Tae Park

Abstract:

Autophagy is a cellular response to stress or environment on cell survival. Here, we investigated the role of ectopic expression of miR 200c-3p in autophagy. Ectopic expression of miR 200c-3p increased the expression of IRE1alpha, ATF6 and CHOP by western blot and RT-qPCR. Furthermore, the level of microRNA 200c-3p was enhanced by treatment of TG or overexpression of GRP 78. Also, ectopic expression of miR200c-3p increased the LC3 II expression by western blot and RT-qPCR. Also, we found that western blot assay showed that miR200c-3p inhibitor was blocked the starvation–induced LC3II levels. Furthermore, starvation stress increased the level of miR200c-3p in different kinetics. Ectopic expression of miR200c-3p attenuated LC3II expression in IRE1 siRNA transfected PC3 cells. Here, we first demonstrate that miR200c-3p regulates autophagy via ER stress pathway.

Keywords: Autophagy, ER stress, LC3II, miR200c-3p

Procedia PDF Downloads 264
2167 Real Time PCR Analysis of microRNA Expression in Oral Cancer

Authors: Karl Kingsley

Abstract:

Many mechanisms are involved in the control of cellular differentiation and growth, which are often dysregulated in many cancers. Many distinct pathways are involved in these mechanisms of control, including deoxyribonuclease (DNA) methyltransferase and histone deacetylase (HDAC) activation that controls both genetic and epigenetic modifications and micro ribonucleic acid (RNA) expression. Less is known about the expression of DNA methyltransferase (DNMT) and HDAC in oral cancers and the effect on microRNA expression. The primary objective of this study was to evaluate the expression of DNMT and HDAC family members in oral cancer and the concomitant expression of cancer-associated microRNAs. Using commercially available oral cancers, including squamous cell carcinoma (SCC)-4, SCC-9, SCC-15, and SCC-25, RNA was extracted and screened for DNMT, HDAC, and microRNA expression using highly-specific primers and quantitative polymerase chain reaction (qPCR). These data revealed low or absent expression of DNMT-1, which is associated with cellular differentiation but increased expression of DNMT-3a and DNMT-3b in all SCC cell lines compared with normal non-cancerous cell controls. In addition, no expression of HDAC1 and HDAC2 expression was found among the normal, non-cancerous cells but was highly expressed in each of the SCC cell lines examined. Differential expression of oncogenic and cancer-associated microRNAs was also observed among the SCC cell lines, including miR-21, miR-133, miR-149, miR-155, miR-365, and miR-720. These findings also appeared to vary according to observed growth rates among these cells. These data may be the first to demonstrate the expression and association between HDAC and DNMT3 family members among oral cancers. In addition, the differential expression of these epigenetic modifiers may be associated with the expression of specific microRNAs in these cancers, which have not previously been observed to the best of the author's knowledge. In addition, some associations and relationships may exist between the expression of these biomarkers and the rates of growth and proliferation, which may suggest that these expression patterns might represent potentially useful biomarkers to determine tumor aggressiveness and other phenotypic behaviors among oral cancers.

Keywords: oral cancer, DNA methyltransferase, histone deacetylase, microRNA

Procedia PDF Downloads 108
2166 MicroRNA Differential Profiling in Hepatitis C Patients Undergoing Major Surgeries: Propofol versus Sevoflurane Anesthesia

Authors: Hala Demerdash, Ola M. Zanaty, Emad Eldin Arida

Abstract:

Background: This study investigated the micoRNA expression changes induced by Sevoflurane and Propofol and their effects on liver functions. Patients and methods: The study was designed as randomized controlled study, carried out on 200 adult patients, scheduled for major surgeries under general anesthesia (GA). Patients were randomly divided into four groups; groups SC and PC included chronic hepatitis C (CHC) patients where SC group are patients receiving Sevoflurane, and PC group are patients receiving Propofol anesthesia. While S and P groups included non- hepatitis patients; S group are patients receiving Sevoflurane and P group are patients receiving Propofol. Anesthesia in Group S and SC patients was maintained by sevoflurane, while anesthesia in Group P and PC patients was maintained by propofol infusion. Blood samples were analyzed for PT, PTT and liver enzymes. Serum samples were analyzed for microRNA before and after surgery. Results: Results show miRNA-122 and miRNA-21 were absent in serum of S and P groups in pre-operative samples. However, they were expressed in SC and PC groups. In post-operative samples; miRNA-122 revealed an increased expression in all groups; with more exaggerated response in SC group. On the other hand miRNA-21 revealed increased expression in both SC and PC groups; a slight expression in S group with absent expression in P group. There was a post-operative negative correlation between miR-122 and ALT (r=-0.46) in SC group and (r=-0.411) in PC group and positive correlation between ALT and miR-21 (r=0.335) in SC group and (r=0.379) in PC group. The amount of blood loss was positively correlated with miR-122 (r=0.366) in SC group and (r=0.384) in PC group. Conclusion: Propofol anesthesia is safer than Sevoflurane anesthesia in patients with CHC. Sevoflurane and Propofol anesthesia affect miRNA expression in both CHC and non-hepatitis patients.

Keywords: anesthesia, chronic hepatitis C, micoRNA, propofol, sevoflurane

Procedia PDF Downloads 317
2165 MicroRNA-1246 Expression Associated with Resistance to Oncogenic BRAF Inhibitors in Mutant BRAF Melanoma Cells

Authors: Jae-Hyeon Kim, Michael Lee

Abstract:

