Search results for: host images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3198

Search results for: host images

2958 Unsupervised Images Generation Based on Sloan Digital Sky Survey with Deep Convolutional Generative Neural Networks

Authors: Guanghua Zhang, Fubao Wang, Weijun Duan

Abstract:

Convolution neural network (CNN) has attracted more and more attention on recent years. Especially in the field of computer vision and image classification. However, unsupervised learning with CNN has received less attention than supervised learning. In this work, we use a new powerful tool which is deep convolutional generative adversarial networks (DCGANs) to generate images from Sloan Digital Sky Survey. Training by various star and galaxy images, it shows that both the generator and the discriminator are good for unsupervised learning. In this paper, we also took several experiments to choose the best value for hyper-parameters and which could help to stabilize the training process and promise a good quality of the output.

Keywords: convolution neural network, discriminator, generator, unsupervised learning

Procedia PDF Downloads 236
2957 Multiscale Connected Component Labelling and Applications to Scientific Microscopy Image Processing

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

In this paper, a new method is proposed to extending the method of connected component labeling from processing binary images to multi-scale modeling of images. By using the adaptive threshold of multi-scale attributes, this approach minimizes the possibility of missing those important components with weak intensities. In addition, the computational cost of this approach remains similar to that of the typical approach of component labeling. Then, this methodology is applied to grain boundary detection and Drosophila Brain-bow neuron segmentation. These demonstrate the feasibility of the proposed approach in the analysis of challenging microscopy images for scientific discovery.

Keywords: microscopic image processing, scientific data mining, multi-scale modeling, data mining

Procedia PDF Downloads 410
2956 Routing Medical Images with Tabu Search and Simulated Annealing: A Study on Quality of Service

Authors: Mejía M. Paula, Ramírez L. Leonardo, Puerta A. Gabriel

Abstract:

In telemedicine, the image repository service is important to increase the accuracy of diagnostic support of medical personnel. This study makes comparison between two routing algorithms regarding the quality of service (QoS), to be able to analyze the optimal performance at the time of loading and/or downloading of medical images. This study focused on comparing the performance of Tabu Search with other heuristic and metaheuristic algorithms that improve QoS in telemedicine services in Colombia. For this, Tabu Search and Simulated Annealing heuristic algorithms are chosen for their high usability in this type of applications; the QoS is measured taking into account the following metrics: Delay, Throughput, Jitter and Latency. In addition, routing tests were carried out on ten images in digital image and communication in medicine (DICOM) format of 40 MB. These tests were carried out for ten minutes with different traffic conditions, reaching a total of 25 tests, from a server of Universidad Militar Nueva Granada (UMNG) in Bogotá-Colombia to a remote user in Universidad de Santiago de Chile (USACH) - Chile. The results show that Tabu search presents a better QoS performance compared to Simulated Annealing, managing to optimize the routing of medical images, a basic requirement to offer diagnostic images services in telemedicine.

Keywords: medical image, QoS, simulated annealing, Tabu search, telemedicine

Procedia PDF Downloads 189
2955 KCBA, A Method for Feature Extraction of Colonoscopy Images

Authors: Vahid Bayrami Rad

Abstract:

In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.

Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature

Procedia PDF Downloads 22
2954 Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model

Authors: Divvela Vishnu Sai Kumar, Deepak Arora, Sheenu Rizvi

Abstract:

Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts.

Keywords: estimating cyclone intensity, deep learning, convolution neural network, prediction models

Procedia PDF Downloads 84
2953 Immunosupressive Effect of Chloroquine through the Inhibition of Myeloperoxidase

Authors: J. B. Minari, O. B. Oloyede

Abstract:

