Search results for: bioaerosol
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8

Search results for: bioaerosol

8 Assessment of Bioaerosol and Microbial Volatile Organic Compounds in Different Sections of Library

Authors: Himanshu Lal, Bipasha Ghosh, Arun Srivastava

Abstract:

A pilot study of indoor air quality in terms of bioaerosol (fungus and bacteria) and few selective microbial volatile organic compounds (MVOCs) was carried out in different indoor sections of a library for two seasons, namely monsoon and post monsoon. Bioaerosol sampling was carried out using Anderson six stage viable sampler at a flow rate of 28.3 L/min while MVOCs were collected on activated charcoal tubes ORBOTM 90 Carboxen 564.Collected MVOCs were desorbed using carbon disulphide (CS2) and analysed by GC-FID. Microscopic identification for fungus was only carried out. Surface dust was collected by sterilised buds and cultured to identify fungal contaminants. Unlike bacterial size distribution, fungal bioaerosol concentration was found to be highest in the fourth stage in different sections of the library. In post monsoon season both fungal bioaerosol (710 to 3292cfu/m3) and bacterial bioaerosol (298 to 1475cfu/m3) were fund at much greater concentration than in monsoon. In monsoon season unlike post monsoon, I/O ratio for both the bioaerosol fractions was more than one. Rain washout could be the reason of lower outdoor concentration in monsoon season. On the contrary most of the MVOCs namely 1-hexene, 1-pentanol and 1-octen-3-ol were found in the monsoon season instead of post monsoon season with the highest being 1-hexene with 7.09µg/m3 concentration. Among the six identified fungal bioaerosol Aspergillus, Cladosporium and Penicillium were found in maximum concentration while Aspergillus niger, Curvuleria lunata, Cladosporium cladosporioides and Penicillium sp., was indentified in surface dust samples. According to regression analysis apart from environmental factors other factors also played an important role. Thus apart from outdoor infiltration and human sources, accumulated surface dust mostly on organic materials like books, wooden furniture and racks can be attributed to being one of the major sources of both fungal bioaerosols as well as MVOCs found in the library.

Keywords: bacteria, Fungi, indoor air, MVOCs

Procedia PDF Downloads 279
7 Online Monitoring of Airborne Bioaerosols Released from a Composting, Green Waste Site

Authors: John Sodeau, David O'Connor, Shane Daly, Stig Hellebust

Abstract:

This study is the first to employ the online WIBS (Waveband Integrated Biosensor Sensor) technique for the monitoring of bioaerosol emissions and non-fluorescing “dust” released from a composting/green waste site. The purpose of the research was to provide a “proof of principle” for using WIBS to monitor such a location continually over days and nights in order to construct comparative “bioaerosol site profiles”. Current impaction/culturing methods take many days to achieve results available by the WIBS technique in seconds.The real-time data obtained was then used to assess variations of the bioaerosol counts as a function of size, “shape”, site location, working activity levels, time of day, relative humidity, wind speeds and wind directions. Three short campaigns were undertaken, one classified as a “light” workload period, another as a “heavy” workload period and finally a weekend when the site was closed. One main bioaerosol size regime was found to predominate: 0.5 micron to 3 micron with morphologies ranging from elongated to elipsoidal/spherical. The real-time number-concentration data were consistent with an Andersen sampling protocol that was employed at the site. The number-concentrations of fluorescent particles as a proportion of total particles counted amounted, on average, to ~1% for the “light” workday period, ~7% for the “heavy” workday period and ~18% for the weekend. The bioaerosol release profiles at the weekend were considerably different from those monitored during the working weekdays.

