Search results for: irrigation plastic pipes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1772

Search results for: irrigation plastic pipes

1532 Smart Water Main Inspection and Condition Assessment Using a Systematic Approach for Pipes Selection

Authors: Reza Moslemi, Sebastien Perrier

Abstract:

Water infrastructure deterioration can result in increased operational costs owing to increased repair needs and non-revenue water and consequently cause a reduced level of service and customer service satisfaction. Various water main condition assessment technologies have been introduced to the market in order to evaluate the level of pipe deterioration and to develop appropriate asset management and pipe renewal plans. One of the challenges for any condition assessment and inspection program is to determine the percentage of the water network and the combination of pipe segments to be inspected in order to obtain a meaningful representation of the status of the entire water network with a desirable level of accuracy. Traditionally, condition assessment has been conducted by selecting pipes based on age or location. However, this may not necessarily offer the best approach, and it is believed that by using a smart sampling methodology, a better and more reliable estimate of the condition of a water network can be achieved. This research investigates three different sampling methodologies, including random, stratified, and systematic. It is demonstrated that selecting pipes based on the proposed clustering and sampling scheme can considerably improve the ability of the inspected subset to represent the condition of a wider network. With a smart sampling methodology, a smaller data sample can provide the same insight as a larger sample. This methodology offers increased efficiency and cost savings for condition assessment processes and projects.

Keywords: condition assessment, pipe degradation, sampling, water main

Procedia PDF Downloads 120
1531 3D Modeling of Tunis Soft Soil Settlement Reinforced with Plastic Wastes

Authors: Aya Rezgui, Lasaad Ajam, Belgacem Jalleli

Abstract:

The Tunis soft soils present a difficult challenge as construction sites and for Geotechnical works. Currently, different techniques are used to improve such soil properties taking into account the environmental considerations. One of the recent methods is involving plastic wastes as a reinforcing materials. The present study pertains to the development of a numerical model for predicting the behavior of Tunis Soft soil (TSS) improved with recycled Monobloc chair wastes.3D numerical models for unreinforced TSS and reinforced TSS aims to evaluate settlement reduction and the values of consolidation times in oedometer conditions.

Keywords: Tunis soft soil, settlement, plastic wastes, finte -difference, FLAC3D modeling

Procedia PDF Downloads 101
1530 The Effect of Backing Layer on Adhesion Properties of Single Layer Ketoprofen Transdermal Drug Delivery System

Authors: Maryam Hamedanlou, Shahla Hajializadeh

Abstract:

The transdermal drug delivery system is one of the types of novel drug delivery system that the drug is absorbed into the skin. The major considerations for designing and producing transdermal patch are small size, suitable drug release and good adhering. In this study, drug-in-adhesive transdermal patch contained non-steroidal anti-inflammatory ketoprofen is prepared. Also, the effect of non-woven fabric and plastic backing layers on adhesion properties is assessed. The results of the test, demonstrated the use of plastic backing layer increases tack and peel rather than non-woven fabric type. The balance tack with plastic backing layer patch is 6.7 (N/mm2), and the fabric one is 3.8 (N/mm2), and their peel is 9.2 (N/25mm) and 8.3 (N/25mm) by arrangement.

Keywords: transdermal drug delivery system, single layer patch of ketoprofen, plastic layer, fabric backing layer

Procedia PDF Downloads 223
1529 Approved Cyclic Treatment System of Grey Water

Authors: Hanen Filali, Mohamed Hachicha

Abstract:

Treated grey water (TGW) reuse emerged as an alternative resource to meet the growing demand for water for agricultural irrigation and reduce the pressure on limited existing fresh water. However, this reuse needs adapted management in order to avoid environmental and health risks. In this work, the treatment of grey water (GW) was studied from a cyclic treatment system that we designed and implemented in the greenhouse of National Research Institute for Rural Engineering, Water and Forests (INRGREF). This system is composed of three levels for treatment (TGW 1, TGW 2, and TGW 3). Each level includes a sandy soil box. The use of grey water was moderated depending on the chemical and microbiological quality obtained. Different samples of soils and treated grey water were performed and analyzed for 14 irrigation cycles. TGW through cyclic treatment showed physicochemical parameters like pH, electrical conductivity (EC), chemical oxygen demand (COD), biological oxygen demand (BOD5) in the range of 7,35-7,91, 1,69-5,03 dS/m, 102,6-54,2 mgO2/l, and 31,33-15,74 mgO2/l, respectively. Results showed a reduction in the pollutant load with a significant effect on the three treatment levels; however, an increase in salinity was observed during all irrigation cycles. Microbiological results showed good grey water treatment with low health risk on irrigated soil. Treated water quality was below permissible Tunisian standards (NT106.03), and treated water is suitable for non-potable options.

