Search results for: hourly%20charge%20rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 141

Search results for: hourly%20charge%20rate

111 Application of Data Driven Based Models as Early Warning Tools of High Stream Flow Events and Floods

Authors: Mohammed Seyam, Faridah Othman, Ahmed El-Shafie

Abstract:

The early warning of high stream flow events (HSF) and floods is an important aspect in the management of surface water and rivers systems. This process can be performed using either process-based models or data driven-based models such as artificial intelligence (AI) techniques. The main goal of this study is to develop efficient AI-based model for predicting the real-time hourly stream flow (Q) and apply it as early warning tool of HSF and floods in the downstream area of the Selangor River basin, taken here as a paradigm of humid tropical rivers in Southeast Asia. The performance of AI-based models has been improved through the integration of the lag time (Lt) estimation in the modelling process. A total of 8753 patterns of Q, water level, and rainfall hourly records representing one-year period (2011) were utilized in the modelling process. Six hydrological scenarios have been arranged through hypothetical cases of input variables to investigate how the changes in RF intensity in upstream stations can lead formation of floods. The initial SF was changed for each scenario in order to include wide range of hydrological situations in this study. The performance evaluation of the developed AI-based model shows that high correlation coefficient (R) between the observed and predicted Q is achieved. The AI-based model has been successfully employed in early warning throughout the advance detection of the hydrological conditions that could lead to formations of floods and HSF, where represented by three levels of severity (i.e., alert, warning, and danger). Based on the results of the scenarios, reaching the danger level in the downstream area required high RF intensity in at least two upstream areas. According to results of applications, it can be concluded that AI-based models are beneficial tools to the local authorities for flood control and awareness.

Keywords: floods, stream flow, hydrological modelling, hydrology, artificial intelligence

Procedia PDF Downloads 220
110 Investigating the Indoor Air Quality of the Respiratory Care Wards

Authors: Yu-Wen Lin, Chin-Sheng Tang, Wan-Yi Chen

Abstract:

Various biological specimens, drugs, and chemicals exist in the hospital. The medical staffs and hypersensitive inpatients expose might expose to multiple hazards while they work or stay in the hospital. Therefore, the indoor air quality (IAQ) of the hospital should be paid more attention. Respiratory care wards (RCW) are responsible for caring the patients who cannot spontaneously breathe without the ventilators. The patients in RCW are easy to be infected. Compared to the bacteria concentrations of other hospital units, RCW came with higher values in other studies. This research monitored the IAQ of the RCW and checked the compliances of the indoor air quality standards of Taiwan Indoor Air Quality Act. Meanwhile, the influential factors of IAQ and the impacts of ventilator modules, with humidifier or with filter, were investigated. The IAQ of two five-bed wards and one nurse station of a RCW in a regional hospital were monitored. The monitoring was proceeded for 16 hours or 24 hours during the sampling days with a sampling frequency of 20 minutes per hour. The monitoring was performed for two days in a row and the AIQ of the RCW were measured for eight days in total. The concentrations of carbon dioxide (CO₂), carbon monoxide (CO), particulate matter (PM), nitrogen oxide (NOₓ), total volatile organic compounds (TVOCs), relative humidity (RH) and temperature were measured by direct reading instruments. The bioaerosol samples were taken hourly. The hourly air change rate (ACH) was calculated by measuring the air ventilation volume. Human activities were recorded during the sampling period. The linear mixed model (LMM) was applied to illustrate the impact factors of IAQ. The concentrations of CO, CO₂, PM, bacterial and fungi exceeded the Taiwan IAQ standards. The major factors affecting the concentrations of CO, PM₁ and PM₂.₅ were location and the number of inpatients. The significant factors to alter the CO₂ and TVOC concentrations were location and the numbers of in-and-out staff and inpatients. The number of in-and-out staff and the level of activity affected the PM₁₀ concentrations statistically. The level of activity and the numbers of in-and-out staff and inpatients are the significant factors in changing the bacteria and fungi concentrations. Different models of the patients’ ventilators did not affect the IAQ significantly. The results of LMM can be utilized to predict the pollutant concentrations under various environmental conditions. The results of this study would be a valuable reference for air quality management of RCW.