Keywords: bioaerosols, composting, fluorescence, particle counting in real-time

Procedia PDF Downloads 324
6 Evaluation of Negative Air Ions in Bioaerosol Removal: Indoor Concentration of Airborne Bacterial and Fungal in Residential Building in Qom City, Iran

Authors: Z. Asadgol, A. Nadali, H. Arfaeinia, M. Khalifeh Gholi, R. Fateh, M. Fahiminia

Abstract:

The present investigation was conducted to detect the type and concentrations of bacterial and fungal bioaerosols in one room (bedroom) of each selected residential building located in different regions of Qom during February 2015 (n=9) to July 2016 (n=11). Moreover, we evaluated the efficiency of negative air ions (NAIs) in bioaerosol reduction in indoor air in residential buildings. In the first step, the mean concentrations of bacterial and fungal in nine sampling sites evaluated in winter were 744 and 579 colony forming units (CFU)/m3, while these values were 1628.6 and 231 CFU/m3 in the 11 sampling sites evaluated in summer, respectively. The most predominant genera between bacterial and fungal in all sampling sites were detected as Micrococcus spp. and Staphylococcus spp. and also, Aspergillus spp. and Penicillium spp., respectively. The 95% and 45% of sampling sites have bacterial and fungal concentrations over the recommended levels, respectively. In the removal step, we achieved a reduction with a range of 38% to 93% for bacterial genera and 25% to 100% for fungal genera by using NAIs. The results suggested that NAI is a highly effective, simple and efficient technique in reducing the bacterial and fungal concentration in the indoor air of residential buildings.

Keywords: bacterial, fungal, negative air ions (NAIs), indoor air, Iran

Procedia PDF Downloads 364
5 Investigating the Indoor Air Quality of the Respiratory Care Wards

Authors: Yu-Wen Lin, Chin-Sheng Tang, Wan-Yi Chen

Abstract:

Various biological specimens, drugs, and chemicals exist in the hospital. The medical staffs and hypersensitive inpatients expose might expose to multiple hazards while they work or stay in the hospital. Therefore, the indoor air quality (IAQ) of the hospital should be paid more attention. Respiratory care wards (RCW) are responsible for caring the patients who cannot spontaneously breathe without the ventilators. The patients in RCW are easy to be infected. Compared to the bacteria concentrations of other hospital units, RCW came with higher values in other studies. This research monitored the IAQ of the RCW and checked the compliances of the indoor air quality standards of Taiwan Indoor Air Quality Act. Meanwhile, the influential factors of IAQ and the impacts of ventilator modules, with humidifier or with filter, were investigated. The IAQ of two five-bed wards and one nurse station of a RCW in a regional hospital were monitored. The monitoring was proceeded for 16 hours or 24 hours during the sampling days with a sampling frequency of 20 minutes per hour. The monitoring was performed for two days in a row and the AIQ of the RCW were measured for eight days in total. The concentrations of carbon dioxide (CO₂), carbon monoxide (CO), particulate matter (PM), nitrogen oxide (NOₓ), total volatile organic compounds (TVOCs), relative humidity (RH) and temperature were measured by direct reading instruments. The bioaerosol samples were taken hourly. The hourly air change rate (ACH) was calculated by measuring the air ventilation volume. Human activities were recorded during the sampling period. The linear mixed model (LMM) was applied to illustrate the impact factors of IAQ. The concentrations of CO, CO₂, PM, bacterial and fungi exceeded the Taiwan IAQ standards. The major factors affecting the concentrations of CO, PM₁ and PM₂.₅ were location and the number of inpatients. The significant factors to alter the CO₂ and TVOC concentrations were location and the numbers of in-and-out staff and inpatients. The number of in-and-out staff and the level of activity affected the PM₁₀ concentrations statistically. The level of activity and the numbers of in-and-out staff and inpatients are the significant factors in changing the bacteria and fungi concentrations. Different models of the patients’ ventilators did not affect the IAQ significantly. The results of LMM can be utilized to predict the pollutant concentrations under various environmental conditions. The results of this study would be a valuable reference for air quality management of RCW.

Keywords: respiratory care ward, indoor air quality, linear mixed model, bioaerosol

Procedia PDF Downloads 78
4 A Laser Instrument Rapid-E+ for Real-Time Measurements of Airborne Bioaerosols Such as Bacteria, Fungi, and Pollen

Authors: Minghui Zhang, Sirine Fkaier, Sabri Fernana, Svetlana Kiseleva, Denis Kiselev

Abstract:

The real-time identification of bacteria and fungi is difficult because they emit much weaker signals than pollen. In 2020, Plair developed Rapid-E+, which extends abilities of Rapid-E to detect smaller bioaerosols such as bacteria and fungal spores with diameters down to 0.3 µm, while keeping the similar or even better capability for measurements of large bioaerosols like pollen. Rapid-E+ enables simultaneous measurements of (1) time-resolved, polarization and angle dependent Mie scattering patterns, (2) fluorescence spectra resolved in 16 channels, and (3) fluorescence lifetime of individual particles. Moreover, (4) it provides 2D Mie scattering images which give the full information on particle morphology. The parameters of every single bioaerosol aspired into the instrument are subsequently analysed by machine learning. Firstly, pure species of microbes, e.g., Bacillus subtilis (a species of bacteria), and Penicillium chrysogenum (a species of fungal spores), were aerosolized in a bioaerosol chamber for Rapid-E+ training. Afterwards, we tested microbes under different concentrations. We used several steps of data analysis to classify and identify microbes. All single particles were analysed by the parameters of light scattering and fluorescence in the following steps. (1) They were treated with a smart filter block to get rid of non-microbes. (2) By classification algorithm, we verified the filtered particles were microbes based on the calibration data. (3) The probability threshold (defined by the user) step provides the probability of being microbes ranging from 0 to 100%. We demonstrate how Rapid-E+ identified simultaneously microbes based on the results of Bacillus subtilis (bacteria) and Penicillium chrysogenum (fungal spores). By using machine learning, Rapid-E+ achieved identification precision of 99% against the background. The further classification suggests the precision of 87% and 89% for Bacillus subtilis and Penicillium chrysogenum, respectively. The developed algorithm was subsequently used to evaluate the performance of microbe classification and quantification in real-time. The bacteria and fungi were aerosolized again in the chamber with different concentrations. Rapid-E+ can classify different types of microbes and then quantify them in real-time. Rapid-E+ enables classifying different types of microbes and quantifying them in real-time. Rapid-E+ can identify pollen down to species with similar or even better performance than the previous version (Rapid-E). Therefore, Rapid-E+ is an all-in-one instrument which classifies and quantifies not only pollen, but also bacteria and fungi. Based on the machine learning platform, the user can further develop proprietary algorithms for specific microbes (e.g., virus aerosols) and other aerosols (e.g., combustion-related particles that contain polycyclic aromatic hydrocarbons).

Keywords: bioaerosols, laser-induced fluorescence, Mie-scattering, microorganisms

Procedia PDF Downloads 60
3 Metagenomics Composition During and After Wet Deposition and the Presence of Airborne Microplastics

Authors: Yee Hui Lim, Elena Gusareva, Irvan Luhung, Yulia Frank, Stephan Christoph Schuster

Abstract:

Environmental pollution from microplastics (MPs) is an emerging concern worldwide. While the presence of microplastics has been well established in the marine and terrestrial environments, the prevalence of microplastics in the atmosphere is still poorly understood. Wet depositions such as rain or snow scavenge impurities from the atmosphere as it falls to the ground. These wet depositions serve as a useful tool in the removal of airborne particles that are suspended in the air. Therefore, the aim of this study is to investigate the presence of atmospheric microplastics and fibres through the analysis of air, rainwater and snow samples. Air samples were collected with filter-based air samplers from outdoor locations in Singapore. The sampling campaigns were conducted during and after each rain event. Rainwater samples from Singapore and Siberia were collected as well. Snow samples were also collected from Siberia as part of the ongoing study. Genomic DNA was then extracted from the samples and sequenced with shotgun metagenomics approach. qPCR analysis was conducted to quantify the total bacteria and fungi in the air, rainwater and snow samples. The results compared the bioaerosol profiles of all the samples. To observe the presence of microplastics, scanning electron microscope (SEM) was used. From the preliminary results, microplastics were detected. It can be concluded that there is a significant amount of atmospheric microplastics present, and its occurrence should be investigated in greater detail.