Keywords: treated grey water, irrigation, cyclic treatment, soils, physico-chemical parameters, microbiological parameters

Procedia PDF Downloads 65
1528 Investigation of Steady State Infiltration Rate for Different Head Condition

Authors: Nour Aljafari, Mariam, S. Maani, Serter Atabay, Tarig Ali, Said Daker, Lara Daher, Hamad Bukhammas, Mohammed Abou Shakra

Abstract:

This paper aims at determining the soil characteristics that influence the irrigation process of green landscapes and deciding on the optimum amount of water needed for irrigation. The laboratory experiments were conducted using the constant head methodology to determine the soil infiltration rates. The steady state infiltration rate was reached after 10 minutes of infiltration at a rate of 200 mm/hr. The effects of different water heads on infiltration rates were also investigated, and the head of 11 cm was found to be the optimum head for the test. The experimental results showed consistent infiltration results for the range between 11 cm and 15 cm. The study also involved finding the initial moisture content, which ranged between 5% and 25%, and finding the organic content, which occupied 1% to 2% of the soil. These results will be later utilized, using the water balance approach, to estimate the optimum amount of water needed for irrigation for changing weather conditions.

Keywords: infiltration rate, moisture content, grass type, organic content

Procedia PDF Downloads 269
1527 Wheat Yield and Yield Components under Raised Bed Planting System

Authors: Hamidreza Miri, Farahnaz Momtazi

Abstract:

Wheat is one of the most important crops in Fars province, and because of water shortage, there is a great emphasis on its water use efficiency in the production field. A field experiment was conducted in 2021 and 2022 in order to evaluate wheat yield and its components in raised planting system in Arsanjan, Fars province. The experiment was conducted as a split plot with three irrigation treatments (irrigation equal to evapotranspiration, 80% of evapotranspiration irrigation (moderate drought stress), and 60% of evapotranspiration irrigation (severe drought stress)) as the main plot and three planting methods (conventional flat planting, 60 cm raised bed planting and 120 cm raised bed planting) as a subplot. The results indicated that drought stress significantly decreased traits such as plant height, grain yield, ear number, seed number, and biological yield while increasing seed protein. Raised bed planting significantly increased the traits in comparison with conventional flat planting. So that plating with a 120 cm raised bed increased grain yield by 22.1% and 25.9% in the first and second years, respectively. This increase was 17% for biological, 75 for ear number, and 21% for seed number. Planting in raised bed system reduced the adverse effect of drought stress on wheat traits. In conclusion, based on the observed results planting in raised bed system can be adopted as an appropriate planting pattern for improving yield and water productivity in experimental regions and similar climates.

Keywords: wheat, raised bed planting, drought stress, yield, water use

Procedia PDF Downloads 38
1526 Condition Assessment and Diagnosis for Aging Drinking Water Pipeline According to Scientific and Reasonable Methods

Authors: Dohwan Kim, Dongchoon Ryou, Pyungjong Yoo

Abstract:

In public water facilities, drinking water distribution systems have played an important role along with water purification systems. The water distribution network is one of the most expensive components of water supply infrastructure systems. To improve the reliability for the drinking rate of tap water, advanced water treatment processes such as granular activated carbon and membrane filtration were used by water service providers in Korea. But, distrust of the people for tap water are still. Therefore, accurate diagnosis and condition assessment for water pipelines are required to supply the clean water. The internal corrosion of water pipe has increased as time passed. Also, the cross-sectional areas in pipe are reduced by the rust, deposits and tubercles. It is the water supply ability decreases as the increase of hydraulic pump capacity is required to supply an amount of water, such as the initial condition. If not, the poor area of water supply will be occurred by the decrease of water pressure. In order to solve these problems, water managers and engineers should be always checked for the current status of the water pipe, such as water leakage and damage of pipe. If problems occur, it should be able to respond rapidly and make an accurate estimate. In Korea, replacement and rehabilitation of aging drinking water pipes are carried out based on the circumstances of simply buried years. So, water distribution system management may not consider the entire water pipeline network. The long-term design and upgrading of a water distribution network should address economic, social, environmental, health, hydraulic, and other technical issues. This is a multi-objective problem with a high level of complexity. In this study, the thickness of the old water pipes, corrosion levels of the inner and outer surface for water pipes, basic data research (i.e. pipe types, buried years, accident record, embedded environment, etc.), specific resistance of soil, ultimate tensile strength and elongation of metal pipes, samples characteristics, and chemical composition analysis were performed about aging drinking water pipes. Samples of water pipes used in this study were cement mortar lining ductile cast iron pipe (CML-DCIP, diameter 100mm) and epoxy lining steel pipe (diameter 65 and 50mm). Buried years of CML-DCIP and epoxy lining steel pipe were respectively 32 and 23 years. The area of embedded environment was marine reclamation zone since 1940’s. The result of this study was that CML-DCIP needed replacement and epoxy lining steel pipe was still useful.

Keywords: drinking water distribution system, water supply, replacement, rehabilitation, water pipe

Procedia PDF Downloads 232
1525 Analysis of Cyclic Elastic-Plastic Loading of Shaft Based on Kinematic Hardening Model

Authors: Isa Ahmadi, Ramin Khamedi

Abstract:

In this paper, the elasto-plastic and cyclic torsion of a shaft is studied using a finite element method. The Prager kinematic hardening theory of plasticity with the Ramberg and Osgood stress-strain equation is used to evaluate the cyclic loading behavior of the shaft under the torsional loading. The material of shaft is assumed to follow the non-linear strain hardening property based on the Prager model. The finite element method with C1 continuity is developed and used for solution of the governing equations of the problem. The successive substitution iterative method is used to calculate the distribution of stresses and plastic strains in the shaft due to cyclic loads. The shear stress, effective stress, residual stress and elastic and plastic shear strain distribution are presented in the numerical results.

