Search results for: image threshold
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3355

Search results for: image threshold

3295 Multi-Spectral Medical Images Enhancement Using a Weber’s law

Authors: Muna F. Al-Sammaraie

Abstract:

The aim of this research is to present a multi spectral image enhancement methods used to achieve highly real digital image populates only a small portion of the available range of digital values. Also, a quantitative measure of image enhancement is presented. This measure is related with concepts of the Webers Low of the human visual system. For decades, several image enhancement techniques have been proposed. Although most techniques require profuse amount of advance and critical steps, the result for the perceive image are not as satisfied. This study involves changing the original values so that more of the available range is used; then increases the contrast between features and their backgrounds. It consists of reading the binary image on the basis of pixels taking them byte-wise and displaying it, calculating the statistics of an image, automatically enhancing the color of the image based on statistics calculation using algorithms and working with RGB color bands. Finally, the enhanced image is displayed along with image histogram. A number of experimental results illustrated the performance of these algorithms. Particularly the quantitative measure has helped to select optimal processing parameters: the best parameters and transform.

Keywords: image enhancement, multi-spectral, RGB, histogram

Procedia PDF Downloads 298
3294 High Speed Image Rotation Algorithm

Authors: Hee-Choul Kwon, Hyungjin Cho, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing step in image processing or image pattern recognition. It is implemented with rotation matrix multiplication. However it requires lots of floating point arithmetic operations and trigonometric function calculations, so it takes long execution time. We propose a new high speed image rotation algorithm without two major time-consuming operations. We compare the proposed algorithm with the conventional rotation one with various size images. Experimental results show that the proposed algorithm is superior to the conventional rotation ones.

Keywords: high speed rotation operation, image processing, image rotation, pattern recognition, transformation matrix

Procedia PDF Downloads 472
3293 Image Rotation Using an Augmented 2-Step Shear Transform

Authors: Hee-Choul Kwon, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing steps for image processing or image pattern recognition. It is implemented with a rotation matrix multiplication. It requires a lot of floating point arithmetic operations and trigonometric calculations, so it takes a long time to execute. Therefore, there has been a need for a high speed image rotation algorithm without two major time-consuming operations. However, the rotated image has a drawback, i.e. distortions. We solved the problem using an augmented two-step shear transform. We compare the presented algorithm with the conventional rotation with images of various sizes. Experimental results show that the presented algorithm is superior to the conventional rotation one.

Keywords: high-speed rotation operation, image rotation, transform matrix, image processing, pattern recognition

Procedia PDF Downloads 238
3292 Analysis of Various Copy Move Image Forgery Techniques for Better Detection Accuracy

Authors: Grishma D. Solanki, Karshan Kandoriya

Abstract:

In modern era of information age, digitalization has revolutionized like never before. Powerful computers, advanced photo editing software packages and high resolution capturing devices have made manipulation of digital images incredibly easy. As per as image forensics concerns, one of the most actively researched area are detection of copy move forgeries. Higher computational complexity is one of the major component of existing techniques to detect such tampering. Moreover, copy move forgery is usually performed in three steps. First, copying of a region in an image then pasting the same one in the same respective image and finally doing some post-processing like rotation, scaling, shift, noise, etc. Consequently, pseudo Zernike moment is used as a features extraction method for matching image blocks and as a primary factor on which performance of detection algorithms depends.

Keywords: copy-move image forgery, digital forensics, image forensics, image forgery

Procedia PDF Downloads 258
3291 The Image as an Initial Element of the Cognitive Understanding of Words

Authors: S. Pesina, T. Solonchak

Abstract:

An analysis of word semantics focusing on the invariance of advanced imagery in several pressing problems. Interest in the language of imagery is caused by the introduction, in the linguistics sphere, of a new paradigm, the center of which is the personality of the speaker (the subject of the language). Particularly noteworthy is the question of the place of the image when discussing the lexical, phraseological values and the relationship of imagery and metaphors. In part, the formation of a metaphor, as an interaction between two intellective entities, occurs at a cognitive level, and it is the category of the image, having cognitive roots, which aides in the correct interpretation of the results of this process on the lexical-semantic level.

Keywords: image, metaphor, concept, creation of a metaphor, cognitive linguistics, erased image, vivid image

Procedia PDF Downloads 322
3290 Image Classification with Localization Using Convolutional Neural Networks

Authors: Bhuyain Mobarok Hossain

Abstract:

Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).