Keywords: respiratory care ward, indoor air quality, linear mixed model, bioaerosol

Procedia PDF Downloads 84
109 Causal Inference Engine between Continuous Emission Monitoring System Combined with Air Pollution Forecast Modeling

Authors: Yu-Wen Chen, Szu-Wei Huang, Chung-Hsiang Mu, Kelvin Cheng

Abstract:

This paper developed a data-driven based model to deal with the causality between the Continuous Emission Monitoring System (CEMS, by Environmental Protection Administration, Taiwan) in industrial factories, and the air quality around environment. Compared to the heavy burden of traditional numerical models of regional weather and air pollution simulation, the lightweight burden of the proposed model can provide forecasting hourly with current observations of weather, air pollution and emissions from factories. The observation data are included wind speed, wind direction, relative humidity, temperature and others. The observations can be collected real time from Open APIs of civil IoT Taiwan, which are sourced from 439 weather stations, 10,193 qualitative air stations, 77 national quantitative stations and 140 CEMS quantitative industrial factories. This study completed a causal inference engine and gave an air pollution forecasting for the next 12 hours related to local industrial factories. The outcomes of the pollution forecasting are produced hourly with a grid resolution of 1km*1km on IIoTC (Industrial Internet of Things Cloud) and saved in netCDF4 format. The elaborated procedures to generate forecasts comprise data recalibrating, outlier elimination, Kriging Interpolation and particle tracking and random walk techniques for the mechanisms of diffusion and advection. The solution of these equations reveals the causality between factories emission and the associated air pollution. Further, with the aid of installed real-time flue emission (Total Suspension Emission, TSP) sensors and the mentioned forecasted air pollution map, this study also disclosed the converting mechanism between the TSP and PM2.5/PM10 for different region and industrial characteristics, according to the long-term data observation and calibration. These different time-series qualitative and quantitative data which successfully achieved a causal inference engine in cloud for factory management control in practicable. Once the forecasted air quality for a region is marked as harmful, the correlated factories are notified and asked to suppress its operation and reduces emission in advance.

Keywords: continuous emission monitoring system, total suspension particulates, causal inference, air pollution forecast, IoT

Procedia PDF Downloads 55
108 Electrical Dault Detection of Photovoltaic System: A Short-Circuit Fault Case

Authors: Moustapha H. Ibrahim, Dahir Abdourahman

Abstract:

This document presents a short-circuit fault detection process in a photovoltaic (PV) system. The proposed method is developed in MATLAB/Simulink. It determines whatever the size of the installation number of the short circuit module. The proposed algorithm indicates the presence or absence of an abnormality on the power of the PV system through measures of hourly global irradiation, power output, and ambient temperature. In case a fault is detected, it displays the number of modules in a short circuit. This fault detection method has been successfully tested on two different PV installations.

Keywords: PV system, short-circuit, fault detection, modelling, MATLAB-Simulink

Procedia PDF Downloads 202
107 Kinetic Study of 1-Butene Isomerization over Hydrotalcite Catalyst

Authors: Sirada Sripinun

Abstract:

This work studied the isomerization of 1-butene over hydrotalcite catalyst. The experiments were conducted at various gas hourly space velocity (GHSV), reaction temperature, and feed concentration. No catalyst deactivation was observed over the reaction time of 16 hours. Two major reaction products were trans-2-butene and cis-2-butene. The reaction temperature played an important role on the reaction selectivity. At high operating temperatures, the selectivity of trans-2-butene was higher than the selectivity of cis-2-butene while it was opposite at a lower reaction temperature. In the range of operating conditions, the maximum conversion of 1-butene was found at 74% when T = 673 K and GHSV = 4 m3/h/kg-cat with trans- and cis-2-butene selectivities of 54% and 46% respectively. Finally, the kinetic parameters of the reaction were determined.

Keywords: hydrotalcite, isomerization, kinetic, 1-butene

Procedia PDF Downloads 359
106 The Catalytic Properties of PtSn/Al2O3 for Acetic Acid Hydrogenation

Authors: Mingchuan Zhou, Haitao Zhang, Hongfang Ma, Weiyong Ying

Abstract:

Alumina supported platinum and tin catalysts with different loadings of Pt and Sn were prepared and characterized by low temperature N2 adsorption/desorption, H2-temperature programed reduction and CO pulse chemisorption. Pt and Sn below 1% loading were suitable for acetic acid hydrogenation. The best performance over 0.75Pt1Sn/Al2O3 can reach 87.55% conversion of acetic acid and 47.39% selectivity of ethanol. The operating conditions of acetic acid hydrogenation over 1Pt1Sn/Al2O3 were investigated. High reaction temperature can enhance the conversion of acetic acid, but it decreased total selectivity of ethanol and acetyl acetate. High pressure and low weight hourly space velocity were beneficial to both conversion of acetic acid and selectivity to ethanol.