Keywords: cyclic loading, finite element analysis, Prager kinematic hardening model, torsion of shaft

Procedia PDF Downloads 373
1524 Study on Heat Transfer Capacity Limits of Heat Pipe with Working Fluids Ammonia and Water

Authors: M. Heydari, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region, and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 364
1523 Elasto-Plastic Behavior of Rock during Temperature Drop

Authors: N. Reppas, Y. L. Gui, B. Wetenhall, C. T. Davie, J. Ma

Abstract:

A theoretical constitutive model describing the stress-strain behavior of rock subjected to different confining pressures is presented. A bounding surface plastic model with hardening effects is proposed which includes the effect of temperature drop. The bounding surface is based on a mapping rule and the temperature effect on rock is controlled by Poisson’s ratio. Validation of the results against available experimental data is also presented. The relation of deviatoric stress and axial strain is illustrated at different temperatures to analyze the effect of temperature decrease in terms of stiffness of the material.

Keywords: bounding surface, cooling of rock, plasticity model, rock deformation, elasto-plastic behavior

Procedia PDF Downloads 104
1522 Design a Small-Scale Irrigation Wind-Powered Water Pump Using a Savonius Type VAWT

Authors: Getnet Ayele Kebede, Tasew Tadiwose Zewdie

Abstract:

In this study, a novel design of a wind-powered water pump for small-scale irrigation application by using the Savonius wind turbine of Vertical Axis Wind Turbine(VAWT) with 2 blades has been used. Calculations have been made on the energy available in the wind and an energy analysis was then performed to see what wind speed is required for the system to work. The rotor has a radius of 0.53 m giving a swept area of 1.27 m2 and this gives a solidity of 0.5, which is the minimum theoretical optimum value for wind turbine. The average extracted torque of the wind turbine is 0.922 Nm and Tip speed ratio is one this shows, the tips are moving at equal the speed of the wind and by 2 rotating of blades. This is sufficient to sustain the desired flow rate of (0.3125X 10-3) m3 per second with a maximum head of 10m and the expected working is 4hr/day, and also overcome other barriers to motion such as friction. Based on this novel design, we are able to achieve a cost-effective solution and simultaneously effective in self-starting under low wind speeds and it can catch the wind from all directions.

Keywords: Savonius wind turbine, Small-scale irrigation, Vertical Axis Wind Turbine, Water pump

Procedia PDF Downloads 135
1521 The Effect of Linear Low-Density Polyethylene Cross-Contamination by Other Plastic Types on Bitumen Modification

Authors: Nioushasadat Haji Seyed Javadi, Ailar Hajimohammadi, Nasser Khalili

Abstract:

Currently, the recycling of plastic wastes has been the subject of much research attention, especially in pavement constructions, where virgin polymers can be replaced by recycled plastics for asphalt binder modification. Among the plastic types, recycled linear low-density polyethylene (RLLDPE) has been one of the common and largely available plastics for bitumen modification. However, it is important to note that during the recycling process, LLDPE can easily be contaminated with other plastic types, especially with low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP). The cross-contamination of LLDPE with other plastics lowers its quality and, consequently, can affect the asphalt modification process. This study aims to assess the effect of LLDPE cross-contamination on bitumen modification. To do so, samples of bitumen modified with LLDPE and blends of LLDPE with LDPE, HDPE, and PP were prepared and compared through physical and rheological evaluations. The experimental tests, including softening point, penetration, viscosity at 135 °C, and dynamic shear rheometer, were conducted. The results indicated that the effect of cross-contamination on softening point and rutting resistance was negligible. On the other side, penetration and viscosity were highly impacted. The results also showed that among contamination of LLDPE with the other plastic types, PP had the highest influence in comparison with HDPE and LDPE on changing the properties of the LLDPE- modified bitumen.

Keywords: recycled polyethylene, polymer cross-contamination, waste plastic, bitumen, rutting resistance

Procedia PDF Downloads 92
1520 Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment

Authors: Thomas Paris, Vincent Bruyere, Patrick Namy

Abstract:

A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values.

Keywords: compressible flow, fluid mechanics, heat transfer, porous media

Procedia PDF Downloads 375
1519 Investigating the Systematic Implications of Plastic Waste Additions to Concrete Taking a Circular Approach

Authors: Christina Cheong, Naomi Keena

Abstract:

In the face of growing urbanization the construction of new buildings is inevitable and with current construction methods leading to environmental degradation much questioning is needed around reducing the environmental impact of buildings. This paper explores the global environmental issue of concrete production in parallel with the problem of plastic waste, and questions if new solutions into plastic waste additions in concrete is a viable sustainable solution with positive systematic implications to living systems, both human and non-human. We investigate how certification programs can be used to access the sustainability of the new concrete composition. With this classification we look to the health impacts as well as reusability of such concrete in a second or third life cycle. We conclude that such an approach has benefits to the environment and that taking a circular approach to its development, in terms of the overall life cycle of the new concrete product, can help understand the nuances in terms of the material’s environmental and human health impacts.