Intrinsic and acquired resistance limits the therapeutic benefits of oncogenic BRAF inhibitors in melanoma. MicroRNAs (miRNA) regulate the expression of target mRNAs by repressing their translation. Thus, we investigated miRNA expression patterns in melanoma cell lines to identify candidate biomarkers for acquired resistance to BRAF inhibitor. Here, we used Affymetrix miRNA V3.0 microarray profiling platform to compare miRNA expression levels in three cell lines containing BRAF inhibitor-sensitive A375P BRAF V600E cells, their BRAF inhibitor-resistant counterparts (A375P/Mdr), and SK-MEL-2 BRAF-WT cells with intrinsic resistance to BRAF inhibitor. The miRNAs with at least a two-fold change in expression between BRAF inhibitor-sensitive and –resistant cell lines, were identified as differentially expressed. Averaged intensity measurements identified 138 and 217 miRNAs that were differentially expressed by 2 fold or more between: 1) A375P and A375P/Mdr; 2) A375P and SK-MEL-2, respectively. The hierarchical clustering revealed differences in miRNA expression profiles between BRAF inhibitor-sensitive and –resistant cell lines for miRNAs involved in intrinsic and acquired resistance to BRAF inhibitor. In particular, 43 miRNAs were identified whose expression was consistently altered in two BRAF inhibitor-resistant cell lines, regardless of intrinsic and acquired resistance. Twenty five miRNAs were consistently upregulated and 18 downregulated more than 2-fold. Although some discrepancies were detected when miRNA microarray data were compared with qPCR-measured expression levels, qRT-PCR for five miRNAs (miR-3617, miR-92a1, miR-1246, miR-1936-3p, and miR-17-3p) results showed excellent agreement with microarray experiments. To further investigate cellular functions of miRNAs, we examined effects on cell proliferation. Synthetic oligonucleotide miRNA mimics were transfected into three cell lines, and proliferation was quantified using a colorimetric assay. Of the 5 miRNAs tested, only miR-1246 altered cell proliferation of A375P/Mdr cells. The transfection of miR-1246 mimic strongly conferred PLX-4720 resistance to A375P/Mdr cells, implying that miR-1246 upregulation confers acquired resistance to BRAF inhibition. We also found that PLX-4720 caused much greater G2/M arrest in A375P/Mdr cells transfected with miR-1246mimic than that seen in scrambled RNA-transfected cells. Additionally, miR-1246 mimic partially caused a resistance to autophagy induction by PLX-4720. These results indicate that autophagy does play an essential death-promoting role inPLX-4720-induced cell death. Taken together, these results suggest that miRNA expression profiling in melanoma cells can provide valuable information for a network of BRAF inhibitor resistance-associated miRNAs.

Keywords: microRNA, BRAF inhibitor, drug resistance, autophagy

Procedia PDF Downloads 294
2164 Effects of Aerobic Training on MicroRNA Let-7a Expression and Levels of Tumor Tissue IL-6 in Mice With Breast Cancer

Authors: Leila Anoosheh

Abstract:

Aim: The aim of this study was to assess The effects of aerobic training on microRNA let-7a expression and levels of tumor tissue IL-6 in mice with breast cancer. Method: Twenty BALB/c c mice (4-5 weeks,17 gr mass) were cancerous by injection of estrogen-dependent receptor breast cancer cells MC4-L2 and divided into two groups: tumor-training(TT) and tumor-control(TC) group. Then TT group completed aerobic training for 6 weeks, 5 days per week (14-18 m/min). After tumor emersion, tumor width and length were measured by digital caliper every week. 48 hours after the last exercise subjects were killed. Tissue sampling were collected and stored in -70ᵒ. Tumor tissue was homogenized and let-7a expression and IL-6 levels were accounted with Real time-PCR and ELISA Kit respectively. Statistical analysis of let-7a was conducted by the REST software. Repeated measures and independent tests were used to assess tumor size and IL-6, respectively. Results: Tumor size and IL-6 levels were significantly decreased in TT group compare with TC group (p<0.05). microRNA let-7a was increased significantly in TT against control group respectively (p=0/000). Conclusion: Reduction in tumor size, followed by aerobic exercise can be attributed to the loss of inflammatory factors such as IL-6; It seems that regarding to up regulation effects of aerobic exercise training on let-7a and down regulation effects of that on IL-6 in mice with breast cancer, This type of training can be used as adjuvant therapy in conjunction with other therapies for breast cancer.

Keywords: breast cancer, aerobic training, microRNA let-7a, IL-6

Procedia PDF Downloads 405
2163 An Improvement of ComiR Algorithm for MicroRNA Target Prediction by Exploiting Coding Region Sequences of mRNAs

Authors: Giorgio Bertolazzi, Panayiotis Benos, Michele Tumminello, Claudia Coronnello

Abstract:

MicroRNAs are small non-coding RNAs that post-transcriptionally regulate the expression levels of messenger RNAs. MicroRNA regulation activity depends on the recognition of binding sites located on mRNA molecules. ComiR (Combinatorial miRNA targeting) is a user friendly web tool realized to predict the targets of a set of microRNAs, starting from their expression profile. ComiR incorporates miRNA expression in a thermodynamic binding model, and it associates each gene with the probability of being a target of a set of miRNAs. ComiR algorithms were trained with the information regarding binding sites in the 3’UTR region, by using a reliable dataset containing the targets of endogenously expressed microRNA in D. melanogaster S2 cells. This dataset was obtained by comparing the results from two different experimental approaches, i.e., inhibition, and immunoprecipitation of the AGO1 protein; this protein is a component of the microRNA induced silencing complex. In this work, we tested whether including coding region binding sites in the ComiR algorithm improves the performance of the tool in predicting microRNA targets. We focused the analysis on the D. melanogaster species and updated the ComiR underlying database with the currently available releases of mRNA and microRNA sequences. As a result, we find that the ComiR algorithm trained with the information related to the coding regions is more efficient in predicting the microRNA targets, with respect to the algorithm trained with 3’utr information. On the other hand, we show that 3’utr based predictions can be seen as complementary to the coding region based predictions, which suggests that both predictions, from 3'UTR and coding regions, should be considered in a comprehensive analysis. Furthermore, we observed that the lists of targets obtained by analyzing data from one experimental approach only, that is, inhibition or immunoprecipitation of AGO1, are not reliable enough to test the performance of our microRNA target prediction algorithm. Further analysis will be conducted to investigate the effectiveness of the tool with data from other species, provided that validated datasets, as obtained from the comparison of RISC proteins inhibition and immunoprecipitation experiments, will be available for the same samples. Finally, we propose to upgrade the existing ComiR web-tool by including the coding region based trained model, available together with the 3’UTR based one.

Keywords: AGO1, coding region, Drosophila melanogaster, microRNA target prediction

Procedia PDF Downloads 412
2162 lncRNA Gene Expression Profiling Analysis by TCGA RNA-Seq Data of Breast Cancer

Authors: Xiaoping Su, Gabriel G. Malouf

Abstract:

Introduction: Breast cancer is a heterogeneous disease that can be classified in 4 subgroups using transcriptional profiling. The role of lncRNA expression in human breast cancer biology, prognosis, and molecular classification remains unknown. Methods and results: Using an integrative comprehensive analysis of lncRNA, mRNA and DNA methylation in 900 breast cancer patients from The Cancer Genome Atlas (TCGA) project, we unraveled the molecular portraits of 1,700 expressed lncRNA. Some of those lncRNAs (i.e, HOTAIR) are previously reported and others are novel (i.e, HOTAIRM1, MAPT-AS1). The lncRNA classification correlated well with the PAM50 classification for basal-like, Her-2 enriched and luminal B subgroups, in contrast to the luminal A subgroup which behaved differently. Importantly, estrogen receptor (ESR1) expression was associated with distinct lncRNA networks in lncRNA clusters III and IV. Gene set enrichment analysis for cis- and trans-acting lncRNA showed enrichment for breast cancer signatures driven by breast cancer master regulators. Almost two third of those lncRNA were marked by enhancer chromatin modifications (i.e., H3K27ac), suggesting that lncRNA expression may result in increased activity of neighboring genes. Differential analysis of gene expression profiling data showed that lncRNA HOTAIRM1 was significantly down-regulated in basal-like subtype, and DNA methylation profiling data showed that lncRNA HOTAIRM1 was highly methylated in basal-like subtype. Thus, our integrative analysis of gene expression and DNA methylation strongly suggested that lncRNA HOTAIRM1 should be a tumor suppressor in basal-like subtype. Conclusion and significance: Our study depicts the first lncRNA molecular portrait of breast cancer and shows that lncRNA HOTAIRM1 might be a novel tumor suppressor.