Keywords: image classification, object detection, localization, particle filter

Procedia PDF Downloads 265
3289 Detecting the Edge of Multiple Images in Parallel

Authors: Prakash K. Aithal, U. Dinesh Acharya, Rajesh Gopakumar

Abstract:

Edge is variation of brightness in an image. Edge detection is useful in many application areas such as finding forests, rivers from a satellite image, detecting broken bone in a medical image etc. The paper discusses about finding edge of multiple aerial images in parallel .The proposed work tested on 38 images 37 colored and one monochrome image. The time taken to process N images in parallel is equivalent to time taken to process 1 image in sequential. The proposed method achieves pixel level parallelism as well as image level parallelism.

Keywords: edge detection, multicore, gpu, opencl, mpi

Procedia PDF Downloads 441
3288 Speeding-up Gray-Scale FIC by Moments

Authors: Eman A. Al-Hilo, Hawraa H. Al-Waelly

Abstract:

In this work, fractal compression (FIC) technique is introduced based on using moment features to block indexing the zero-mean range-domain blocks. The moment features have been used to speed up the IFS-matching stage. Its moments ratio descriptor is used to filter the domain blocks and keep only the blocks that are suitable to be IFS matched with tested range block. The results of tests conducted on Lena picture and Cat picture (256 pixels, resolution 24 bits/pixel) image showed a minimum encoding time (0.89 sec for Lena image and 0.78 of Cat image) with appropriate PSNR (30.01dB for Lena image and 29.8 of Cat image). The reduction in ET is about 12% for Lena and 67% for Cat image.

Keywords: fractal gray level image, fractal compression technique, iterated function system, moments feature, zero-mean range-domain block

Procedia PDF Downloads 466
3287 Digital Image Forensics: Discovering the History of Digital Images

Authors: Gurinder Singh, Kulbir Singh

Abstract:

Digital multimedia contents such as image, video, and audio can be tampered easily due to the availability of powerful editing softwares. Multimedia forensics is devoted to analyze these contents by using various digital forensic techniques in order to validate their authenticity. Digital image forensics is dedicated to investigate the reliability of digital images by analyzing the integrity of data and by reconstructing the historical information of an image related to its acquisition phase. In this paper, a survey is carried out on the forgery detection by considering the most recent and promising digital image forensic techniques.

Keywords: Computer Forensics, Multimedia Forensics, Image Ballistics, Camera Source Identification, Forgery Detection

Procedia PDF Downloads 212
3286 Gray Level Image Encryption

Authors: Roza Afarin, Saeed Mozaffari

Abstract:

The aim of this paper is image encryption using Genetic Algorithm (GA). The proposed encryption method consists of two phases. In modification phase, pixels locations are altered to reduce correlation among adjacent pixels. Then, pixels values are changed in the diffusion phase to encrypt the input image. Both phases are performed by GA with binary chromosomes. For modification phase, these binary patterns are generated by Local Binary Pattern (LBP) operator while for diffusion phase binary chromosomes are obtained by Bit Plane Slicing (BPS). Initial population in GA includes rows and columns of the input image. Instead of subjective selection of parents from this initial population, a random generator with predefined key is utilized. It is necessary to decrypt the coded image and reconstruct the initial input image. Fitness function is defined as average of transition from 0 to 1 in LBP image and histogram uniformity in modification and diffusion phases, respectively. Randomness of the encrypted image is measured by entropy, correlation coefficients and histogram analysis. Experimental results show that the proposed method is fast enough and can be used effectively for image encryption.

Keywords: correlation coefficients, genetic algorithm, image encryption, image entropy

Procedia PDF Downloads 301
3285 Data Hiding in Gray Image Using ASCII Value and Scanning Technique

Authors: R. K. Pateriya, Jyoti Bharti

Abstract:

This paper presents an approach for data hiding methods which provides a secret communication between sender and receiver. The data is hidden in gray-scale images and the boundary of gray-scale image is used to store the mapping information. In this an approach data is in ASCII format and the mapping is in between ASCII value of hidden message and pixel value of cover image, since pixel value of an image as well as ASCII value is in range of 0 to 255 and this mapping information is occupying only 1 bit per character of hidden message as compared to 8 bit per character thus maintaining good quality of stego image.

Keywords: ASCII value, cover image, PSNR, pixel value, stego image, secret message

Procedia PDF Downloads 383
3284 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks

Authors: Amal Khalifa, Nicolas Vana Santos

Abstract:

Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.

Keywords: deep learning, steganography, image, discrete wavelet transform, fusion

Procedia PDF Downloads 40
3283 Image Segmentation Techniques: Review

Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo

Abstract:

Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.