Keywords: Concrete, Plastic waste additions to concrete, sustainability ratings, sustainable materials

Procedia PDF Downloads 120
1518 Measurement of Coal Fineness, Air Fuel Ratio, and Fuel Weight Distribution in a Vertical Spindle Mill’s Pulverized Fuel Pipes at Classifier Vane 40%

Authors: Jayasiler Kunasagaram

Abstract:

In power generation, coal fineness is crucial to maintain flame stability, ensure combustion efficiency, and lower emissions to the environment. In order for the pulverized coal to react effectively in the boiler furnace, the size of coal particles needs to be at least 70% finer than 74 μm. This paper presents the experiment results of coal fineness, air fuel ratio and fuel weight distribution in pulverized fuel pipes at classifier vane 40%. The aim of this experiment is to extract the pulverized coal is kinetically and investigate the data accordingly. Dirty air velocity, coal sample extraction, and coal sieving experiments were performed to measure coal fineness. The experiment results show that required coal fineness can be achieved at 40 % classifier vane. However, this does not surpass the desired value by a great margin.

Keywords: coal power, emissions, isokinetic sampling, power generation

Procedia PDF Downloads 572
1517 Risk of Plastic Shrinkage Cracking in Recycled Aggregate Concrete

Authors: M. Eckert, M. Oliveira

Abstract:

The intensive use of natural aggregates, near cities and towns, associated to the increase of the global population, leads to its depletion and increases the transport distances. The uncontrolled deposition of construction and demolition waste in landfills and city outskirts, causes pollution and takes up space. The use of recycled aggregates in concrete preparation would contribute to mitigate the problem. However, it arises the problem that the high water absorption of recycled aggregate decreases the bleeding rate of concrete, and when this gets lower than the evaporation rate, plastic shrinkage cracking occurs. This phenomenon can be particularly problematic in hot and windy curing environments. Cracking facilitates the flow of liquid and gas into concrete which attacks the reinforcement and degrades the concrete. These factors reduce the durability of concrete structures and consequently the lifetime of buildings. A ring test was used, cured in a wind tunnel, to evaluate the plastic shrinkage cracking sensitivity of recycled aggregate concrete, in order to implement preventive means to control this phenomenon. The role of several aggregate properties on the concrete segregation and cracking mechanisms were also discussed.

Keywords: recycled aggregate, plastic shrinkage cracking, wind tunnel, durability

Procedia PDF Downloads 383
1516 Pyrolysis of Mixed Plastic Fractions with PP, PET and PA

Authors: Rudi P. Nielsen, Karina H. Hansen, Morten E. Simonsen

Abstract:

To improve the possibility of the chemical recycling of mixed plastic waste, such as municipal plastic waste, work has been conducted to gain an understanding of the effect of typical polymers from waste (PP, PET, and PA) on the quality of the pyrolysis oil produced. Plastic fractions were pyrolyzed in a lab-scale reactor system, with mixture compositions of up to 15 wt.% PET and five wt.% PA in a PP matrix and processing conditions from 400 to 450°C. The experiments were conducted as a full factorial design and in duplicates to provide reliable results and the possibility to determine any interactions between the parameters. The products were analyzed using FT-IR and GC-MS for compositional information as well as the determination of calorific value, ash content, acid number, density, viscosity, and elemental analysis to provide further data on the fuel quality of the pyrolysis oil. Oil yield was found to be between 61 and 84 wt.%, while char yield was below 2.6 wt.% in all cases. The calorific value of the produced oil was between 32 and 46 MJ/kg, averaging at approx. 41 MJ/kg, thus close to that of heavy fuel oil. The oil product was characterized to contain aliphatic and cyclic hydrocarbons, alcohols, and ethers with chain lengths between 10 and 25 carbon atoms. Overall, it was found that the addition of PET decreased oil yield, while the addition of both PA and PET decreased oil quality in general by increasing acid number (PET), decreasing calorific value (PA), and increasing nitrogen content (PA). Furthermore, it was identified that temperature increased ammonia production from PA during pyrolysis, while ammonia production was decreased by the addition of PET.

Keywords: PET, plastic waste, polyamide, polypropylene, pyrolysis

Procedia PDF Downloads 117
1515 Non-Destructive Testing of Metal Pipes with Ultrasonic Sensors Based on Determination of Maximum Ultrasonic Frequency

Authors: Herlina Abdul Rahim, Javad Abbaszadeh, Ruzairi Abdul Rahim

Abstract:

In this research, the non-invasive ultrasonic transmission tomography is investigated. In order to model the ultrasonic wave scattering for different thickness of metal pipes, two-dimensional (2D) finite element modeling (FEM) has been utilized. The wall thickness variation of the metal pipe and its influence on propagation of the ultrasonic pressure wave are explored in this paper, includes frequency analysing in order to find the maximum applicable frequency. The simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining the achieved reconstructed images from experimental setup. Finally, the experimental results which are useful for further investigation for the application of ultrasonic transmission tomography in industry are illustrated.