Keywords: lncRNA profiling, breast cancer, HOTAIRM1, tumor suppressor

Procedia PDF Downloads 78
2161 MicroRNA in Bovine Corpus Luteum during Early Pregnancy

Authors: Rreze Gecaj, Corina Schanzenbach, Benedikt Kirchner, Michael Pfaffl, Bajram Berisha

Abstract:

The maintenance of corpus lutem (CL) during early pregnancy in cattle is a critical and multifarious process. A luteotrophic mechanism originating from the embryo is widely accepted as the triggering signal for the CL maintenance. In the cattle, it is the interferon-tau (IFNT) secretion form conceptus that prevents CL regression and ensures progesterone production for the establishment of pregnancy. In addition to endocrine and paracrine signals, microRNA (miRNA) can also support CL sustainability during early pregnancy. MiRNA are small non-coding nucleic acids that regulate gene expression post-transcriptionally and are shown to be involved in the modulation of CL function. However, the examination of miRNAs in corpus luteum function at the early pregnancy still remains largely uncovered. This study aims at profiling the expression of miRNA in CL during the early pregnancy in cattle by comparing it with the CL form late cycle and with the regressed CL. Corpora lutea were assigned in two different groups during the cycle (C13 group, late CL: days 13-18 and C18, regressed CL group: day >18) and during the early pregnancy (group P: 1-2 month). The estrous cycle was determined by macroscopic examination and to age the fetus crown-rump length measurement was applied. A total of 9 corpora lutea from individual animals were included in the study, three corpora lutea for each group. MiRNAs population was profiled using small RNA next-generation sequencing and biologically significant miRNAs were evaluated for their differential expression using the DESeq2-methodology. We show that 6 differentially expressed miRNAs (bta-mir-2890, -2332, -2441-3p, -148b, -1248 and -29c) are common to both comparisons, P vs C13 and P vs C18. While for each stage individually we have identified unique miRNAs differentially expressed only for the given comparison. bta-miR-23a and -769 were unique miRNAs differentially expressed in P vs C13, whereas forty-four unique miRNAs were identified as differentially expressed in P vs C18. These data confirm that miRNAs are highly abundant in luteal tissue during early pregnancy and potentially regulate the CL maintenance at this stage of fetus development.

Keywords: bovine, corpus luteum, microRNA, pregnancy, RNA-Seq

Procedia PDF Downloads 230
2160 Investigation of FoxM1 Gene Expression in Breast Cancer and Its Relationship with miR-216B-5p Expression Level

Authors: Ramin Mehdiabadi

Abstract:

Background: Breast cancer remains the most prevalent cancer diagnosis and the leading cause of cancer death among women globally, representing 11.7% of new cases and 6.9% of deaths. While the incidence and mortality of major cancers are declining in developed regions like the United States and Western Europe, underdeveloped and developing countries exhibit an increasing trend, attributed to lifestyle factors such as smoking, physical inactivity, and high-calorie diets. Objective: This study explores the intricate relationship between the mammalian transcription factor forkhead box (FoxM1) and the microRNA miR-216b-5p in various subtypes of breast cancer, aiming to deepen the understanding of their roles in tumorigenesis, metastasis, and drug resistance. Methods: Breast cancer subtypes were categorized based on key biomarkers: estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2. These include luminal A, luminal B, HER2 enriched, triple-negative, and normal-like subtypes. We focused on analyzing the expression levels of FoxM1 and miR-216b-5p, given the known role of FoxM1 in cell proliferation and its implications in cancer pathologies such as lung, gastric, and breast cancers. Concurrently, miR-216b-5p's function as a tumor suppressor was evaluated to ascertain its regulatory effects on FoxM1. Results: Preliminary data indicate a nuanced interplay between FoxM1 and miR-216b-5p, suggesting a potential inverse relationship that varies across breast cancer subtypes. This relationship underscores the dual role of these biomarkers in modulating cancer progression and response to treatments. Conclusion: The findings advocate for the potential of miR-216b-5p to serve as a prognostic biomarker and a therapeutic target, particularly in subtypes where FoxM1 is prominently expressed. Understanding these molecular interactions provides crucial insights into the personalized treatment strategies and could lead to more effective therapeutic interventions in breast cancer management. Implications: The study highlights the importance of molecular profiling in breast cancer treatment and emphasizes the need for targeted therapeutic approaches in managing diverse cancer subtypes, particularly in varying global contexts where lifestyle factors significantly impact cancer dynamics.

Keywords: breast cancer, gene expression, FoxM1, microRNA

Procedia PDF Downloads 15
2159 Anticancer Effects of MicroRNA-1275 in Human Nasopharyngeal Carcinoma by Targeting HOXB5

Authors: Cheng-Cao Sun, Shu-Jun Li, De-Jia Li

Abstract:

Through analysis of a published micro-array-based high-throughput assessment, we discovered that miR-1275 was markedly down-regulated in nasopharyngeal carcinoma (NPC) tissues. However, little is known about its effect and mechanism involved in NPC development and progression. In this study, we investigated the role of miR-1275 on the development of NPC. The results indicated that miR-1275 was significantly down-regulated in primary NPC tissues, and very low levels were found in NPC cell lines. Ectopic expression of miR-1275 in NPC cell lines significantly suppressed cell growth as evidenced by cell viability assay and colony formation assay, through inhibition of HOXB5. In addition, miR-1275 suppresses G1/S transition through inhibition of HOXB5. Further, oncogene HOXB5 was revealed to be a putative target of miR-1275, which was inversely correlated with miR-1275 expression in NPC. Collectively, our study demonstrates that as a tumor suppressor, miR-1275 played a pivotal role on NPC through inhibiting cell proliferation, and suppressing G1/S transition by targeting oncogenic HOXB5.