Keywords: clustering-based, convolution-network, edge-based, region-growing

Procedia PDF Downloads 52
3282 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network

Authors: Pawan Kumar Mishra, Ganesh Singh Bisht

Abstract:

Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.

Keywords: resolution, deep-learning, neural network, de-blurring

Procedia PDF Downloads 481
3281 High Secure Data Hiding Using Cropping Image and Least Significant Bit Steganography

Authors: Khalid A. Al-Afandy, El-Sayyed El-Rabaie, Osama Salah, Ahmed El-Mhalaway

Abstract:

This paper presents a high secure data hiding technique using image cropping and Least Significant Bit (LSB) steganography. The predefined certain secret coordinate crops will be extracted from the cover image. The secret text message will be divided into sections. These sections quantity is equal the image crops quantity. Each section from the secret text message will embed into an image crop with a secret sequence using LSB technique. The embedding is done using the cover image color channels. Stego image is given by reassembling the image and the stego crops. The results of the technique will be compared to the other state of art techniques. Evaluation is based on visualization to detect any degradation of stego image, the difficulty of extracting the embedded data by any unauthorized viewer, Peak Signal-to-Noise Ratio of stego image (PSNR), and the embedding algorithm CPU time. Experimental results ensure that the proposed technique is more secure compared with the other traditional techniques.

Keywords: steganography, stego, LSB, crop

Procedia PDF Downloads 239
3280 Detecting Tomato Flowers in Greenhouses Using Computer Vision

Authors: Dor Oppenheim, Yael Edan, Guy Shani

Abstract:

This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.

Keywords: agricultural engineering, image processing, computer vision, flower detection

Procedia PDF Downloads 293
3279 Secure E-Pay System Using Steganography and Visual Cryptography

Authors: K. Suganya Devi, P. Srinivasan, M. P. Vaishnave, G. Arutperumjothi

Abstract:

Today’s internet world is highly prone to various online attacks, of which the most harmful attack is phishing. The attackers host the fake websites which are very similar and look alike. We propose an image based authentication using steganography and visual cryptography to prevent phishing. This paper presents a secure steganographic technique for true color (RGB) images and uses Discrete Cosine Transform to compress the images. The proposed method hides the secret data inside the cover image. The use of visual cryptography is to preserve the privacy of an image by decomposing the original image into two shares. Original image can be identified only when both qualified shares are simultaneously available. Individual share does not reveal the identity of the original image. Thus, the existence of the secret message is hard to be detected by the RS steganalysis.

Keywords: image security, random LSB, steganography, visual cryptography

Procedia PDF Downloads 300
3278 Noise Detection Algorithm for Skin Disease Image Identification

Authors: Minakshi Mainaji Sonawane, Bharti W. Gawali, Sudhir Mendhekar, Ramesh R. Manza

Abstract:

People's lives and health are severely impacted by skin diseases. A new study proposes an effective method for identifying the different forms of skin diseases. Image denoising is a technique for improving image quality after it has been harmed by noise. The proposed technique is based on the usage of the wavelet transform. Wavelet transform is the best method for analyzing the image due to the ability to split the image into the sub-band, which has been used to estimate the noise ratio at the noisy image. According to experimental results, the proposed method presents the best values for MSE, PSNR, and Entropy for denoised images. we can found in Also, by using different types of wavelet transform filters is make the proposed approach can obtain the best results 23.13, 20.08, 50.7 for the image denoising process

Keywords: MSE, PSNR, entropy, Gaussian filter, DWT

Procedia PDF Downloads 188
3277 Liver Lesion Extraction with Fuzzy Thresholding in Contrast Enhanced Ultrasound Images

Authors: Abder-Rahman Ali, Adélaïde Albouy-Kissi, Manuel Grand-Brochier, Viviane Ladan-Marcus, Christine Hoeffl, Claude Marcus, Antoine Vacavant, Jean-Yves Boire

Abstract:

In this paper, we present a new segmentation approach for focal liver lesions in contrast enhanced ultrasound imaging. This approach, based on a two-cluster Fuzzy C-Means methodology, considers type-II fuzzy sets to handle uncertainty due to the image modality (presence of speckle noise, low contrast, etc.), and to calculate the optimum inter-cluster threshold. Fine boundaries are detected by a local recursive merging of ambiguous pixels. The method has been tested on a representative database. Compared to both Otsu and type-I Fuzzy C-Means techniques, the proposed method significantly reduces the segmentation errors.