Keywords: ultrasonic transmission tomography, ultrasonic sensors, ultrasonic wave, non-invasive tomography, metal pipe

Procedia PDF Downloads 324
1514 Impact of Emerging Nano-Agrichemicals on the Simultaneous Control of Arsenic and Cadmium in Rice Paddies

Authors: Xingmao Ma, Wenjie Sun

Abstract:

Rice paddies are frequently co-contaminated by arsenic (As) and cadmium (Cd), both of which demonstrate a high propensity for accumulation in rice grains and cause global food safety and public health concern. Even though different agricultural management strategies have been explored for their simultaneous control in rice grains, a viable solution is yet to be developed. Interestingly, several nanoagrichemicals, such as the zinc nanofertilizer and copper nanopesticide have displayed strong potential to reduce As or Cd accumulation in rice tissues. In order to determine whether these nanoagrichemicals can lower the accumulation of both As and Cd in rice, a series of bench studies were performed. Our results show that zinc oxide nanoparticles at 100 mg/Kg significantly lowered both As, and Cd in rice roots and shoots in flood irrigated rice seedlings, while equivalent amount of zinc ions only reduced As concentration in rice shoots. Zinc ions significantly increased Cd concentration in rice shoots by almost 30%. The results demonstrate a unique 'nano-effect' of zinc oxide nanoparticles, which is ascribed to the slow releasing of zinc ions from nanoparticles and the formation of different transformation products in these two treatments. We also evaluated the effect of nanoscale soil amendment, silicon oxide nanoparticles (SiO₂NPs) on the simultaneous reduction in both flooding and alternate wet and dry irrigation scheme. The effect of SiO₂NPs on As and Cd accumulation in rice tissues was strongly affected by the irrigation scheme. While 2000 mg/kg of SiO₂NPs significantly reduced As in rice roots and insignificantly reduced As in rice shoots in flooded rice, it increased As concentration in rice shoots in alternate wet and dry irrigation. In both irrigation scenarios, SiO₂NPs significantly reduced Cd concentration in rice roots, but only reduced Cd concentration in rice shoots in alternate wet and dry irrigation. Our results demonstrate a marked effect of nanoagrichemicals on the accumulation of As and Cd in rice and can be a potential solution to simultaneously control both in certain conditions.

Keywords: arsenic, cadmium, rice, nanoagrichemicals

Procedia PDF Downloads 128
1513 Physics-Informed Neural Network for Predicting Strain Demand in Inelastic Pipes under Ground Movement with Geometric and Soil Resistance Nonlinearities

Authors: Pouya Taraghi, Yong Li, Nader Yoosef-Ghodsi, Muntaseer Kainat, Samer Adeeb

Abstract:

Buried pipelines play a crucial role in the transportation of energy products such as oil, gas, and various chemical fluids, ensuring their efficient and safe distribution. However, these pipelines are often susceptible to ground movements caused by geohazards like landslides, fault movements, lateral spreading, and more. Such ground movements can lead to strain-induced failures in pipes, resulting in leaks or explosions, leading to fires, financial losses, environmental contamination, and even loss of human life. Therefore, it is essential to study how buried pipelines respond when traversing geohazard-prone areas to assess the potential impact of ground movement on pipeline design. As such, this study introduces an approach called the Physics-Informed Neural Network (PINN) to predict the strain demand in inelastic pipes subjected to permanent ground displacement (PGD). This method uses a deep learning framework that does not require training data and makes it feasible to consider more realistic assumptions regarding existing nonlinearities. It leverages the underlying physics described by differential equations to approximate the solution. The study analyzes various scenarios involving different geohazard types, PGD values, and crossing angles, comparing the predictions with results obtained from finite element methods. The findings demonstrate a good agreement between the results of the proposed method and the finite element method, highlighting its potential as a simulation-free, data-free, and meshless alternative. This study paves the way for further advancements, such as the simulation-free reliability assessment of pipes subjected to PGD, as part of ongoing research that leverages the proposed method.

Keywords: strain demand, inelastic pipe, permanent ground displacement, machine learning, physics-informed neural network

Procedia PDF Downloads 33
1512 Near-Infrared Hyperspectral Imaging Spectroscopy to Detect Microplastics and Pieces of Plastic in Almond Flour

Authors: H. Apaza, L. Chévez, H. Loro

Abstract:

Plastic and microplastic pollution in human food chain is a big problem for human health that requires more elaborated techniques that can identify their presences in different kinds of food. Hyperspectral imaging technique is an optical technique than can detect the presence of different elements in an image and can be used to detect plastics and microplastics in a scene. To do this statistical techniques are required that need to be evaluated and compared in order to find the more efficient ones. In this work, two problems related to the presence of plastics are addressed, the first is to detect and identify pieces of plastic immersed in almond seeds, and the second problem is to detect and quantify microplastic in almond flour. To do this we make use of the analysis hyperspectral images taken in the range of 900 to 1700 nm using 4 unmixing techniques of hyperspectral imaging which are: least squares unmixing (LSU), non-negatively constrained least squares unmixing (NCLSU), fully constrained least squares unmixing (FCLSU), and scaled constrained least squares unmixing (SCLSU). NCLSU, FCLSU, SCLSU techniques manage to find the region where the plastic is found and also manage to quantify the amount of microplastic contained in the almond flour. The SCLSU technique estimated a 13.03% abundance of microplastics and 86.97% of almond flour compared to 16.66% of microplastics and 83.33% abundance of almond flour prepared for the experiment. Results show the feasibility of applying near-infrared hyperspectral image analysis for the detection of plastic contaminants in food.