Polymorphonuclear neutrophils (PMNs) play a crucial role in a variety of infections caused by bacteria, fungi, and parasites. Indeed, the involvement of PMNs in host defence against Plasmodium falciparum is well documented both in vitro and in vivo. Many of the antimalarial drugs such as chloroquine used in the treatment of human malaria significantly reduce the immune response of the host in vitro and in vivo. Myeloperoxidase is the most abundant enzyme found in the polymorphonuclear neutrophil which plays a crucial role in its function. This study was carried out to investigate the effect of chloroquine on the enzyme. In investigating the effects of the drug on myeloperoxidase, the influence of concentration, pH, partition ratio estimation and kinetics of inhibition were studied. This study showed that chloroquine is concentration-dependent inhibitor of myeloperoxidase with an IC50 of 0.03 mM. Partition ratio estimation showed that 40 enzymatic turnover cycles are required for complete inhibition of myeloperoxidase in the presence of chloroquine. The influence of pH on the effect of chloroquine on the enzyme showed significant inhibition of myeloperoxidase at physiological pH. The kinetic inhibition studies showed that chloroquine caused a non-competitive inhibition with an inhibition constant Ki of 0.27mM. The results obtained from this study shows that chloroquine is a potent inhibitor of myeloperoxidase and it is capable of inactivating the enzyme. It is therefore considered that the inhibition of myeloperoxidase in the presence of chloroquine as revealed in this study may partly explain the impairment of polymorphonuclear neutrophil and consequent immunosuppression of the host defence system against secondary infections.

Keywords: myeloperoxidase, chloroquine, inhibition, neutrophil, immune

Procedia PDF Downloads 345
2952 Comprehensive Evaluation of COVID-19 Through Chest Images

Authors: Parisa Mansour

Abstract:

The coronavirus disease 2019 (COVID-19) was discovered and rapidly spread to various countries around the world since the end of 2019. Computed tomography (CT) images have been used as an important alternative to the time-consuming RT. PCR test. However, manual segmentation of CT images alone is a major challenge as the number of suspected cases increases. Thus, accurate and automatic segmentation of COVID-19 infections is urgently needed. Because the imaging features of the COVID-19 infection are different and similar to the background, existing medical image segmentation methods cannot achieve satisfactory performance. In this work, we try to build a deep convolutional neural network adapted for the segmentation of chest CT images with COVID-19 infections. First, we maintain a large and novel chest CT image database containing 165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of an infected lung can be improved by global intensity adjustment, we introduce a feature variable block into the proposed deep CNN, which adjusts the global features of features to segment the COVID-19 infection. The proposed PV array can effectively and adaptively improve the performance of functions in different cases. We combine features of different scales by proposing a progressive atrocious space pyramid fusion scheme to deal with advanced infection regions with various aspects and shapes. We conducted experiments on data collected in China and Germany and showed that the proposed deep CNN can effectively produce impressive performance.

Keywords: chest, COVID-19, chest Image, coronavirus, CT image, chest CT

Procedia PDF Downloads 27
2951 Segmenting 3D Optical Coherence Tomography Images Using a Kalman Filter

Authors: Deniz Guven, Wil Ward, Jinming Duan, Li Bai

Abstract:

Over the past two decades or so, Optical Coherence Tomography (OCT) has been used to diagnose retina and optic nerve diseases. The retinal nerve fibre layer, for example, is a powerful diagnostic marker for detecting and staging glaucoma. With the advances in optical imaging hardware, the adoption of OCT is now commonplace in clinics. More and more OCT images are being generated, and for these OCT images to have clinical applicability, accurate automated OCT image segmentation software is needed. Oct image segmentation is still an active research area, as OCT images are inherently noisy, with the multiplicative speckling noise. Simple edge detection algorithms are unsuitable for detecting retinal layer boundaries in OCT images. Intensity fluctuation, motion artefact, and the presence of blood vessels also decrease further OCT image quality. In this paper, we introduce a new method for segmenting three-dimensional (3D) OCT images. This involves the use of a Kalman filter, which is commonly used in computer vision for object tracking. The Kalman filter is applied to the 3D OCT image volume to track the retinal layer boundaries through the slices within the volume and thus segmenting the 3D image. Specifically, after some pre-processing of the OCT images, points on the retinal layer boundaries in the first image are identified, and curve fitting is applied to them such that the layer boundaries can be represented by the coefficients of the curve equations. These coefficients then form the state space for the Kalman Filter. The filter then produces an optimal estimate of the current state of the system by updating its previous state using the measurements available in the form of a feedback control loop. The results show that the algorithm can be used to segment the retinal layers in OCT images. One of the limitations of the current algorithm is that the curve representation of the retinal layer boundary does not work well when the layer boundary is split into two, e.g., at the optic nerve, the layer boundary split into two. This maybe resolved by using a different approach to representing the boundaries, such as b-splines or level sets. The use of a Kalman filter shows promise to developing accurate and effective 3D OCT segmentation methods.