Keywords: microRNA-1275 (miR-1275), HOXB5, nasopharyngeal carcinoma, proliferation

Procedia PDF Downloads 239
2158 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study

Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng

Abstract:

MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.

Keywords: microRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM

Procedia PDF Downloads 367
2157 A Game Theory Analysis of the Effectiveness of Passenger Profiling for Transportation Security

Authors: Yael Deutsch, Arieh Gavious

Abstract:

The threat of aviation terrorism and its potential damage became significant after the 9/11 terror attacks. These attacks have led authorities and leaders to suggest that security personnel should overcome politically correct scruples about profiling and use it openly. However, there is a lack of knowledge about the smart usage of profiling and its advantages. We analyze game models that are suitable to specific real-world scenarios, focusing on profiling as a tool to detect potential violators, such as terrorists and smugglers. We provide analytical and clear answers to difficult questions, and by that help fighting against harmful violation acts.

Keywords: game theory, profiling, security, nash equilibrium

Procedia PDF Downloads 80
2156 Aza-Flavanones as Small Molecule Inhibitors of MicroRNA-10b in MDA-MB-231 Breast Cancer Cells

Authors: Debasmita Mukhopadhyay, Manika Pal Bhadra

Abstract:

MiRNAs contribute to oncogenesis either as tumor suppressors or oncogenes. Hence, discovery of miRNA-based therapeutics are imperative to ameliorate cancer. Modulation of miRNA maturation is accomplished via several therapeutic agents, including small molecules and oligonucleotides. Due to the attractive pharmacokinetic properties of small molecules over oligonucleotides, we set to identify small molecule inhibitors of a metastasis-inducing microRNA. Cytotoxicity profile of aza-flavanone C1 was analyzed in a panel of breast cancer cells employing the NCI-60 screen protocols. Flow cytometry, immunofluorescence and western blotting of apoptotic or EMT markers were performed to analyze the effect of C1. A dual luciferase assay unequivocally suggested that C1 repressed endogenous miR-10b in MDA-MB-231 cells. A derivative of aza-flavanone C1 is shown as a strong inhibitor miR-10b. Blockade of miR-10b by C1 resulted in decreased expression of miR-10b targets in an aggressive breast cancer cell line model, MDA-MB-231. Abrogation of TWIST1, an EMT-inducing transcription factor also contributed to C1 mediated apoptosis. Moreover C1 exhibited a specific and selective down-regulation of miR-10b and did not function as a general inhibitor of miRNA biogenesis or other oncomiRs of breast carcinoma. Aza-flavanone congener C1 functions as a potent inhibitor of the metastasis-inducing microRNA, miR-10b. Our present study provides evidence for targeting metastasis-inducing microRNA, miR-10b with a derivative of Aza-flavanone. Better pharmacokinetic properties of small molecules place them as attractive agents compared to nucleic acids based therapies to target miRNA. Further work, in generating analogues based on aza-flavanone moieties will significantly improve the affinity of the small molecules to bind miR-10b. Finally, it is imperative to develop small molecules as novel miRNA-therapeutics in the fight against cancer.

Keywords: breast cancer, microRNA, metastasis, EMT

Procedia PDF Downloads 522
2155 Circadian Expression of MicroRNAs in Colon and Its Changes during Colorectal Tumorigenesis

Authors: Katerina Balounova, Jiri Pacha, Peter Ergang, Martin Vodicka, Pavlina Kvapilova

Abstract:

MicroRNAs are small non-coding RNAs involved in a wide range of physiological processes. Post-transcriptional regulation of gene expression by microRNAs gives the organism a further level of control of the gene-expression program and the disruption of this microRNA regulatory mechanism seems to increase the risk of various pathophysiological conditions including tumorigenesis. To the present day, microRNAs were shown to participate in the mayor signalization pathways leading to tumorigenesis, including proliferation, cell cycle, apoptosis and metastasis formation. In addition, microRNAs have been found to play important roles in the generation and maintenance of circadian clock. These clocks generate circadian rhythms, which participate in a number of regulatory pathways. Disruption of the circadian signals seems to be associated with the development and the progression of tumours including colorectal cancer. We investigated therefore whether the diurnal profiles of miRNAs linked to tumorigenesis and regulation of circadian clock are changed during tumorigenesis. Based on published data we chose 10 microRNAs linked to tumorigenesis or circadian clock (let-7b-5p, miR 1 3p, miR 106b 5p, miR 141 3p, miR 191 5p, miR 20a 5p, miR 25 3p, miR 29a 3p, miR 34a 5p and miR 93 5p) and compared their 24-hr expression profiles in healthy and in chemically induces primary colorectal tumours of 52week-old mice. Using RT-qPCR we proved circadian rhythmicity in let-7b-5p, miR 106b 5p, miR 141 3p, miR 191 5p, miR 20a 5p, miR 25 3p, miR 29a 3p and miR 93 5p in healthy colon but not in tumours. The acrophases of miR 106b 5p, miR 141 3p, miR 191 5p, miR 20a 5p, miR 25 3p and miR 93 5p were reached around CT 24, the acrophases of let-7b-5p and miR-29a-3p were slightly shifted and reached around CT 21. In summary, our results show that circadian regulation of some colonic microRNAs is greatly affected by neoplastic transformation.

Keywords: circadian rhythm, colon, colorectal cancer, microRNA, tumorigenesis

Procedia PDF Downloads 139
2154 Investigation of FoxM1 Gene Expression in Breast Cancer and Its Relationship with miR-216b-5p Expression Level

Authors: Neda Menbari, Ramin Mehdiabadi

Abstract:

Background: breast cancer remains a critical global health issue, constituting a leading cause of cancer-related mortality in women. MicroRNAs (miRs) are natural RNA molecules that play an important role in cellular processes and regulate post-transcriptional gene expression. MiR-216b-5p is a miR that acts as a tumor suppressor. The expression levels of FoxM1 and miR-216b-5p in malignant and control cells have been evaluated by quantitative polymerase chain reaction (qPCR) technique and flow cytometry. Results: the results of this study revealed a significant downregulation of miR-216b-5p in cancerous cells compared to the control MCF-10A cells (P=0.0004). Interestingly, the expression of miR-216b-5p exhibited an inverse relationship with key clinical indicators such as tumor size, grade, and lymph node invasion. Conclusion: The study's findings showed the prognostic value of miR-216b-5p levels in breast cancer, and its reduced expression correlates with unfavorable tumor characteristics. This research recommends performing more studies on the role of FoxM1 and miR-216b-5p in breast cancer pathology which potentially paving the way for targeted therapeutic interventions.