Keywords: food, plastic, microplastic, NIR hyperspectral imaging, unmixing

Procedia PDF Downloads 93
1511 Optimization of Waste Plastic to Fuel Oil Plants' Deployment Using Mixed Integer Programming

Authors: David Muyise

Abstract:

Mixed Integer Programming (MIP) is an approach that involves the optimization of a range of decision variables in order to minimize or maximize a particular objective function. The main objective of this study was to apply the MIP approach to optimize the deployment of waste plastic to fuel oil processing plants in Uganda. The processing plants are meant to reduce plastic pollution by pyrolyzing the waste plastic into a cleaner fuel that can be used to power diesel/paraffin engines, so as (1) to reduce the negative environmental impacts associated with plastic pollution and also (2) to curb down the energy gap by utilizing the fuel oil. A programming model was established and tested in two case study applications that are, small-scale applications in rural towns and large-scale deployment across major cities in the country. In order to design the supply chain, optimal decisions on the types of waste plastic to be processed, size, location and number of plants, and downstream fuel applications were concurrently made based on the payback period, investor requirements for capital cost and production cost of fuel and electricity. The model comprises qualitative data gathered from waste plastic pickers at landfills and potential investors, and quantitative data obtained from primary research. It was found out from the study that a distributed system is suitable for small rural towns, whereas a decentralized system is only suitable for big cities. Small towns of Kalagi, Mukono, Ishaka, and Jinja were found to be the ideal locations for the deployment of distributed processing systems, whereas Kampala, Mbarara, and Gulu cities were found to be the ideal locations initially utilize the decentralized pyrolysis technology system. We conclude that the model findings will be most important to investors, engineers, plant developers, and municipalities interested in waste plastic to fuel processing in Uganda and elsewhere in developing economy.

Keywords: mixed integer programming, fuel oil plants, optimisation of waste plastics, plastic pollution, pyrolyzing

Procedia PDF Downloads 99
1510 Optimization of Agricultural Water Demand Using a Hybrid Model of Dynamic Programming and Neural Networks: A Case Study of Algeria

Authors: M. Boudjerda, B. Touaibia, M. K. Mihoubi

Abstract:

In Algeria agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. Economic development in the last decade has weighed heavily on water resources which are relatively limited and gradually decreasing to the detriment of agriculture. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Foum El-Gherza dam’s reservoir system in south of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 12.32% to 55%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.

Keywords: water management, agricultural demand, dam and reservoir operation, Foum el-Gherza dam, dynamic programming, artificial neural network

Procedia PDF Downloads 85
1509 Safety Evaluation of Post-Consumer Recycled PET Materials in Chilean Industry by Overall Migration Tests

Authors: Evelyn Ilabaca, Ximena Valenzuela, Alejandra Torres, María José Galotto, Abel Guarda

Abstract:

One of the biggest problems in food packaging industry, especially with the plastic materials, is the fact that these materials are usually obtained from non-renewable resources and also remain as waste after its use, causing environmental issues. This is an international concern and particular attention is given to reduction, reuse and recycling strategies for decreasing the waste from plastic packaging industry. In general, polyethylenes represent most plastic waste and recycling process of post-consumer polyethylene terephthalate (PCR-PET) has been studied. US Food and Drug Administration (FDA), European Food Safety Authority (EFSA) and Southern Common Market (MERCOSUR) have generated different legislative documents to control the use of PCR-PET in the production of plastic packaging intended direct food contact in order to ensure the capacity of recycling process to remove possible contaminants that can migrate into food. Consequently, it is necessary to demonstrate by challenge test that the recycling process is able to remove specific contaminants, obtaining a safe recycled plastic to human health. These documents establish that the concentration limit for substitute contaminants in PET is 220 ppb (ug/kg) and the specific migration limit is 10 ppb (ug/kg) for each contaminant, in addition to assure the sensorial characteristics of food are not affected. Moreover, under the Commission Regulation (EU) N°10/2011 on plastic materials and articles intended to come into contact with food, it is established that overall migration limit is 10 mg of substances per 1 dm2 of surface area of the plastic material. Thus, the aim of this work is to determine the safety of PCR-PET-containing food packaging materials in Chile by measuring their overall migration, and their comparison with the established limits at international level. This information will serve as a basis to provide a regulation to control and regulate the use of recycled plastic materials in the manufacture of plastic packaging intended to be in direct contact with food. The methodology used involves a procedure according to EN-1186:2002 with some modifications. The food simulants used were ethanol 10 % (v/v) and acetic acid 3 % (v/v) as aqueous food simulants, and ethanol 95 % (v/v) and isooctane as substitutes of fatty food simulants. In this study, preliminary results showed that Chilean food packaging plastics with different PCR-PET percentages agree with the European Legislation for food aqueous character.