Keywords: acetic acid, hydrogenation, operating condition, PtSn

Procedia PDF Downloads 324
105 Retrieval of Aerosol Optical Depth and Correlation Analysis of PM2.5 Based on GF-1 Wide Field of View Images

Authors: Bo Wang

Abstract:

This paper proposes a method that can estimate PM2.5 by the images of GF-1 Satellite that called WFOV images (Wide Field of View). AOD (Aerosol Optical Depth) over land surfaces was retrieved in Shanghai area based on DDV (Dark Dense Vegetation) method. PM2.5 information, gathered from ground monitoring stations hourly, was fitted with AOD using different polynomial coefficients, and then the correlation coefficient between them was calculated. The results showed that, the GF-1 WFOV images can meet the requirement of retrieving AOD, and the correlation coefficient between the retrieved AOD and PM2.5 was high. If more detailed and comprehensive data is provided, the accuracy could be improved and the parameters can be more precise in the future.

Keywords: remote sensing retrieve, PM 2.5, GF-1, aerosol optical depth

Procedia PDF Downloads 217
104 Gender Discrimination and Pay Gap on Tourism Labor Market

Authors: Alka Obadić

Abstract:

The research concentrates on the role of tourism in generating female employment and on impact of gender discrimination in tourism sector. Unfortunately, in many countries there are still some barriers to the inclusion of women at all hierarchical levels of tourism labor market. Research analysis focuses on EU countries where tourism is a main employer of women. The analysis shows that women represent over third persons employed in the non-financial business economy and almost two thirds in core tourism activities. Women's gross hourly earnings in accommodation and food services were below those of men in the European Union and only countries who recorded increase of gender pay gap from the beginning of crisis are Bulgaria and Croatia. Women in tourism industry are still overrepresented in lower status jobs with fewer opportunities for career progression and are often treated unequally.

Keywords: employment, gender discrimination, tourism, women’s participation

Procedia PDF Downloads 732
103 Use of GIS and Remote Sensing for Calculating the Installable Photovoltaic and Thermal Power on All the Roofs of the City of Aix-en-Provence, France

Authors: Sofiane Bourchak, Sébastien Bridier

Abstract:

The objective of this study is to show how to calculate and map solar energy’s quantity (instantaneous and accumulated global solar radiation during the year) available on roofs in the city Aix-en-Provence which has a population of 140,000 inhabitants. The result is a geographic information system (GIS) layer, which represents hourly and monthly the production of solar energy on roofs throughout the year. Solar energy professionals can use it to optimize implementations and to size energy production systems. The results are presented as a set of maps, tables and histograms in order to determine the most effective costs in Aix-en-Provence in terms of photovoltaic power (electricity) and thermal power (hot water).

Keywords: geographic information system, photovoltaic, thermal, solar potential, solar radiation

Procedia PDF Downloads 401
102 Statistical Estimation of Ionospheric Energy Dissipation Using ØStgaard's Empirical Relation

Authors: M. A. Ahmadu, S. S. Rabia

Abstract:

During the past few decades, energy dissipation in the ionosphere resulting from the geomagnetic activity has caused an increasing number of major disruptions of important power and communication services, malfunctions and loss of expensive facilities. Here, the electron precipitation energy, w(ep) and joule heating energy, w(jh) was used in the computation of this dissipation using Østgaard’s empirical relation from hourly geomagnetic indices of 2012, under the assumption that the magnetosphere does not store any energy, so that at the beginning of the activity t1=0 and end at t2=t, the statistical results obtained show that ionospheric dissipation varies month to month, day to day and hour to hour and estimated with a value ~3.6 w(ep), which is in agreement with experimental result.

Keywords: Ostgaard's, ionospheric dissipation, joule heating, electron precipitation, geomagnetic indices, empirical relation

Procedia PDF Downloads 262
101 Reasons of Change in Security Prices and Price Volatility: An Analysis of the European Carbon Futures Market

Authors: Boulis M. Ibrahim, Iordanis A. Kalaitzoglou

Abstract:

A micro structural pricing model is proposed in which price components account for learning by incorporating changing expectations of the trading intensity and the risk level of incoming trades. An analysis of European carbon futures transactions finds expected trading intensity to increase the information component and decrease the liquidity component of price changes, but at different rates. Among the results, the expected persistence in trading intensity explains the majority of the auto correlations in the level and the conditional volatility of price changes, helps predict hourly patterns in the bid–ask spread and differentiates between the impact of buy versus sell and continuing versus reversing trades.