Keywords: atmospheric microplastics, metagenomics, scanning electron microscope, wet deposition

Procedia PDF Downloads 54
2 The Effects of Local Factors on the Concentrations and Flora of Viable Fungi in School Buildings

Authors: H. Salonen, E. Castagnoli, C. Vornanen-Winqvist, R. Mikkola, C. Duchaine, L. Morawska, J. Kurnitski

Abstract:

A wide range of health effects among occupants are associated with the exposure to bioaerosols from fungal sources. Although the accurate role of these aerosols in causing the symptoms and diseases is poorly understood, the important effect of bioaerosol exposure on human health is well recognized. Thus, there is a need to determine all of the contributing factors related to the concentration of fungi in indoor air. In this study, we reviewed and summarized the different factors affecting the concentrations of viable fungi in school buildings. The literature research was conducted using Pubmed and Google Scholar. In addition, we searched the lists of references of selected articles. According to the literature, the main factors influencing the concentration of viable fungi in the school buildings are moisture damage in building structures, the season (temperature and humidity conditions), the type and rate of ventilation, the number and activities of occupants and diurnal variations. This study offers valuable information that can be used in the interpretation of the fungal analysis and to decrease microbial exposure by reducing known sources and/or contributing factors. However, more studies of different local factors contributing to the human microbial exposure in school buildings—as well as other type of buildings and different indoor environments—are needed.

Keywords: fungi, concentration, indoor, school, contributing factor

Procedia PDF Downloads 234
1 Bacterial Exposure and Microbial Activity in Dental Clinics during Cleaning Procedures

Authors: Atin Adhikari, Sushma Kurella, Pratik Banerjee, Nabanita Mukherjee, Yamini M. Chandana Gollapudi, Bushra Shah

Abstract:

Different sharp instruments, drilling machines, and high speed rotary instruments are routinely used in dental clinics during dental cleaning. Therefore, these cleaning procedures release a lot of oral microorganisms including bacteria in clinic air and may cause significant occupational bioaerosol exposure risks for dentists, dental hygienists, patients, and dental clinic employees. Two major goals of this study were to quantify volumetric airborne concentrations of bacteria and to assess overall microbial activity in this type of occupational environment. The study was conducted in several dental clinics of southern Georgia and 15 dental cleaning procedures were targeted for sampling of airborne bacteria and testing of overall microbial activity in settled dusts over clinic floors. For air sampling, a Biostage viable cascade impactor was utilized, which comprises an inlet cone, precision-drilled 400-hole impactor stage, and a base that holds an agar plate (Tryptic soy agar). A high-flow Quick-Take-30 pump connected to this impactor pulls microorganisms in air at 28.3 L/min flow rate through the holes (jets) where they are collected on the agar surface for approx. five minutes. After sampling, agar plates containing the samples were placed in an ice chest with blue ice and plates were incubated at 30±2°C for 24 to 72 h. Colonies were counted and converted to airborne concentrations (CFU/m3) followed by positive hole corrections. Most abundant bacterial colonies (selected by visual screening) were identified by PCR amplicon sequencing of 16S rRNA genes. For understanding overall microbial activity in clinic floors and estimating a general cleanliness of the clinic surfaces during or after dental cleaning procedures, ATP levels were determined in swabbed dust samples collected from 10 cm2 floor surfaces. Concentration of ATP may indicate both the cell viability and the metabolic status of settled microorganisms in this situation. An ATP measuring kit was used, which utilized standard luciferin-luciferase fluorescence reaction and a luminometer, which quantified ATP levels as relative light units (RLU). Three air and dust samples were collected during each cleaning procedure (at the beginning, during cleaning, and immediately after the procedure was completed (n = 45). Concentrations at the beginning, during, and after dental cleaning procedures were 671±525, 917±1203, and 899±823 CFU/m3, respectively for airborne bacteria and 91±101, 243±129, and 139±77 RLU/sample, respectively for ATP levels. The concentrations of bacteria were significantly higher than typical indoor residential environments. Although an increasing trend for airborne bacteria was observed during cleaning, the data collected at three different time points were not significantly different (ANOVA: p = 0.38) probably due to high standard deviations of data. The ATP levels, however, demonstrated a significant difference (ANOVA: p <0.05) in this scenario indicating significant change in microbial activity on floor surfaces during dental cleaning. The most common bacterial genera identified were: Neisseria sp., Streptococcus sp., Chryseobacterium sp., Paenisporosarcina sp., and Vibrio sp. in terms of frequencies of occurrences, respectively. The study concluded that bacterial exposure in dental clinics could be a notable occupational biohazard, and appropriate respiratory protections for the employees are urgently needed.

Keywords: bioaerosols, hospital hygiene, indoor air quality, occupational biohazards

Procedia PDF Downloads 286