Keywords: breast cancer, gene expression, FOXM1, microRNA

Procedia PDF Downloads 18
2153 MicroRNA Expression Distinguishes Neutrophil Subtypes

Authors: R. I. You, C. L. Ho, M. S. Dai, H. M. Hung, S. F. Yen, C. S. Chen, T. Y. Chao

Abstract:

Neutrophils are the most abundant innate immune cells to against invading microorganisms. Numerous data shown neutrophils have plasticity in response to physiological and pathological conditions. Tumor-associated neutrophils (TAN) exist in distinct types of tumor and play an important role in cancer biology. Different transcriptomic profiles of neutrophils in tumor and non-tumor samples have been identified. Several miRNAs have been recognized as regulators of gene expression in neutrophil, which may have key roles in neutrophil activation. However, the miRNAs expression patterns in TAN are not well known. To address this question, magnetic bead isolated neutrophils from tumor-bearing mice were used in this study. We analyzed production of reactive oxygen species (ROS) by luminol-dependent chemiluminescence assay. The expression of miRNAs targeting NADPH oxidase, ROS generation and autophagy was explored using quantitative real-time polymerase chain reaction. Our data suggest that tumor environment influence neutrophil develop to differential states of activation via miRNAs regulation.

Keywords: tumor-associated neutrophil, miRNAs, neutrophil, ROS

Procedia PDF Downloads 438
2152 Association of Mir-196a Expression in Esophageal Tissue with Barrett´s Esophagus and Esophageal Adenocarcinoma

Authors: Petra Borilova Linhartova, Michaela Ruckova, Sabina Sevcikova, Natalie Mlcuchova, Jan Bohm, Katerina Zukalova, Monika Vlachova, Jiri Dolina, Lumir Kunovsky, Radek Kroupa, Zdenek Pavlovsky, Zdenek Danek, Tereza Deissova, Lydie Izakovicova Holla, Ondrej Slaby, Zdenek Kala

Abstract:

Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy that frequently develops from Barrett's esophagus (BE), a premalignant pathologic change occurring in the lower end of the esophagus. Specific microRNAs (miRNAs), small non-coding RNAs that function as posttranscriptional regulators of gene expression, were repeatedly proved to play key roles in the pathogenesis of these diseases. This pilot study aimed to analyze four selected miRNAs in esophageal tissues from healthy controls (HC) and patients with reflux esophagitis (RE)/BE/EAC, as well as to compare expression at the site of Barrett's mucosa/adenocarcinoma and healthy esophageal tissue outside the area of the main pathology in patients with BE/EAC. In this pilot study, 22 individuals (3 HC, 8 RE, 5 BE, 6 EAC) were included and endoscopically examined. RNA was isolated from the fresh-frozen esophageal tissue (stored in the RNAlater™ Stabilization Solution −70°C) using the AllPrep DNA/RNA/miRNA Universal Kit. Subsequent RT-qPCR analysis was performed using selected TaqMan MicroRNA Assays for miR-21, miR-34a, miR-196a, miR-196b, and endogenous control (RNU44). While the expression of miR-21 in the esophageal tissue with the main pathology was decreased in BE and EAC patients in comparison to the group of HC and RE patients (p=0.01), the expression of miR-196a was increased in the BE and EAC patients (p<0.01). Correlations between those miRNAs expression in tissue and severity of diagnosis were observed (p<0.05). In addition, miR-196a was significantly more expressed at the site with the main pathology than in paired adjacent esophageal tissue in BE and EAC patients (p<0.01). In conclusion, our pilot results showed that miR-196a, which regulates the proliferation, invasion, and migration (and was previously associated with esophageal squamous cell carcinoma and marked as a potential therapeutic target), could be a diagnostic tissue biomarker for BE and EAC as well.

Keywords: microRNA, barrett´s esophagus, esophageal adenocarcinoma, biomarker

Procedia PDF Downloads 80
2151 Testicular Differential MicroRNA Expression Derived Occupational Risk Factor Assessment in Idiopathic Non-obstructive Azoospermia Cases

Authors: Nisha Sharma, Mili Kaur, Ashutosh Halder, Seema Kaushal, Manoj Kumar, Manish Jain

Abstract:

Purpose: To investigate microRNAs (miRNA) as an epigenomic etiological factor in idiopathic non-obstructive azoospermia (NOA). In order to achieve the same, an association was seen between occupational exposure to radiation, thermal, and chemical factors and idiopathic cases of non-obstructive azoospermia, and later, testicular differential miRNA expression profiling was done in exposure group NOA cases. Method: It is a prospective study in which 200 apparent idiopathic male factor infertility cases, who have been advised to undergo testicular fine needle aspiration (FNA) evaluation, are recruited. A detailed occupational history was taken to understand the possible type of exposure due to the nature and duration of work. A total of 26 patients were excluded upon XY-FISH and Yq microdeletion tests due to the presence of genetic causes of infertility, 6 hypospermatogeneis (HS), six Sertoli cell-only syndrome (SCOS), and six normospermatogeneis patients testicular FNA samples were used for RNA isolation followed by small RNA sequencing and nCounter miRNA expression analysis. Differential miRNA expression profile of HS and SCOS patients was done. A web-based tool, miRNet, was used to predict the interacting compounds or chemicals using the shortlisted miRNAs with high fold change. The major limitation encountered in this study was the insufficient quantity of testicular FNA sample used for total RNA isolation, which resulted in a low yield and RNA integrity number (RIN) value. Therefore, the number of RNA samples admissible for differential miRNA expression analysis was very small in comparison to the total number of patients recruited. Results: Differential expression analysis revealed 69 down-regulated and 40 up-regulated miRNAs in HS and 66 down-regulated and 33 up-regulated miRNAs in SCOS in comparison to normospermatogenesis controls. The miRNA interaction analysis using the miRNet tool showed that the differential expression profiles of HS and SCOS patients were associated with arsenic trioxide, bisphenol-A, calcium sulphate, lithium, and cadmium. These compounds are reproductive toxins and might be responsible for miRNA-mediated epigenetic deregulation leading to NOA. The association between occupational risk factor exposure and the non-exposure group of NOA patients was not statistically significant, with ꭓ2 (3, N= 178) = 6.70, p= 0.082. The association between individual exposure groups (radiation, thermal, and chemical) and various sub-types of NOA is also not significant, with ꭓ2 (9, N= 178) = 15.06, p= 0.089. Functional analysis of HS and SCOS patients' miRNA profiles revealed some important miR-family members in terms of male fertility. The miR-181 family plays a role in the differentiation of spermatogonia and spermatocytes, as well as the transcriptional regulation of haploid germ cells. The miR-34 family is expressed in spermatocytes and round spermatids and is involved in the regulation of SSCs differentiation. Conclusion: The reproductive toxins might adopt the miRNA-mediated mechanism of disease development in idiopathic cases of NOA. Chemical compound induced; miRNA-mediated epigenetic deregulation can give a future perspective on the etiopathogenesis of the disease.