Keywords: defuzzification, fuzzy clustering, image segmentation, type-II fuzzy sets

Procedia PDF Downloads 453
3276 Red Green Blue Image Encryption Based on Paillier Cryptographic System

Authors: Mamadou I. Wade, Henry C. Ogworonjo, Madiha Gul, Mandoye Ndoye, Mohamed Chouikha, Wayne Patterson

Abstract:

In this paper, we present a novel application of the Paillier cryptographic system to the encryption of RGB (Red Green Blue) images. In this method, an RGB image is first separated into its constituent channel images, and the Paillier encryption function is applied to each of the channels pixel intensity values. Next, the encrypted image is combined and compressed if necessary before being transmitted through an unsecured communication channel. The transmitted image is subsequently recovered by a decryption process. We performed a series of security and performance analyses to the recovered images in order to verify their robustness to security attack. The results show that the proposed image encryption scheme produces highly secured encrypted images.

Keywords: image encryption, Paillier cryptographic system, RBG image encryption, Paillier

Procedia PDF Downloads 204
3275 An Object-Based Image Resizing Approach

Authors: Chin-Chen Chang, I-Ta Lee, Tsung-Ta Ke, Wen-Kai Tai

Abstract:

Common methods for resizing image size include scaling and cropping. However, these two approaches have some quality problems for reduced images. In this paper, we propose an image resizing algorithm by separating the main objects and the background. First, we extract two feature maps, namely, an enhanced visual saliency map and an improved gradient map from an input image. After that, we integrate these two feature maps to an importance map. Finally, we generate the target image using the importance map. The proposed approach can obtain desired results for a wide range of images.

Keywords: energy map, visual saliency, gradient map, seam carving

Procedia PDF Downloads 451
3274 Constructing White-Box Implementations Based on Threshold Shares and Composite Fields

Authors: Tingting Lin, Manfred von Willich, Dafu Lou, Phil Eisen

Abstract:

A white-box implementation of a cryptographic algorithm is a software implementation intended to resist extraction of the secret key by an adversary. To date, most of the white-box techniques are used to protect block cipher implementations. However, a large proportion of the white-box implementations are proven to be vulnerable to affine equivalence attacks and other algebraic attacks, as well as differential computation analysis (DCA). In this paper, we identify a class of block ciphers for which we propose a method of constructing white-box implementations. Our method is based on threshold implementations and operations in composite fields. The resulting implementations consist of lookup tables and few exclusive OR operations. All intermediate values (inputs and outputs of the lookup tables) are masked. The threshold implementation makes the distribution of the masked values uniform and independent of the original inputs, and the operations in composite fields reduce the size of the lookup tables. The white-box implementations can provide resistance against algebraic attacks and DCA-like attacks.

Keywords: white-box, block cipher, composite field, threshold implementation

Procedia PDF Downloads 126
3273 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: rough sets, rough neural networks, cellular automata, image processing

Procedia PDF Downloads 397
3272 A Proposal for an Excessivist Social Welfare Ordering

Authors: V. De Sandi

Abstract:

In this paper, we characterize a class of rank-weighted social welfare orderings that we call ”Excessivist.” The Excessivist Social Welfare Ordering (eSWO) judges incomes above a fixed threshold θ as detrimental to society. To accomplish this, the identification of a richness or affluence line is necessary. We employ a fixed, exogenous line of excess. We define an eSWF in the form of a weighted sum of individual’s income. This requires introducing n+1 vectors of weights, one for all possible numbers of individuals below the threshold. To do this, the paper introduces a slight modification of the class of rank weighted class of social welfare function. Indeed, in our excessivist social welfare ordering, we allow the weights to be both positive (for individuals below the line) and negative (for individuals above). Then, we introduce ethical concerns through an axiomatic approach. The following axioms are required: continuity above and below the threshold (Ca, Cb), anonymity (A), absolute aversion to excessive richness (AER), pigou dalton positive weights preserving transfer (PDwpT), sign rank preserving full comparability (SwpFC) and strong pareto below the threshold (SPb). Ca, Cb requires that small changes in two income distributions above and below θ do not lead to changes in their ordering. AER suggests that if two distributions are identical in any respect but for one individual above the threshold, who is richer in the first, then the second should be preferred by society. This means that we do not care about the waste of resources above the threshold; the priority is the reduction of excessive income. According to PDwpT, a transfer from a better-off individual to a worse-off individual despite their relative position to the threshold, without reversing their ranks, leads to an improved distribution if the number of individuals below the threshold is the same after the transfer or the number of individuals below the threshold has increased. SPb holds only for individuals below the threshold. The weakening of strong pareto and our ethics need to be justified; we support them through the notion of comparative egalitarianism and income as a source of power. SwpFC is necessary to ensure that, following a positive affine transformation, an individual does not become excessively rich in only one distribution, thereby reversing the ordering of the distributions. Given the axioms above, we can characterize the class of the eSWO, getting the following result through a proof by contradiction and exhaustion: Theorem 1. A social welfare ordering satisfies the axioms of continuity above and below the threshold, anonymity, sign rank preserving full comparability, aversion to excessive richness, Pigou Dalton positive weight preserving transfer, and strong pareto below the threshold, if and only if it is an Excessivist-social welfare ordering. A discussion about the implementation of different threshold lines reviewing the primary contributions in this field follows. What the commonly implemented social welfare functions have been overlooking is the concern for extreme richness at the top. The characterization of Excessivist Social Welfare Ordering, given the axioms above, aims to fill this gap.