Keywords: optical coherence tomography, image segmentation, Kalman filter, object tracking

Procedia PDF Downloads 454
2950 Classifications of Images for the Recognition of People’s Behaviors by SIFT and SVM

Authors: Henni Sid Ahmed, Belbachir Mohamed Faouzi, Jean Caelen

Abstract:

Behavior recognition has been studied for realizing drivers assisting system and automated navigation and is an important studied field in the intelligent Building. In this paper, a recognition method of behavior recognition separated from a real image was studied. Images were divided into several categories according to the actual weather, distance and angle of view etc. SIFT was firstly used to detect key points and describe them because the SIFT (Scale Invariant Feature Transform) features were invariant to image scale and rotation and were robust to changes in the viewpoint and illumination. My goal is to develop a robust and reliable system which is composed of two fixed cameras in every room of intelligent building which are connected to a computer for acquisition of video sequences, with a program using these video sequences as inputs, we use SIFT represented different images of video sequences, and SVM (support vector machine) Lights as a programming tool for classification of images in order to classify people’s behaviors in the intelligent building in order to give maximum comfort with optimized energy consumption.

Keywords: video analysis, people behavior, intelligent building, classification

Procedia PDF Downloads 347
2949 Review of Ultrasound Image Processing Techniques for Speckle Noise Reduction

Authors: Kwazikwenkosi Sikhakhane, Suvendi Rimer, Mpho Gololo, Khmaies Oahada, Adnan Abu-Mahfouz

Abstract:

Medical ultrasound imaging is a crucial diagnostic technique due to its affordability and non-invasiveness compared to other imaging methods. However, the presence of speckle noise, which is a form of multiplicative noise, poses a significant obstacle to obtaining clear and accurate images in ultrasound imaging. Speckle noise reduces image quality by decreasing contrast, resolution, and signal-to-noise ratio (SNR). This makes it difficult for medical professionals to interpret ultrasound images accurately. To address this issue, various techniques have been developed to reduce speckle noise in ultrasound images, which improves image quality. This paper aims to review some of these techniques, highlighting the advantages and disadvantages of each algorithm and identifying the scenarios in which they work most effectively.

Keywords: image processing, noise, speckle, ultrasound

Procedia PDF Downloads 68
2948 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network

Authors: Pawan Kumar Mishra, Ganesh Singh Bisht

Abstract:

Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.

Keywords: resolution, deep-learning, neural network, de-blurring

Procedia PDF Downloads 484
2947 Object Recognition Approach Based on Generalized Hough Transform and Color Distribution Serving in Generating Arabic Sentences

Authors: Nada Farhani, Naim Terbeh, Mounir Zrigui

Abstract:

The recognition of the objects contained in images has always presented a challenge in the field of research because of several difficulties that the researcher can envisage because of the variability of shape, position, contrast of objects, etc. In this paper, we will be interested in the recognition of objects. The classical Hough Transform (HT) presented a tool for detecting straight line segments in images. The technique of HT has been generalized (GHT) for the detection of arbitrary forms. With GHT, the forms sought are not necessarily defined analytically but rather by a particular silhouette. For more precision, we proposed to combine the results from the GHT with the results from a calculation of similarity between the histograms and the spatiograms of the images. The main purpose of our work is to use the concepts from recognition to generate sentences in Arabic that summarize the content of the image.