Keywords: microRNA, non-obstructive azoospermia (NOA), occupational exposure, hypospermatogenesis (HS), Sertoli cell only syndrome (SCOS)

Procedia PDF Downloads 53
2150 Study of Circulatory MiR-122 and MiR-130a Expression among Chronic Hepatitis C Egyptian Patients

Authors: Hend K. Moosa, Eman A. Rashwan, Ezzat M. Hassan, Amany A. Ghazy, Amel G. Sheredy

Abstract:

The stability of microRNA (miR) in the circulation can show a great progress toward the discovery of non-invasive diagnostic and prognostic biomarkers in many diseases. In the present study, circulatory miR-122 and miR-130a were analysed in chronic hepatitis C Egyptian patients in predicting the clinical outcome of interferon treatment. In addition, their expression levels were correlated to viral RNA levels, necro-inflammatory markers (AST, ALT) and to each other. This study was conducted on 51 subjects where 36 were chronic HCV patients in which they were divided into naive and interferon treated HCV patients (responders and non-responders) and 15 matched healthy controls. Serum quantification of miR-122 and miR-130a were performed by quantitative Real-time Polymerase Chain Reaction (qRT-PCR). The results showed a significant upregulation of miR-122 in non-responder patients (P=0.049). By receiver operating characteristic analysis curve, miR-122 revealed 65% sensitivity and 92.3% specificity in predicting non-responsiveness of patients to IFN treatment, while miR-130a showed a sensitivity of 100% and specificity of 53.85%. Remarkably, there was a significant positive correlation between miR-122 and miR-130a in naive HCV patients (r=0.714, p=0.003). However, there was no significant correlation between serum miR-122, miR-130a expression levels and necro-inflammatory markers (AST, ALT). To conclude, miR-122 and miR-130a have a significant association with viral RNA levels and accordingly, they may have a synergistic power in promoting viral replication. Interestingly, miR-122 and miR-130a have a predictive power in predicting clinical outcome of IFN treatment which can be further studied in currently used drugs in order to reduce the socio-economic burden of potentially non-responders.

Keywords: hepatitis C, microRNA, miR-122, miR-130a

Procedia PDF Downloads 141
2149 The MicroRNA-2110 Suppressed Cell Proliferation and Migration Capacity in Hepatocellular Carcinoma Cells

Authors: Pelin Balcik Ercin

Abstract:

Introduction: ZEB transcription factor family member ZEB2, has a role in epithelial to mesenchymal transition during development and metastasis. The altered circulating extracellular miRNAs expression is observed in diseases, and extracellular miRNAs have an important role in cancer cell microenvironment. In ChIP-Seq study, the expression of miR-2110 was found to be regulated by ZEB2. In this study, the effects of miR2110 on cell proliferation and migration of hepatocellular carcinoma (HCC) cells were examined. Material and Methods: SNU398 cells transfected with mimic miR2110 (20nM) (HMI0375, Sigma-Aldrich) and negative control miR (HMC0002, Sigma-Aldrich). MicroRNA isolation was accomplished with miRVANA isolation kit according to manufacturer instructions. cDNA synthesis was performed expression, respectively, and calibrated with Ct of controls. The real-time quantitative PCR (RT-qPCR) reaction was performed using the TaqMan Fast Advanced Master Mix (Thermo Sci.). Ct values of miR2110 were normalized to miR-186-5p and miR16-5p for the intracellular gene. Cell proliferation analysis was analyzed with the xCELLigence RTCA System. Wound healing assay was analyzed with the ImageJ program and relative fold change calculated. Results: The mimic-miR-2110 transfected SNU398 cells nearly nine-fold (log2) more miR-2110 expressed compared to negative control transfected cells. The mimic-miR-2110 transfected HCC cell proliferation significantly inhibited compared to the negative control cells. Furthermore, miR-2110-SNU398 cell migration capacity was relatively four-fold decreased compared to negative control-miR-SNU398 cells. Conclusion: Our results suggest the miR-2110 inhibited cell proliferation and also miR-2110 negatively affect cell migration compared to control groups in HCC cells. These data suggest the complexity of microRNA EMT transcription factors regulation. These initial results are pointed out the predictive biomarker capacity of miR-2110 in HCC.

Keywords: epithelial to mesenchymal transition, EMT, hepatocellular carcinoma cells, micro-RNA-2110, ZEB2

Procedia PDF Downloads 92
2148 Mirna Expression Profile is Different in Human Amniotic Mesenchymal Stem Cells Isolated from Obese Respect to Normal Weight Women

Authors: Carmela Nardelli, Laura Iaffaldano, Valentina Capobianco, Antonietta Tafuto, Maddalena Ferrigno, Angela Capone, Giuseppe Maria Maruotti, Maddalena Raia, Rosa Di Noto, Luigi Del Vecchio, Pasquale Martinelli, Lucio Pastore, Lucia Sacchetti

Abstract:

Maternal obesity and nutrient excess in utero increase the risk of future metabolic diseases in the adult life. The mechanisms underlying this process are probably based on genetic, epigenetic alterations and changes in foetal nutrient supply. In mammals, the placenta is the main interface between foetus and mother, it regulates intrauterine development, modulates adaptive responses to sub optimal in uterus conditions and it is also an important source of human amniotic mesenchymal stem cells (hA-MSCs). We previously highlighted a specific microRNA (miRNA) profiling in amnion from obese (Ob) pregnant women, here we compared the miRNA expression profile of hA-MSCs isolated from (Ob) and control (Co) women, aimed to search for any alterations in metabolic pathways that could predispose the new-born to the obese phenotype. Methods: We isolated, at delivery, hA-MSCs from amnion of 16 Ob- and 7 Co-women with pre-pregnancy body mass index (mean/SEM) 40.3/1.8 and 22.4/1.0 kg/m2, respectively. hA-MSCs were phenotyped by flow cytometry. Globally, 384 miRNAs were evaluated by the TaqMan Array Human MicroRNA Panel v 1.0 (Applied Biosystems). By the TargetScan program we selected the target genes of the miRNAs differently expressed in Ob- vs Co-hA-MSCs; further, by KEGG database, we selected the statistical significant biological pathways. Results: The immunophenotype characterization confirmed the mesenchymal origin of the isolated hA-MSCs. A large percentage of the tested miRNAs, about 61.4% (232/378), was expressed in hA-MSCs, whereas 38.6% (146/378) was not. Most of the expressed miRNAs (89.2%, 207/232) did not differ between Ob- and Co-hA-MSCs and were not further investigated. Conversely, 4.8% of miRNAs (11/232) was higher and 6.0% (14/232) was lower in Ob- vs Co-hA-MSCs. Interestingly, 7/232 miRNAs were obesity-specific, being expressed only in hA-MSCs isolated from obese women. Bioinformatics showed that these miRNAs significantly regulated (P<0.001) genes belonging to several metabolic pathways, i.e. MAPK signalling, actin cytoskeleton, focal adhesion, axon guidance, insulin signaling, etc. Conclusions: Our preliminary data highlight an altered miRNA profile in Ob- vs Co-hA-MSCs and suggest that an epigenetic miRNA-based mechanism of gene regulation could affect pathways involved in placental growth and function, thereby potentially increasing the newborn’s risk of metabolic diseases in the adult life.