Keywords: comparative egalitarianism, excess income, inequality aversion, social welfare ordering

Procedia PDF Downloads 24
3271 Improving Capability of Detecting Impulsive Noise

Authors: Farbod Rohani, Elyar Ghafoori, Matin Saeedkondori

Abstract:

Impulse noise is electromagnetic emission which generated by many house hold appliances that are attached to the electrical network. The main difficulty of impulsive noise (IN) elimination process from communication channels is to distinguish it from the transmitted signal and more importantly choosing the proper threshold bandwidth in order to eliminate the signal. Because of wide band property of impulsive noise, we present a novel method for setting the detection threshold, by taking advantage of the fact that impulsive noise bandwidth is usually wider than that of typical communication channels and specifically OFDM channel. After IN detection procedure, we apply simple windowing mechanisms to eliminate them from the communication channel.

Keywords: impulsive noise, OFDM channel, threshold detecting, windowing mechanisms

Procedia PDF Downloads 309
3270 Intelligent Grading System of Apple Using Neural Network Arbitration

Authors: Ebenezer Obaloluwa Olaniyi

Abstract:

In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.

Keywords: image processing, neural network, apple, intelligent system

Procedia PDF Downloads 368
3269 Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction

Authors: Georgi I. Petkov, Ivan I. Vankov, Yolina A. Petrova

Abstract:

A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction.

Keywords: analogy-making, categorization, learning of categories, abstraction, hierarchical structure

Procedia PDF Downloads 156
3268 Automatic Classification Using Dynamic Fuzzy C Means Algorithm and Mathematical Morphology: Application in 3D MRI Image

Authors: Abdelkhalek Bakkari

Abstract:

Image segmentation is a critical step in image processing and pattern recognition. In this paper, we proposed a new robust automatic image classification based on a dynamic fuzzy c-means algorithm and mathematical morphology. The proposed segmentation algorithm (DFCM_MM) has been applied to MR perfusion images. The obtained results show the validity and robustness of the proposed approach.

Keywords: segmentation, classification, dynamic, fuzzy c-means, MR image

Procedia PDF Downloads 439
3267 A Survey on Types of Noises and De-Noising Techniques

Authors: Amandeep Kaur

Abstract:

Digital Image processing is a fundamental tool to perform various operations on the digital images for pattern recognition, noise removal and feature extraction. In this paper noise removal technique has been described for various types of noises. This paper comprises discussion about various noises available in the image due to different environmental, accidental factors. In this paper, various de-noising approaches have been discussed that utilize different wavelets and filters for de-noising. By analyzing various papers on image de-noising we extract that wavelet based de-noise approaches are much effective as compared to others.

Keywords: de-noising techniques, edges, image, image processing

Procedia PDF Downloads 303
3266 The Threshold Values of Soil Water Index for Landslides on Country Road No.89

Authors: Ji-Yuan Lin, Yu-Ming Liou, Yi-Ting Chen, Chen-Syuan Lin

Abstract:

Soil water index obtained by tank model is now commonly used in soil and sand disaster alarm system in Japan. Comparing with the rainfall trigging index in Taiwan, the tank model is easy to predict the slope water content on large-scale landslide. Therefore, this study aims to estimate the threshold value of large-scale landslide using the soil water index Sixteen typhoons and heavy rainfall events, were selected to establish the, to relationship between landslide event and soil water index. Finally, the proposed threshold values for landslides on country road No.89 are suggested in this study. The study results show that 95% landslide cases occurred in soil water index more than 125mm, and 30% of the more serious slope failure occurred in the soil water index is greater than 250mm. Beside, this study speculates when soil water index more than 250mm and the difference value between second tank and third tank less than -25mm, it leads to large-scale landslide more probably.

Keywords: soil water index, tank model, landslide, threshold values

Procedia PDF Downloads 353