Keywords: CO2 emission allowances, market microstructure, duration, price discovery

Procedia PDF Downloads 370
100 High Productivity Fed-Batch Process for Biosurfactant Production for Enhanced Oil Recovery Applications

Authors: G. A. Amin, A. D. Al-Talhi

Abstract:

The bacterium B. subtilis produced surfactin in conventional batch culture as a growth associated product and a growth rate (0.4 h-1). A fed-batch process was developed and the fermentative substrate and other nutrients were fed on hourly basis and according to the growth rate of the bacterium. Conversion of different quantities of Maldex-15 into surfactin was investigated in five different fermentation runs. In all runs, most of Maldex-15 was consumed and converted into surfactin and cell biomass with appreciable efficiencies. The best results were obtained with fermentation run supplied with 200 g Maldex-15. Up to 35.4 g.l-1 of surfactin and cell biomass of 30.2 g.l-1 were achieved in 12 hrs. Also, markedly substrate yield of 0.269 g/g and volumetric reactor productivity of 2.61 g.1-1.h-1 were obtained confirming the establishment of a cost effective commercial surfactin production.

Keywords: Bacillus subtilis, biosurfactant, exponentially fed-batch fermentation, surfactin

Procedia PDF Downloads 505
99 Monitoring CO2 and H2S Emission in Live Austrian and UK Concrete Sewer Pipes

Authors: Anna Romanova, Morteza A. Alani

Abstract:

Corrosion of concrete sewer pipes induced by sulfuric acid is an acknowledged problem and a ticking time-bomb to sewer operators. Whilst the chemical reaction of the corrosion process is well-understood, the indirect roles of other parameters in the corrosion process which are found in sewer environment are not highly reflected on. This paper reports on a field studies undertaken in Austria and United Kingdom, where the parameters of temperature, pH, H2S and CO2 were monitored over a period of time. The study establishes that (i) effluent temperature and pH have similar daily pattern and peak times, When examined in minutes scale, (ii) H2S and CO2 have an identical hourly pattern, (iii) H2S instant or shifted relation to effluent temperature is governed by the root mean square value of CO2.

Keywords: concrete corrosion, carbon dioxide, hydrogen sulphide, sewer pipe, sulfuric acid

Procedia PDF Downloads 283
98 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.

Keywords: deep learning network, smart metering, water end use, water-energy data

Procedia PDF Downloads 275
97 Quantifying the Effects of Canopy Cover and Cover Crop Species on Water Use Partitioning in Micro-Sprinkler Irrigated Orchards in South Africa

Authors: Zanele Ntshidi, Sebinasi Dzikiti, Dominic Mazvimavi

Abstract:

South Africa is a dry country and yet it is ranked as the 8th largest exporter of fresh apples (Malus Domestica) globally. Prime apple producing regions are in the Eastern and Western Cape Provinces of the country where all the fruit is grown under irrigation. Climate change models predict increasingly drier future conditions in these regions and the frequency and severity of droughts is expected to increase. For the sustainability and growth of the fruit industry it is important to minimize non-beneficial water losses from the orchard floor. The aims of this study were firstly to compare the water use of cover crop species used in South African orchards for which there is currently no information. The second aim was to investigate how orchard water use (evapotranspiration) was partitioned into beneficial (tree transpiration) and non-beneficial (orchard floor evaporation) water uses for micro-sprinkler irrigated orchards with different canopy covers. This information is important in order to explore opportunities to minimize non-beneficial water losses. Six cover crop species (four exotic and two indigenous) were grown in 2 L pots in a greenhouse. Cover crop transpiration was measured using the gravimetric method on clear days. To establish how water use was partitioned in orchards, evapotranspiration (ET) was measured using an open path eddy covariance system, while tree transpiration was measured hourly throughout the season (October to June) on six trees per orchard using the heat ratio sap flow method. On selected clear days, soil evaporation was measured hourly from sunrise to sunset using six micro-lysimeters situated at different wet/dry and sun/shade positions on the orchard floor. Transpiration of cover crops was measured using miniature (2 mm Ø) stem heat balance sap flow gauges. The greenhouse study showed that exotic cover crops had significantly higher (p < 0.01) average transpiration rates (~3.7 L/m2/d) than the indigenous species (~ 2.2 L/m²/d). In young non-bearing orchards, orchard floor evaporative fluxes accounted for more than 60% of orchard ET while this ranged from 10 to 30% in mature orchards with a high canopy cover. While exotic cover crops are preferred by most farmers, this study shows that they use larger quantities of water than indigenous species. This in turn contributes to a larger orchard floor evaporation flux. In young orchards non-beneficial losses can be minimized by adopting drip or short range micro-sprinkler methods that reduce the wetted soil fraction thereby conserving water.