Keywords: hA-MSCs, obesity, miRNA, biosystem

Procedia PDF Downloads 493
2147 MicroRNA Drivers of Resistance to Androgen Deprivation Therapy in Prostate Cancer

Authors: Philippa Saunders, Claire Fletcher

Abstract:

INTRODUCTION: Prostate cancer is the most prevalent malignancy affecting Western males. It is initially an androgen-dependent disease: androgens bind to the androgen receptor and drive the expression of genes that promote proliferation and evasion of apoptosis. Despite reduced androgen dependence in advanced prostate cancer, androgen receptor signaling remains a key driver of growth. Androgen deprivation therapy (ADT) is, therefore, a first-line treatment approach and works well initially, but resistance inevitably develops. Abiraterone and Enzalutamide are drugs widely used in ADT and are androgen synthesis and androgen receptor signaling inhibitors, respectively. The shortage of other treatment options means acquired resistance to these drugs is a major clinical problem. MicroRNAs (miRs) are important mediators of post-transcriptional gene regulation and show altered expression in cancer. Several have been linked to the development of resistance to ADT. Manipulation of such miRs may be a pathway to breakthrough treatments for advanced prostate cancer. This study aimed to validate ADT resistance-implicated miRs and their clinically relevant targets. MATERIAL AND METHOD: Small RNA-sequencing of Abiraterone- and Enzalutamide-resistant C42 prostate cancer cells identified subsets of miRs dysregulated as compared to parental cells. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) was used to validate altered expression of candidate ADT resistance-implicated miRs 195-5p, 497-5p and 29a-5p in ADT-resistant and -responsive prostate cancer cell lines, patient-derived xenografts (PDXs) and primary prostate cancer explants. RESULTS AND DISCUSSION: This study suggests a possible role for miR-497-5p in the development of ADT resistance in prostate cancer. MiR-497-5p expression was increased in ADT-resistant versus ADT-responsive prostate cancer cells. Importantly, miR-497-5p expression was also increased in Enzalutamide-treated, castrated (ADT-mimicking) PDXs versus intact PDXs. MiR-195-5p was also elevated in ADT-resistant versus -responsive prostate cancer cells, while there was a drop in miR-29a-5p expression. Candidate clinically relevant targets of miR-497-5p in prostate cancer were identified by mining AGO-PAR-CLIP-seq data sets and may include AVL9 and FZD6. CONCLUSION: In summary, this study identified microRNAs that are implicated in prostate cancer resistance to androgen deprivation therapy and could represent novel therapeutic targets for advanced disease.

Keywords: microRNA, androgen deprivation therapy, Enzalutamide, abiraterone, patient-derived xenograft

Procedia PDF Downloads 106
2146 Identification of microRNAs in Early and Late Onset of Parkinson’s Disease Patient

Authors: Ahmad Rasyadan Arshad, A. Rahman A. Jamal, N. Mohamed Ibrahim, Nor Azian Abdul Murad

Abstract:

Introduction: Parkinson’s disease (PD) is a complex and asymptomatic disease where patients are usually diagnosed at late stage where about 70% of the dopaminergic neurons are lost. Therefore, identification of molecular biomarkers is crucial for early diagnosis of PD. MicroRNA (miRNA) is a short nucleotide non-coding small RNA which regulates the gene expression in post-translational process. The involvement of these miRNAs in neurodegenerative diseases includes maintenance of neuronal development, necrosis, mitochondrial dysfunction and oxidative stress. Thus, miRNA could be a potential biomarkers for diagnosis of PD. Objective: This study aim to identify the miRNA involved in Late Onset PD (LOPD) and Early Onset PD (EOPD) compared to the controls. Methods: This is a case-control study involved PD patients in the Chancellor Tunku Muhriz Hospital at the UKM Medical Centre. miRNA samples were extracted using miRNeasy serum/plasma kit from Qiagen. The quality of miRNA extracted was determined using Agilent RNA 6000 Nano kit in the Bioanalyzer. miRNA expression was performed using GeneChip miRNA 4.0 chip from Affymetrix. Microarray was performed in EOPD (n= 7), LOPD (n=9) and healthy control (n=11). Expression Console and Transcriptomic Analyses Console were used to analyze the microarray data. Result: miR-129-5p was significantly downregulated in EOPD compared to LOPD with -4.2 fold change (p = <0.050. miR-301a-3p was upregulated in EOPD compared to healthy control (fold = 10.3, p = <0.05). In LOPD versus healthy control, miR-486-3p (fold = 15.28, p = <0.05), miR-29c-3p (fold = 12.21, p = <0.05) and miR-301a-3p (fold = 10.01, p =< 0.05) were upregulated. Conclusion: Several miRNA have been identified to be differentially expressed in EOPD compared to LOPD and PD versus control. These miRNAs could serve as the potential biomarkers for early diagnosis of PD. However, these miRNAs need to be validated in a larger sample size.