Keywords: recognition of shape, generalized hough transformation, histogram, spatiogram, learning

Procedia PDF Downloads 125
2946 Distinct Antiviral Pathway for ZFP36-Like Family Members Against Flavivirus Infection

Authors: Ren-Jye Lin, Li-Hsiung Lin, Bing-Cheng Liu, Ching-Len Liao

Abstract:

The human zinc finger protein 36-like protein family, containing zinc finger protein 36-like 1 (ZFP36L1) and zinc finger protein 36-like 2 (ZFP36L2), belongs to CCCH-type zinc-finger protein identified as an RNA-binding protein that participates in controlling posttranscriptional regulation via RNA decay pathways. Recently, we demonstrated that human ZFP36L1 showed potent antiviral activity against flavivirus Infection by both 5´-3´ XRN1 and 3´-5´RNA-exosome RNA decay pathways (Journal of Virology 2022 Jan 12;96(1): e0166521). However, another zinc finger protein 36-like protein member, ZFP36L2, in the host defense response against flaviviruses has yet to be addressed. Here, we also demonstrate that ZFP36L2 functions as a host innate defender against flaviviruses, including Japanese encephalitis virus (JEV) and dengue virus (DENV). Overexpression of ZFP36L2 reduced JEV and DENV infection, and ZFP36L2 knockdown significantly promoted viral replication. Distinct from the antiviral mechanism of ZFP36L1, ZFP36L2 inhibits flavivirus infection by only a 5´-3´ XRN1-mediated RNA decay pathway but not the 3´-5´RNA-exosome RNA decay pathway. Human ZFP36L1 and ZFP36L2 can restrict flavivirus replication by directly binding and destabilizing viral RNA. Thus, for the first time, human zinc finger protein 36-like family members, ZFP36L1 and ZFP36L2, are identified as host antiviral factors that can bind and degrade flavivirus viral RNA by diverse antiviral mechanisms.

Keywords: ZFP36L1, ZFP36L2, 5'-3' exonuclease XRN1, antiviral mechansim

Procedia PDF Downloads 44
2945 Distribution of Spotted Fever Group in Ixodid Ticks, Domestic Cattle and Buffalos of Faisalabad District, Punjab, Pakistan

Authors: Muhammad Sohail Sajid, Qurat-ul-Ain, Zafar Iqbal, Muhammad Nisar Khan, Asma Kausar, Adil Ejaz

Abstract:

Rickettsiosis, caused by a Spotted Fever Group Rickettsiae (SFGR), is considered as an emerging infectious disease from public and veterinary perspective. The present study reports distribution of SFGR in the host (buffalo and cattle) and vector (ticks) population determined through gene specific amplification through PCR targeting outer membrane protein (ompA). Tick and blood samples were collected using standard protocols through convenient sampling from district Faisalabad. Ticks were dissected to extract salivary glands (SG). Blood and tick SG pools were subjected to DNA extraction and amplification of ompA using PCR. Overall prevalence of SFGR was reported as 21.5% and 33.6 % from blood and ticks, respectively. Hyalomma anatolicum was more prevalent tick associated with SFGR as compared to Rhipicephalus sp. Higher prevalence of SFGR was reported in cattle (25%) population as compared to that of buffalo (17.07%). On seasonal basis, high SFGR prevalence was recorded during spring season (48.1%, 26.32%, 17.76%) as compared to winter (27.9%, 21.43%, 15.38%) in vector and host (cattle and buffalo respectively) population. Sequencing analysis indicated that rickettsial endo-symbionts were associated with ticks of the study area. These results provided baseline information about the prevalence of SFGR in vector and host population.

Keywords: Rickettsia, livestock, polymerase chain reaction, sequencing, ticks, vectors

Procedia PDF Downloads 238
2944 Case Study of Migrants, Cultures and Environmental Crisis

Authors: Christina Y. P. Ting

Abstract:

Migration is a global phenomenon with movements of migrants from developed and developing countries to the host societies. Migrants have changed the host countries’ demography – its population structure and also its ethnic cultural diversity. Acculturation of migrants in terms of their adoption of the host culture is seen as important to ensure that they ‘fit into’ their adopted country so as to participate in everyday public life. However, this research found that the increase of the China-born migrants’ post-migration consumption level had impact on Australia’s environment reflected not only because of their adoption of elements of the host culture, but also retention of aspects of Chinese culture – indicating that the influence of bi-culturalism was in operation. This research, which was based on the face-to-face interview with 61 China-born migrants in the suburb of Box Hill, Melbourne, investigated the pattern of change in the migrants’ consumption upon their settlement in Australia. Using an ecological footprint calculator, their post-migration footprints were found to be larger than pre-migration footprint. The uniquely-derived CALD (Culturally and Linguistically Diverse) Index was used to measure individuals’ strength of connectedness to ethnic culture. Multi-variant analysis was carried out to understand which independent factors that influence consumption best explain the change in footprint (which is the difference between pre-and post-migration footprints, as a dependent factor). These independent factors ranged from socio-economic and demographics to the cultural context, that is, the CALD Index and indicators of acculturation. The major findings from the analysis were: Chinese culture (as measured by the CALD Index) and indicators of acculturation such as length of residency and using English in communications besides the traditional factors such as age, income and education level made significant contributions to the large increase in the China-born group’s post-migration consumption level. This paper as part of a larger study found that younger migrants’ large change in their footprint were related to high income and low level of education. This group of migrants also practiced bi-cultural consumption in retaining ethnic culture and adopting the host culture. These findings have importantly highlighted that for a host society to tackle environmental crisis, governments need not only to understand the relationship between age and consumption behaviour, but also to understand and embrace the migrants’ ethnic cultures, which may act as bridges and/or fences in relationships. In conclusion, for governments to deal with national issues such as environmental crisis within a cultural diverse population, it necessitates an understanding of age and aspects of ethnic culture that may act as bridges and fences. This understanding can aid in putting in place policies that enable the co-existence of a hybrid of the ethnic and host cultures in order to create and maintain a harmonious and secured living environment for population groups.

Keywords: bicultural consumer, CALD index, consumption, ethnic culture, migrants

Procedia PDF Downloads 212
2943 The Role of Multinational Enterprises' Investments in Emerging Country's Economic Development, Case of Georgia

Authors: V. Charaia

Abstract:

From the strategic point of view, not all Foreign Direct Investments (FDIs) are always positively benefiting the host economy, i.e. not all Multinational Enterprises (MNEs) are promoting local/host economies. FDI could have different impact on different sectors of the economy, based not only on annual investment amount, but MNE motivations and peculiarities of the host economy in particular. FDI analysis based only on its amount can lead to incorrect decisions, it is much more important to understand the essence of investment. Consequently, our research is oriented on MNE’s motivations, answering which sectors are most popular among international investors and why, what motivated them to invest into one or another business. Georgian economy for the last period of time is attracting more and more efficiency seeking investments, which could be translated as - concentrating production in a limited number of locations to supply various markets, while benefiting local economy with: new technologies, employment, exports diversification, increased income for the local economy and so on. Foreign investors and MNEs in particular are no longer and not so much interested in the resource seeking investments, which was the case for Georgia in the last decade of XX century. Despite the fact of huge progress for the Georgian economy, still there is a room for foreign investors to make a local market oriented investments. The local market is still rich in imported products, which should be replaced by local ones. And the last but not the least important issue is that approximately 30% of all FDIs in Georgia according to this research are “efficiency seeking” investments, which is an enormous progress and a hope for future Georgian success.

Keywords: investments, MNE, FDI motivations, Georgian economy

Procedia PDF Downloads 302
2942 A Palmprint Identification System Based Multi-Layer Perceptron

Authors: David P. Tantua, Abdulkader Helwan

Abstract:

Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.

Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator

Procedia PDF Downloads 336
2941 Prediction of Bodyweight of Cattle by Artificial Neural Networks Using Digital Images

Authors: Yalçın Bozkurt

Abstract:

Prediction models were developed for accurate prediction of bodyweight (BW) by using Digital Images of beef cattle body dimensions by Artificial Neural Networks (ANN). For this purpose, the animal data were collected at a private slaughter house and the digital images and the weights of each live animal were taken just before they were slaughtered and the body dimensions such as digital wither height (DJWH), digital body length (DJBL), digital body depth (DJBD), digital hip width (DJHW), digital hip height (DJHH) and digital pin bone length (DJPL) were determined from the images, using the data with 1069 observations for each traits. Then, prediction models were developed by ANN. Digital body measurements were analysed by ANN for body prediction and R2 values of DJBL, DJWH, DJHW, DJBD, DJHH and DJPL were approximately 94.32, 91.31, 80.70, 83.61, 89.45 and 70.56 % respectively. It can be concluded that in management situations where BW cannot be measured it can be predicted accurately by measuring DJBL and DJWH alone or both DJBD and even DJHH and different models may be needed to predict BW in different feeding and environmental conditions and breeds

Keywords: artificial neural networks, bodyweight, cattle, digital body measurements

Procedia PDF Downloads 342
2940 Performance Analysis of Search Medical Imaging Service on Cloud Storage Using Decision Trees

Authors: González A. Julio, Ramírez L. Leonardo, Puerta A. Gabriel

Abstract:

Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.

Keywords: cloud storage, decision trees, diagnostic image, search, telemedicine

Procedia PDF Downloads 180
2939 The Role of Leapfrogging: Cross-Level Interactions and MNE Decision-Making in Conflict-Settings

Authors: Arrian Cornwell, Larisa Yarovaya, Mary Thomson

Abstract:

This paper seeks to examine the transboundary nature of foreign subsidiary exit vs. stay decisions when threatened by conflict in a host country. Using the concepts of nested vulnerability and teleconnections, we show that the threat of conflict can transcend bounded territories and have non-linear outcomes for actors, institutions and systems at broader scales of analysis. To the best of our knowledge, this has not been done before. By introducing the concepts of ‘leapfrogging upwards’ and ‘cascading downwards’, we develop a two-stage model which characterises the impacts of conflict as transboundary phenomena. We apply our model to a dataset of 266 foreign subsidiaries in six conflict-afflicted host countries over 2011-2015. Our results indicate that information is transmitted upwards and subsequent pressure flows cascade downwards, which, in turn, influence exit decisions.

Keywords: subsidiary exit, conflict, information transmission, pressure flows, transboundary

Procedia PDF Downloads 242
2938 Biopotential of Introduced False Indigo and Albizia’s Weevils in Host Plant Control and Duration of Its Development Stages in Southern Regions of Panonian Basin

Authors: Renata Gagić-Serdar, Miroslava Markovic, Ljubinko Rakonjac, Aleksandar Lučić

Abstract:

The paper present the results of the entomological experimental studies of the biological, ecological, and (bionomic) insect performances, such as seasonal adaptation of introduced monophagous false indigo and albizias weevil’s Acanthoscelides pallidipennis Motschulsky. and Bruchidius terrenus (Sharp), Coleoptera: Chrysomelidae: Bruchinae, to phenological phases of aggressive invasive host plant Amorpha fruticosa L. and Albizia julibrissin (Fabales: Fabaceae) on the territory of Republic of Serbia with special attention on assessing and monitoring of new formed and detected inter species relations between autochthons parasite wasps from fauna (Hymenoptera: Chalcidoidea) and herbaceous seed weevil beetle. During 15 years (2006-2021), on approximately 30 localities, data analyses were done for observed experimental host plants from samples with statistical significance. Status of genera from families Hymenoptera: Chalcidoidea.: Pteromalidae and Eulophidae, after intensive investigations, has been trophicly identified. Recorded seed pest species of A. fruticosa or A. julibrissin (Fabales: Fabaceae) was introduced in Serbia and planted as ornamental trees, they also were put undergo different kinds of laboratory and field research tests during this period in a goal of collecting data about lasting each of develop stage of their seed beetles. Field generations in different stages were also monitored by continuous infested seed collecting and its disection. Established host plant-seed predator linkage was observed in correlation with different environment parameters, especially water level fluctuations in bank corridor formation stands and riparian cultures.

Keywords: amorpha, albizia, chalcidoid wasp, invasiveness, weevils

Procedia PDF Downloads 64
2937 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction

Authors: William Whiteley, Jens Gregor

Abstract:

In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.

Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography

Procedia PDF Downloads 88
2936 Clicking Based Graphical Password Scheme Resistant to Spyware

Authors: Bandar Alahmadi

Abstract:

The fact that people tend to remember pictures better than texts, motivates researchers to develop graphical passwords as an alternative to textual passwords. Graphical passwords as such were introduced as a possible alternative to traditional text passwords, in which users prove their identity by clicking on pictures rather than typing alphanumerical text. In this paper, we present a scheme for graphical passwords that are resistant to shoulder surfing attacks and spyware attacks. The proposed scheme introduces a clicking technique to chosen images. First, the users choose a set of images, the images are then included in a grid where users can click in the cells around each image, the location of the click and the number of clicks are saved. As a result, the proposed scheme can be safe from shoulder surface and spyware attacks.

Keywords: security, password, authentication, attack, applications

Procedia PDF Downloads 139
2935 Detecting Tomato Flowers in Greenhouses Using Computer Vision

Authors: Dor Oppenheim, Yael Edan, Guy Shani

Abstract:

This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.

Keywords: agricultural engineering, image processing, computer vision, flower detection

Procedia PDF Downloads 295
2934 Improvement of Bone Scintography Image Using Image Texture Analysis

Authors: Yousif Mohamed Y. Abdallah, Eltayeb Wagallah

Abstract:

Image enhancement allows the observer to see details in images that may not be immediately observable in the original image. Image enhancement is the transformation or mapping of one image to another. The enhancement of certain features in images is accompanied by undesirable effects. To achieve maximum image quality after denoising, a new, low order, local adaptive Gaussian scale mixture model and median filter were presented, which accomplishes nonlinearities from scattering a new nonlinear approach for contrast enhancement of bones in bone scan images using both gamma correction and negative transform methods. The usual assumption of a distribution of gamma and Poisson statistics only lead to overestimation of the noise variance in regions of low intensity but to underestimation in regions of high intensity and therefore to non-optional results. The contrast enhancement results were obtained and evaluated using MatLab program in nuclear medicine images of the bones. The optimal number of bins, in particular the number of gray-levels, is chosen automatically using entropy and average distance between the histogram of the original gray-level distribution and the contrast enhancement function’s curve.

Keywords: bone scan, nuclear medicine, Matlab, image processing technique

Procedia PDF Downloads 475
2933 Cultural Adaptation of Foreign Students in Vienna, A Sociolinguistic Case Study of Iranian Students in Vienna

Authors: Roshanak Nouralian

Abstract:

The primary focus of my Ph.D. dissertation revolves around the interconnection between language and culture, as well as the crucial role that language plays in facilitating communication and fostering integration within the host society for immigrants. This research specifically focuses on Iranian students studying at various universities in Vienna. Throughout this study, I have attempted to examine and analyze their challenges in various life situations in Austria. The broad dimensions of the research question led the research process to apply a constructivist grounded theory strategy. I have also used critical discourse analysis that is in line with constructivist GT's point of view to look closely at the borders, contradictions, and inequalities that came up in the participants' real-life experiences. Data from individual interviews and group discussions have expanded the research trajectory beyond disciplinary boundaries toward a transdisciplinary approach. The research findings indicate how the language policy of the host society leads to the establishment of power relationships and the arousal of a sense of cultural dominance among the research participants. This study investigates the problems experienced by participants in their daily interactions within the host society. Additionally, the results illustrate the development of a dependency relationship between participants and their host society despite linguistic policies that cause a sense of cultural hegemony. Conversely, the obtained data allowed me to examine the participants' language ideologies. The findings of this study show that social linguistics has the potential to go beyond the boundaries of its field. This is possible by using a variety of research strategies and analyzing people's real-life experiences to find out how language affects different parts of their daily lives. Therefore, in this conference, discussing the logic of employing a constructivist GT strategy along with critical discourse analysis (CDA) in this research, I intend to discuss the achieved results.