Keywords: evapotranspiration, sap flow, soil evaporation, transpiration

Procedia PDF Downloads 363
96 A Study on Kinetic of Nitrous Oxide Catalytic Decomposition over CuO/HZSM-5

Authors: Y. J. Song, Q. S. Xu, X. C. Wang, H. Wang, C. Q. Li

Abstract:

The catalyst of copper oxide loaded on HZSM-5 was developed for nitrous oxide (N₂O) direct decomposition. The kinetic of nitrous oxide decomposition was studied for CuO/HZSM-5 catalyst prepared by incipient wetness impregnation method. The external and internal diffusion of catalytic reaction were considered in the investigation. Experiment results indicated that the external diffusion was basically eliminated when the reaction gas mixture gas hourly space velocity (GHSV) was higher than 9000h⁻¹ and the influence of the internal diffusion was negligible when the particle size of the catalyst CuO/HZSM-5 was small than 40-60 mesh. The experiment results showed that the kinetic of catalytic decomposition of N₂O was a first-order reaction and the activation energy and the pre-factor of the kinetic equation were 115.15kJ/mol and of 1.6×109, respectively.

Keywords: catalytic decomposition, CuO/HZSM-5, kinetic, nitrous oxide

Procedia PDF Downloads 146
95 Distributional and Developmental Analysis of PM2.5 in Beijing, China

Authors: Alexander K. Guo

Abstract:

PM2.5 poses a large threat to people’s health and the environment and is an issue of large concern in Beijing, brought to the attention of the government by the media. In addition, both the United States Embassy in Beijing and the government of China have increased monitoring of PM2.5 in recent years, and have made real-time data available to the public. This report utilizes hourly historical data (2008-2016) from the U.S. Embassy in Beijing for the first time. The first objective was to attempt to fit probability distributions to the data to better predict a number of days exceeding the standard, and the second was to uncover any yearly, seasonal, monthly, daily, and hourly patterns and trends that may arise to better understand of air control policy. In these data, 66,650 hours and 2687 days provided valid data. Lognormal, gamma, and Weibull distributions were fit to the data through an estimation of parameters. The Chi-squared test was employed to compare the actual data with the fitted distributions. The data were used to uncover trends, patterns, and improvements in PM2.5 concentration over the period of time with valid data in addition to specific periods of time that received large amounts of media attention, analyzed to gain a better understanding of causes of air pollution. The data show a clear indication that Beijing’s air quality is unhealthy, with an average of 94.07µg/m3 across all 66,650 hours with valid data. It was found that no distribution fit the entire dataset of all 2687 days well, but each of the three above distribution types was optimal in at least one of the yearly data sets, with the lognormal distribution found to fit recent years better. An improvement in air quality beginning in 2014 was discovered, with the first five months of 2016 reporting an average PM2.5 concentration that is 23.8% lower than the average of the same period in all years, perhaps the result of various new pollution-control policies. It was also found that the winter and fall months contained more days in both good and extremely polluted categories, leading to a higher average but a comparable median in these months. Additionally, the evening hours, especially in the winter, reported much higher PM2.5 concentrations than the afternoon hours, possibly due to the prohibition of trucks in the city in the daytime and the increased use of coal for heating in the colder months when residents are home in the evening. Lastly, through analysis of special intervals that attracted media attention for either unnaturally good or bad air quality, the government’s temporary pollution control measures, such as more intensive road-space rationing and factory closures, are shown to be effective. In summary, air quality in Beijing is improving steadily and do follow standard probability distributions to an extent, but still needs improvement. Analysis will be updated when new data become available.

Keywords: Beijing, distribution, patterns, pm2.5, trends

Procedia PDF Downloads 219
94 Remote Sensing Study of Wind Energy Potential in Agsu District

Authors: U. F. Mammadova

Abstract:

Natural resources is the main self-supplying way which is being studied in the paper. Ecologically clean and independent clean energy stock is wind one. This potential is first studied by applying remote sensing way. In any coordinate of the district, wind energy potential has been determined by measuring the potential by applying radar technique which gives a possibility to reveal 2 D view. At several heights, including 10,50,100,150,200 ms, the measurements have been realized. The achievable power generation for m2 in the district was calculated. Daily, hourly, and monthly wind energy potential data were graphed and schemed in the paper. The energy, environmental, and economic advantages of wind energy for the Agsu district were investigated by analyzing radar spectral measurements after the remote sensing process.