Keywords: early onset PD, late onset PD, microRNA (miRNA), microarray

Procedia PDF Downloads 227
2145 Micro-Ribonucleic Acid-21 as High Potential Prostate Cancer Biomarker

Authors: Regina R. Gunawan, Indwiani Astuti, H. Raden Danarto

Abstract:

Cancer is the leading cause of death worldwide. Cancer is caused by mutations that alter the function of normal human genes and give rise to cancer genes. MicroRNA (miRNA) is a small non-coding RNA that regulates the gen through complementary bond towards mRNA target and cause mRNA degradation. miRNA works by either promoting or suppressing cell proliferation. miRNA level expression in cancer may offer another value of miRNA as a biomarker in cancer diagnostic. miRNA-21 is believed to have a role in carcinogenesis by enhancing proliferation, anti-apoptosis, cell cycle progression and invasion of tumor cells. Hsa-miR-21-5p marker has been identified in Prostate Cancer (PCa) and Benign Prostatic Hyperplasia (BPH) patient’s urine. This research planned to explore the diagnostic performance of miR-21 to differentiate PCa and BPH patients. In this study, urine samples were collected from 20 PCa patients and 20 BPH patients. miR-21 relative expression against the reference gene was analyzed and compared between the two. miRNA expression was analyzed using the comparative quantification method to find the fold change. miR-21 validity in identifying PCa patients was performed by quantifying the sensitivity and specificity with the contingency table. miR-21 relative expression against miR-16 in PCa patient and in BPH patient has 12,98 differences in fold change. From a contingency table of Cq expression of miR-21 in identifying PCa patients from BPH patient, Cq miR-21 has 100% sensitivity and 75% specificity. miR-21 relative expression can be used in discriminating PCa from BPH by using a urine sample. Furthermore, the expression of miR-21 has higher sensitivity compared to PSA (Prostate specific antigen), therefore miR-21 has a high potential to be analyzed and developed more.

Keywords: benign prostate hyperplasia, biomarker, miRNA-21, prostate cancer

Procedia PDF Downloads 129
2144 Profiling of Apoptotic Protein Expressions after Trabectedin Treatment in Human Prostate Cancer Cell Line PC-3 by Protein Array Technology

Authors: Harika Atmaca, Emir Bozkurt, Latife Merve Oktay, Selim Uzunoglu, Ruchan Uslu, Burçak Karaca

Abstract:

Microarrays have been developed for highly parallel enzyme-linked immunosorbent assay (ELISA) applications. The most common protein arrays are produced by using multiple monoclonal antibodies, since they are robust molecules which can be easily handled and immobilized by standard procedures without loss of activity. Protein expression profiling with protein array technology allows simultaneous analysis of the protein expression pattern of a large number of proteins. Trabectedin, a tetrahydroisoquinoline alkaloid derived from a Caribbean tunicate, Ecteinascidia turbinata, has been shown to have antitumor effects. Here, we used a novel proteomic approach to explore the mechanism of action of trabectedin in prostate cancer cell line PC-3 by apoptosis antibody microarray. XTT cell proliferation kit and Cell Death Detection Elisa Plus Kit (Roche) was used for measuring cytotoxicity and apoptosis. Human Apoptosis Protein Array (R&D Systems) which consists of 35 apoptosis related proteins was used to assess the omic protein expression pattern. Trabectedin induced cytotoxicity and apoptosis in prostate cancer cells in a time and concentration-dependent manner. The expression levels of the death receptor pathway molecules, TRAIL-R1/DR4, TRAIL R2/DR5, TNF R1/TNFRSF1A, FADD were significantly increased by 4.0-, 21.0-, 4.20- and 11.5-fold by trabectedin treatment in PC-3 cells. Moreover, mitochondrial pathway related pro-apoptotic proteins Bax, Bad, Cytochrome c, and Cleaved Caspase-3 expressions were induced by 2.68-, 2.07-, 2.8-, and 4.5-fold and the expression levels of anti-apoptotic proteins Bcl-2 and Bcl-XL were reduced by 3.5- and 5.2-fold in PC-3 cells. Proteomic (antibody microarray) analysis suggests that the mechanism of action of trabectedin may be exerted via the induction of both intrinsic and extrinsic apoptotic pathways. The antibody microarray platform can be utilised to explore the molecular mechanism of action of novel anticancer agents.

Keywords: trabectedin, prostate cancer, omic protein expression profile, apoptosis

Procedia PDF Downloads 418
2143 Oncogenic Role of MicroRNA-346 in Human Non-Small Cell Lung Cancer by Regulation of XPC/ERK/Snail/E-Cadherin Pathway

Authors: Cheng-Cao Sun, Shu-Jun Li, De-Jia Li

Abstract:

Determinants of growth and metastasis in cancer remain of great interest to define. MicroRNAs (miRNAs) have frequently emerged as tumor metastatic regulator by acting on multiple signaling pathways. Here, we report the definition of miR-346 as an oncogenic microRNA that facilitates non-small cell lung cancer (NSCLC) cell growth and metastasis. XPC, an important DNA damage recognition factor in nucleotide excision repair was defined as a target for down-regulation by miR-346, functioning through direct interaction with the 3'-UTR of XPC mRNA. Blocking miR-346 by an antagomiR was sufficient to inhibit NSCLC cell growth and metastasis, an effect that could be phenol-copied by RNAi-mediated silencing of XPC. In vivo studies established that miR-346 overexpression was sufficient to promote tumor growth by A549 cells in xenografts mice, relative to control cells. Overall, our results defined miR-346 as an oncogenic miRNA in NSCLC, the levels of which contributed to tumor growth and invasive aggressiveness.

Keywords: microRNA-346, miR-346, XPC, non-small cell lung cancer, oncogenesis

Procedia PDF Downloads 280
2142 Design and Fabrication of Optical Nanobiosensors for Detection of MicroRNAs Involved in Neurodegenerative Diseases

Authors: Mahdi Rahaie

Abstract:

MicroRNAs are a novel class of small RNAs which regulate gene expression by translational repression or degradation of messenger RNAs. To produce sensitive, simple and cost-effective assays for microRNAs, detection is in urgent demand due to important role of these biomolecules in progression of human disease such as Alzheimer’s, Multiple sclerosis, and some other neurodegenerative diseases. Herein, we report several novel, sensitive and specific microRNA nanobiosensors which were designed based on colorimetric and fluorescence detection of nanoparticles and hybridization chain reaction amplification as an enzyme-free amplification. These new strategies eliminate the need for enzymatic reactions, chemical changes, separation processes and sophisticated equipment whereas less limit of detection with most specify are acceptable. The important features of these methods are high sensitivity and specificity to differentiate between perfectly matched, mismatched and non-complementary target microRNAs and also decent response in the real sample analysis with blood plasma. These nanobiosensors can clinically be used not only for the early detection of neuro diseases but also for every sickness related to miRNAs by direct detection of the plasma microRNAs in real clinical samples, without a need for sample preparation, RNA extraction and/or amplification.

Keywords: hybridization chain reaction, microRNA, nanobiosensor, neurodegenerative diseases

Procedia PDF Downloads 126