Keywords: contaminants, polyethylene terephthalate, plastic food packaging, recycling

Procedia PDF Downloads 246
1508 Studies on the Solubility of Oxygen in Water Using a Hose to fill the Air with Different Shapes

Authors: Wichan Lertlop

Abstract:

This research is to study the solubility of oxygen in water taking the form of aeration pipes that have different shaped objectives of the research to compare the amount of oxygen dissolved in the water, whice take the form of aeration pipes. Shaped differently When aeration 5 minutes on air for 10 minutes, and when air fills 30 minutes, as well as compare the durability of the oxygen is dissolved in the water of the inlet air refueling shaped differently when you fill the air 30 minutes and when. aeration and 60 minutes populations used in this study, the population of pond water from Rajabhat University in February 2014 used in this study consists of 1. Aerator 2. Hose using a hose to fill the air with 3 different shape, different shapes pyramid whose base is on the water tank. Shaped rectangular water tank onto the ground. And shapes in a vertical pipe. 3 meter, dissolved oxygen, dissolved in water to get the calibration standard. 4. The clock for timer 5. Three water tanks which are 39 cm wide, 51 cm long and 32 cm high.

Keywords: aeration, dissolve oxygen, different shapes

Procedia PDF Downloads 285
1507 Plastic Pollution: Analysis of the Current Legal Framework and Perspectives on Future Governance

Authors: Giorgia Carratta

Abstract:

Since the beginning of mass production, plastic items have been crucial in our daily lives. Thanks to their physical and chemical properties, plastic materials have proven almost irreplaceable in a number of economic sectors such as packaging, automotive, building and construction, textile, and many others. At the same time, the disruptive consequences of plastic pollution have been progressively brought to light in all environmental compartments. The overaccumulation of plastics in the environment, and its adverse effects on habitats, wildlife, and (most likely) human health, represents a call for action to decision-makers around the globe. From a regulatory perspective, plastic production is an unprecedented challenge at all levels of governance. At the international level, the design of new legal instruments, the amendment of existing ones, and the coordination among the several relevant policy areas requires considerable effort. Under the pressure of both increasing scientific evidence and a concerned public opinion, countries seem to slowly move towards the discussion of a new international ‘plastic treaty.’ However, whether, how, and with which scopes such instrument would be adopted is still to be seen. Additionally, governments are establishing regional-basedstrategies, prone to consider the specificities of the plastic issue in a certain geographical area. Thanks to the new Circular Economy Action Plan, approved in March 2020 by the European Commission, EU countries are slowly but steadily shifting to a carbon neutral, circular economy in the attempt to reduce the pressure on natural resources and, parallelly, facilitate sustainable economic growth. In this context, the EU Plastic Strategy is promising to change the way plastic is designed, produced, used, and treated after consumption. In fact, only in the EU27 Member States, almost 26 million tons of plastic waste are generated herein every year, whose 24,9% is still destined to landfill. Positive effects of the Strategy also include a more effective protection of our environment, especially the marine one, the reduction of greenhouse gas emissions, a reduced need for imported fossil energy sources, more sustainable production and consumption patterns. As promising as it may sound, the road ahead is still long. The need to implement these measures in domestic legislations makes their outcome difficult to predict at the moment. An analysis of the current international and European Union legal framework on plastic pollution, binding, and voluntary instruments included, could serve to detect ‘blind spots’ in the current governance as well as to facilitate the development of policy interventions along the plastic value chain, where it appears more needed.

Keywords: environmental law, European union, governance, plastic pollution, sustainability

Procedia PDF Downloads 85
1506 A Simplified, Low-Cost Mechanical Design for an Automated Motorized Mechanism to Clean Large Diameter Pipes

Authors: Imad Khan, Imran Shafi, Sarmad Farooq

Abstract:

Large diameter pipes, barrels, tubes, and ducts are used in a variety of applications covering civil and defense-related technologies. This may include heating/cooling networks, sign poles, bracing, casing, and artillery and tank gun barrels. These large diameter assemblies require regular inspection and cleaning to increase their life and reduce replacement costs. This paper describes the design, development, and testing results of an efficient yet simplified, low maintenance mechanical design controlled with minimal essential electronics using an electric motor for a non-technical staff. The proposed solution provides a simplified user interface and an automated cleaning mechanism that requires a single user to optimally clean pipes and barrels in the range of 105 mm to 203 mm caliber. The proposed system employs linear motion of specially designed brush along the barrel using a chain of specific strength and a pulley anchor attached to both ends of the barrel. A specially designed and manufactured gearbox is coupled with an AC motor to allow movement of contact brush with high torque to allow efficient cleaning. A suitably powered AC motor is fixed to the front adapter mounted on the muzzle side whereas the rear adapter has a pulley-based anchor mounted towards the breach block in case of a gun barrel. A mix of soft nylon and hard copper bristles-based large surface brush is connected through a strong steel chain to motor and anchor pulley. The system is equipped with limit switches to auto switch the direction when one end is reached on its operation. The testing results based on carefully established performance indicators indicate the superiority of the proposed user-friendly cleaning mechanism vis-à-vis its life cycle cost.