Keywords: wind potential, spectral radar analysis, ecological clean energy, ecological safety

Procedia PDF Downloads 55
93 Assessment of the Photovoltaic and Solar Thermal Potential Installation Area on Residential Buildings: Case Study of Amman, Jordan

Authors: Jenan Abu Qadourah

Abstract:

The suitable surface areas for the ST and PV installation are determined based on incident solar irradiation on different surfaces, shading analysis and suitable architectural area for integration considering limitations due to the constructions, available surfaces area and use of the available surfaces for other purposes. The incident solar radiation on the building surfaces and the building solar exposure analysis of the location of Amman, Jordan, is performed with Autodesk Ecotect analysis 2011 simulation software. The building model geometry within the typical urban context is created in “SketchUp,” which is then imported into Ecotect. The hourly climatic data of Amman, Jordan selected are the same ones used for the building simulation in IDA ICE and Polysun simulation software.

Keywords: photovoltaic, solar thermal, solar incident, simulation, building façade, solar potential

Procedia PDF Downloads 108
92 Smart Grid Simulator

Authors: Ursachi Andrei

Abstract:

The Smart Grid Simulator is a computer software based on advanced algorithms which has as the main purpose to lower the energy bill in the most optimized price efficient way as possible for private households, companies or energy providers. It combines the energy provided by a number of solar modules and wind turbines with the consumption of one household or a cluster of nearby households and information regarding weather conditions and energy prices in order to predict the amount of energy that can be produced by renewable energy sources and the amount of energy that will be bought from the distributor for the following day. The user of the system will not only be able to minimize his expenditures on energy fractures, but also he will be informed about his hourly consumption, electricity prices fluctuation and money spent for energy bought as well as how much money he saved each day and since he installed the system. The paper outlines the algorithm that supports the Smart Grid Simulator idea and presents preliminary test results that support the discussion and implementation of the system.

Keywords: smart grid, sustainable energy, applied science, renewable energy sources

Procedia PDF Downloads 316
91 Indoor and Outdoor Concentration of PM₁₀, PM₂.₅ and PM₁ in Residential Building and Evaluation of Negative Air Ions (NAIs) in Indoor PM Removal

Authors: Hossein Arfaeinia, Azam Nadali, Zahra Asadgol, Mohammad Fahiminia

Abstract:

Indoor and outdoor particulate matters (PM) were monitored in 20 residential buildings in a two-part study. In part I, the levels of indoor and outdoor PM₁₀, PM₂.₅ and PM₁ was measured using real time GRIMM dust monitors. In part II, the effect of negative air ions (NAIs) method was investigated on the reduction of indoor concentration of PM in these residential buildings. Hourly average concentration and standard deviation (SD) of PM₁₀ in indoor and outdoor at residential buildings were 90.1 ± 33.5 and 63.5 ± 27.4 µg/ m3, respectively. Indoor and outdoor concentrations of PM₂.₅ in residential buildings were 49.5 ± 18.2 and 39.4± 18.1 µg/ m3 and for PM₁ the concentrations were 6.5 ± 10.1and 4.3 ± 7.7 µg/ m3, respectively. Indoor/outdoor (I/O) ratios and concentrations of all size fractions of PM were strongly correlated with wind speed and temperature whereas a good relationship was not observed between humidity and I/O ratios of PM. We estimated that nearly 71.47 % of PM₁₀, 79.86 % of PM₂.₅ and of 61.25 % of PM₁ in indoor of residential buildings can be removed by negative air ions.

Keywords: particle matter (PM), indoor air, negative air ions (NAIs), residential building

Procedia PDF Downloads 222
90 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: building energy management, machine learning, operation planning, simulation-based optimization

Procedia PDF Downloads 294
89 A Comparison between Modelled and Actual Thermal Performance of Load Bearing Rammed Earth Walls in Egypt

Authors: H. Hafez, A. Mekkawy, R. Rostom

Abstract:

Around 10% of the world’s CO₂ emissions could be attributed to the operational energy of buildings; that is why more research is directed towards the use of rammed earth walls which is claimed to have enhanced thermal properties compared to conventional building materials. The objective of this paper is to outline how the thermal performance of rammed earth walls compares to conventional reinforced concrete skeleton and red brick in-fill walls. For this sake, the indoor temperature and relative humidity of a classroom built with rammed earth walls and a vaulted red brick roof in the area of Behbeit, Giza, Egypt were measured hourly over 6 months using smart sensors. These parameters for the rammed earth walls were later also compared against the values obtained using a 'DesignBuilder v5' model to verify the model assumptions. The thermal insulation of rammed earth walls was found to be 30% better than this of the redbrick infill, and the recorded data were found to be almost 90% similar to the modelled values.