Keywords: cultural adapttaion, language policy, language ideology, cultural hegemony, transdisciplinary research, constructivist grounded theory, critical discourse analysis

Procedia PDF Downloads 34
2932 Topographic Characteristics Derived from UAV Images to Detect Ephemeral Gully Channels

Authors: Recep Gundogan, Turgay Dindaroglu, Hikmet Gunal, Mustafa Ulukavak, Ron Bingner

Abstract:

A majority of total soil losses in agricultural areas could be attributed to ephemeral gullies caused by heavy rains in conventionally tilled fields; however, ephemeral gully erosion is often ignored in conventional soil erosion assessments. Ephemeral gullies are often easily filled from normal soil tillage operations, which makes capturing the existing ephemeral gullies in croplands difficult. This study was carried out to determine topographic features, including slope and aspect composite topographic index (CTI) and initiation points of gully channels, using images obtained from unmanned aerial vehicle (UAV) images. The study area was located in Topcu stream watershed in the eastern Mediterranean Region, where intense rainfall events occur over very short time periods. The slope varied between 0.7 and 99.5%, and the average slope was 24.7%. The UAV (multi-propeller hexacopter) was used as the carrier platform, and images were obtained with the RGB camera mounted on the UAV. The digital terrain models (DTM) of Topçu stream micro catchment produced using UAV images and manual field Global Positioning System (GPS) measurements were compared to assess the accuracy of UAV based measurements. Eighty-one gully channels were detected in the study area. The mean slope and CTI values in the micro-catchment obtained from DTMs generated using UAV images were 19.2% and 3.64, respectively, and both slope and CTI values were lower than those obtained using GPS measurements. The total length and volume of the gully channels were 868.2 m and 5.52 m³, respectively. Topographic characteristics and information on ephemeral gully channels (location of initial point, volume, and length) were estimated with high accuracy using the UAV images. The results reveal that UAV-based measuring techniques can be used in lieu of existing GPS and total station techniques by using images obtained with high-resolution UAVs.

Keywords: aspect, compound topographic index, digital terrain model, initial gully point, slope, unmanned aerial vehicle

Procedia PDF Downloads 82
2931 Hyperspectral Image Classification Using Tree Search Algorithm

Authors: Shreya Pare, Parvin Akhter

Abstract:

Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.

Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm

Procedia PDF Downloads 137
2930 Inspection of Railway Track Fastening Elements Using Artificial Vision

Authors: Abdelkrim Belhaoua, Jean-Pierre Radoux

Abstract:

In France, the railway network is one of the main transport infrastructures and is the second largest European network. Therefore, railway inspection is an important task in railway maintenance to ensure safety for passengers using significant means in personal and technical facilities. Artificial vision has recently been applied to several railway applications due to its potential to improve the efficiency and accuracy when analyzing large databases of acquired images. In this paper, we present a vision system able to detect fastening elements based on artificial vision approach. This system acquires railway images using a CCD camera installed under a control carriage. These images are stitched together before having processed. Experimental results are presented to show that the proposed method is robust for detection fasteners in a complex environment.

Keywords: computer vision, image processing, railway inspection, image stitching, fastener recognition, neural network

Procedia PDF Downloads 421
2929 Automatic Post Stroke Detection from Computed Tomography Images

Authors: C. Gopi Jinimole, A. Harsha

Abstract:

For detecting strokes, Computed Tomography (CT) scan is preferred for imaging the abnormalities or infarction in the brain. Because of the problems in the window settings used to evaluate brain CT images, they are very poor in the early stage infarction detection. This paper presents an automatic estimation method for the window settings of the CT images for proper contrast of the hyper infarction present in the brain. In the proposed work the window width is estimated automatically for each slice and the window centre is changed to a new value of 31HU, which is the average of the HU values of the grey matter and white matter in the brain. The automatic window width estimation is based on the average of median of statistical central moments. Thus with the new suggested window centre and estimated window width, the hyper infarction or post-stroke regions in CT brain images are properly detected. The proposed approach assists the radiologists in CT evaluation for early quantitative signs of delayed stroke, which leads to severe hemorrhage in the future can be prevented by providing timely medication to the patients.

Keywords: computed tomography (CT), hyper infarction or post stroke region, Hounsefield Unit (HU), window centre (WC), window width (WW)

Procedia PDF Downloads 173