Keywords: pipe cleaning mechanism, limiting switch, pipe cleaning robot, large pipes

Procedia PDF Downloads 82
1505 Effect of Manure Treatment on Furrow Erosion: A Case Study of Sagawika Irrigation Scheme in Kasungu, Malawi

Authors: Abel Mahowe

Abstract:

Furrow erosion is the major problem menacing sustainability of irrigation in Malawi and polluting water bodies resulting in death of many aquatic animals. Many rivers in Malawi are drying due to some poor practices that are being practiced around these water bodies, furrow erosion is one of the cause of sedimentation in these rivers although it has gradual effect on deteriorating of these rivers hence neglected, but has got long term disastrous effect on water bodies. Many aquatic animals also suffer when these sediments are taken into these water bodies. An assessment of effect of manure treatment on furrow erosion was carried out in Sagawika irrigation scheme located in Kasungu District north part of Malawi. The soil on the field was clay loam and had just been tilled. The average furrow slope of 0.2% and was divided into two blocks, A and B. Each block had 20V-shaped furrow having a length of 10 m. Three different manure were used to construct these furrows by mixing it with soil which was moderately moist and 5 furrows from each block were constructed without manure. In each block 5furrow were made using a specific type of manure, and one set of five furrows in each block was made without manure treatment. The types of manure that were used were goat manure, pig manure, and manure from crop residuals. The manure application late was 5 kg/m. The furrow was constructed at a spacing of 0.6 m. Tomato was planted in the two blocks at spacing of 0.15 m between rows and 0.15 m between planting stations. Irrigation water was led from feeder canal into the irrigation furrows using siphons. The siphons discharge into each furrow was set at 1.86 L/S. The ¾ rule was used to determine the cut-off time for the irrigation cycles in order to reduce the run-off at the tail end. During each irrigation cycle, samples of the runoff water were collected at one-minute intervals and analyzed for total sediment concentration for use in estimating the total soil sediment loss. The results of the study have shown that a significant amount of soil is lost in soils without many organic matters, there was a low level of erosion in furrows that were constructed using manure treatment within the blocks. In addition, the results have shown that manure also differs in their ability to control erosion since pig manure proved to have greater abilities in binding the soil together than other manure since they were reduction in the amount of sediments at the tail end of furrows constructed by this type of manure. The results prove that manure contains organic matters which helps soil particles to bind together hence resisting the erosive force of water. The use of manure when constructing furrows in soil with less organic matter can highly reduce erosion hence reducing also pollution of water bodies and improve the conditions of aquatic animals.

Keywords: aquatic, erosion, furrow, soil

Procedia PDF Downloads 259
1504 Managing the Water Projects and Controlling Its Boundary Disturbances Which Affect the Water Supply

Authors: Sead A. Bakheet, Salah M. Elkoum, Asharaf A. Almaghribi

Abstract:

Disturbance defined as activity that malfunction, intrusion, or interruption. We have to look around for the source of the disturbance affecting the inputs and outputs of engineering projects, take the necessary actions to control them. In this paper we will present and discuss a production system consisting of three elements, inputs, the production process and outputs. The production process which we chose is the production of large diameter pre-stressed concrete cylinder pipes (out puts), in reality, the outputs are the starting points of the operation (laying the concrete pipes for transporting drinkable water). The main objective also to address the controlling methods of the natural resources and raw materials (basic inputs), study the disturbances affecting them as well as the output quality. The importance of making the right decision, which effect the final product quality will be summarized. Finally, we will address the proposals regarding the managing of secure water supply to the customers.

Keywords: disturbances, management, inputs, outputs, decision

Procedia PDF Downloads 39
1503 Quantification of Effect of Linear Anionic Polyacrylamide on Seepage in Irrigation Channels

Authors: Hamil Uribe, Cristian Arancibia

Abstract:

In Chile, the water for irrigation and hydropower generation is delivery essentially through unlined channels on earth, which have high seepage losses. Traditional seepage-abatement technologies are very expensive. The goals of this work were to quantify water loss in unlined channels and select reaches to evaluate the use of linear anionic polyacrylamide (LA-PAM) to reduce seepage losses. The study was carried out in Maule Region, central area of Chile. Water users indicated reaches with potential seepage losses, 45 km of channels in total, whose flow varied between 1.07 and 23.6 m³ s⁻¹. According to seepage measurements, 4 reaches of channels, 4.5 km in total, were selected for LA-PAM application. One to 4 LA-PAM applications were performed at rates of 11 kg ha⁻¹, considering wet perimeter area as basis of calculation. Large channels were used to allow motorboat moving against the current to carry-out LA-PAM application. For applications, a seeder machine was used to evenly distribute granulated polymer on water surface. Water flow was measured (StreamPro ADCP) upstream and downstream in selected reaches, to estimate seepage losses before and after LA-PAM application. Weekly measurements were made to quantify treatment effect and duration. In each case, water turbidity and temperature were measured. Channels showed variable losses up to 13.5%. Channels showing water gains were not treated with PAM. In all cases, LA-PAM effect was positive, achieving average loss reductions of 8% to 3.1%. Water loss was confirmed and it was possible to reduce seepage through LA-PAM applications provided that losses were known and correctly determined when applying the polymer. This could allow increasing irrigation security in critical periods, especially under drought conditions.

Keywords: canal seepage, irrigation, polyacrylamide, water management

Procedia PDF Downloads 152