Keywords: rammed earth, thermal insulation, indoor air quality, design builder

Procedia PDF Downloads 121
88 Energy Analysis of Seasonal Air Conditioning Demand of All Income Classes Using Bottom up Model in Pakistan

Authors: Saba Arif, Anam Nadeem, Roman Kalvin, Tanzeel Rashid, Burhan Ali, Juntakan Taweekun

Abstract:

Currently, the energy crisis is taking serious attention. Globally, industries and building are major share takers of energy. 72% of total global energy is consumed by residential houses, markets, and commercial building. Additionally, in appliances air conditioners are major consumer of electricity; about 60% energy is used for cooling purpose in houses due to HVAC units. Energy demand will aid in determining what changes will be needed whether it is the estimation of the required energy for households or instituting conservation measures. Bottom-up model is one of the most famous methods for forecasting. In current research bottom-up model of air conditioners' energy consumption in all income classes in comparison with seasonal variation and hourly consumption is calculated. By comparison of energy consumption of all income classes by usage of air conditioners, total consumption of actual demand and current availability can be seen.

Keywords: air conditioning, bottom up model, income classes, energy demand

Procedia PDF Downloads 215
87 Industrial and Environmental Safety in the Integrated Security Policy of the Industry: A Corporation and an Enterprise

Authors: Vladimir A. Grachev

Abstract:

Today, in the context of rapidly developing technosphere and hourly emerging new technologies, the industrial and environmental safety issue is ever more pressing. The article is devoted to the relationship of social, environmental, and industrial policies with industrial safety, occupational health and safety, environmental safety, and environmental protection. The author assesses the up-to-day situation through system analysis and on the basis of the existing practices. A complex system of the policies implementation without "gaps" and missing links ensures preservation of human lives, health and a favorable living environment. The author demonstrates that absence of an "environmental safety" high-priority link can lead to a significant loss of human lives and health and the global changes in the environment. The role of implementing the environmental policy of enterprises and organizations, and of economic sectors in the implementation of national environmental policy is shown. It was established that the system for implementing environmental policy should be based on a system analysis.

Keywords: environmental protection, environmental safety, industrial safety, occupational health and safety

Procedia PDF Downloads 182
86 Assessment of Pollution of the Rustavi City’s Atmosphere with Microaerosols

Authors: Natia Gigauri, Aleksandre Surmava

Abstract:

According to observational data, experimental measurements, and numerical modeling, is assessed pollution of one of the industrial centers of Georgia, Rustavi city’s atmosphere with microaerosols. Monthly, daily and hourly changes of the concentrations of PM2.5 and PM10 in the city atmosphere are analyzed. It is accepted that PM2.5 concentrations are always lower than PM10 concentrations, but their change curve is the same. In addition, it has been noted that the maximum concentrations of particles in the atmosphere of Rustavi city will be reached at any part of the day, which is determined by the total impact of the traffic flow and industrial facilities. By numerical modeling has calculated the influence of background western light air and gentle and fresh breeze on the distribution of PM particles in the atmosphere. Calculations showed that background light air and gentle breeze lead to an increase the concentrations of microaerosols in the city's atmosphere, while fresh breeze contribute to the dispersion of dusty clouds. As a result, the level of dust in the city is decreasing, but the distribution area is expanding.

Keywords: pollution, modelling, PM2.5, PM10, experimental measurement

Procedia PDF Downloads 59
85 Direct Conversion of Crude Oils into Petrochemicals under High Severity Conditions

Authors: Anaam H. Al-ShaikhAli, Mansour A. Al-Herz

Abstract:

The research leverages the proven HS-FCC technology to directly crack crude oils into petrochemical building blocks. Crude oils were subjected to an optimized hydro-processing process where metal contaminants and sulfur were reduced to an acceptable level for feeding the crudes into the HS-FCC technology. The hydro-processing is achieved through a fixed-bed reactor which is composed of 3 layers of catalysts. The crude oil is passed through a dementalization catalyst followed by a desulfurization catalyst and finally a de-aromatization catalyst. The hydroprocessing was conducted at an optimized liquid hourly space velocity (LHSV), temperature, and pressure for an optimal reduction of metals and sulfur from the crudes. The hydro-processed crudes were then fed into a micro activity testing (MAT) unit to simulate the HS-FCC technology. The catalytic cracking of crude oils was conducted over tailored catalyst formulations under an optimized catalyst/oil ratio and cracking temperature for optimal production of total light olefins.

Keywords: petrochemical, catalytic cracking, catalyst synthesis, HS-FCC technology

Procedia PDF Downloads 57
84 Increasing System Adequacy Using Integration of Pumped Storage: Renewable Energy to Reduce Thermal Power Generations Towards RE100 Target, Thailand

Authors: Mathuravech Thanaphon, Thephasit Nat

Abstract:

The Electricity Generating Authority of Thailand (EGAT) is focusing on expanding its pumped storage hydropower (PSH) capacity to increase the reliability of the system during peak demand and allow for greater integration of renewables. To achieve this requirement, Thailand will have to double its current renewable electricity production. To address the challenges of balancing supply and demand in the grid with increasing levels of RE penetration, as well as rising peak demand, EGAT has already been studying the potential for additional PSH capacity for several years to enable an increased share of RE and replace existing fossil fuel-fired generation. In addition, the role that pumped-storage hydropower would play in fulfilling multiple grid functions and renewable integration. The proposed sites for new PSH would help increase the reliability of power generation in Thailand. However, most of the electricity generation will come from RE, chiefly wind and photovoltaic, and significant additional Energy Storage capacity will be needed. In this paper, the impact of integrating the PSH system on the adequacy of renewable rich power generating systems to reduce the thermal power generating units is investigated. The variations of system adequacy indices are analyzed for different PSH-renewables capacities and storage levels. Power Development Plan 2018 rev.1 (PDP2018 rev.1), which is modified by integrating a six-new PSH system and RE planning and development aftermath in 2030, is the very challenge. The system adequacy indices through power generation are obtained using Multi-Objective Genetic Algorithm (MOGA) Optimization. MOGA is a probabilistic heuristic and stochastic algorithm that is able to find the global minima, which have the advantage that the fitness function does not necessarily require the gradient. In this sense, the method is more flexible in solving reliability optimization problems for a composite power system. The optimization with hourly time step takes years of planning horizon much larger than the weekly horizon that usually sets the scheduling studies. The objective function is to be optimized to maximize RE energy generation, minimize energy imbalances, and minimize thermal power generation using MATLAB. The PDP2018 rev.1 was set to be simulated based on its planned capacity stepping into 2030 and 2050. Therefore, the four main scenario analyses are conducted as the target of renewables share: 1) Business-As-Usual (BAU), 2) National Targets (30% RE in 2030), 3) Carbon Neutrality Targets (50% RE in 2050), and 5) 100% RE or full-decarbonization. According to the results, the generating system adequacy is significantly affected by both PSH-RE and Thermal units. When a PSH is integrated, it can provide hourly capacity to the power system as well as better allocate renewable energy generation to reduce thermal generations and improve system reliability. These results show that a significant level of reliability improvement can be obtained by PSH, especially in renewable-rich power systems.

Keywords: pumped storage hydropower, renewable energy integration, system adequacy, power development planning, RE100, multi-objective genetic algorithm

Procedia PDF Downloads 29
83 Runoff Simulation by Using WetSpa Model in Garmabrood Watershed of Mazandaran Province, Iran

Authors: Mohammad Reza Dahmardeh Ghaleno, Mohammad Nohtani, Saeedeh Khaledi

Abstract:

Hydrological models are applied to simulation and prediction floods in watersheds. WetSpa is a distributed, continuous and physically model with daily or hourly time step that explains of precipitation, runoff and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave Equation which depend on the slope, velocity and flow route characteristics. Garmabrood watershed located in Mazandaran province in Iran and passing over coordinates 53° 10´ 55" to 53° 38´ 20" E and 36° 06´ 45" to 36° 25´ 30"N. The area of the catchment is about 1133 km2 and elevations in the catchment range from 213 to 3136 m at the outlet, with average slope of 25.77 %. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe Model Efficiency Coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 61% and 83.17 % respectively.

Keywords: watershed simulation, WetSpa, runoff, flood prediction

Procedia PDF Downloads 309
82 Measured versus Default Interstate Traffic Data in New Mexico, USA

Authors: M. A. Hasan, M. R. Islam, R. A. Tarefder

Abstract:

This study investigates how the site specific traffic data differs from the Mechanistic Empirical Pavement Design Software default values. Two Weigh-in-Motion (WIM) stations were installed in Interstate-40 (I-40) and Interstate-25 (I-25) to developed site specific data. A computer program named WIM Data Analysis Software (WIMDAS) was developed using Microsoft C-Sharp (.Net) for quality checking and processing of raw WIM data. A complete year data from November 2013 to October 2014 was analyzed using the developed WIM Data Analysis Program. After that, the vehicle class distribution, directional distribution, lane distribution, monthly adjustment factor, hourly distribution, axle load spectra, average number of axle per vehicle, axle spacing, lateral wander distribution, and wheelbase distribution were calculated. Then a comparative study was done between measured data and AASHTOWare default values. It was found that the measured general traffic inputs for I-40 and I-25 significantly differ from the default values.

Keywords: AASHTOWare, traffic, weigh-in-motion, axle load distribution

Procedia PDF Downloads 314