Search results for: fundamental functional equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6262

Search results for: fundamental functional equation

6082 Explanation of the Electron Transfer Mechanism from β-Carotene to N-Pentyl Peroxyl Radical by Density Functional Theory Method

Authors: E. Esra Kasapbaşı, Büşra Yıldırım

Abstract:

Weak oxidizing radicals, such as alkyl peroxyl derivatives, react with carotenoids through hydrogen atom transfer to form neutral carotenoid radicals. Using the DFT method, it has been observed that s-cis-β-carotene is more stable than all-transforms. In the context of this study, an attempt is made to explain the reaction mechanism of the isomers of β-carotene, which exhibits antioxidant properties, with n-pentyl peroxide, one of the alkyl peroxyl molecules, using the Density Functional Theory (DFT) method. The cis and transforms of β-carotene are used in the study to determine which form is more reactive. For this purpose, Natural Bond Orbital (NBO) charges of all optimized structures are calculated, and electron transfer is determined by examining electron transitions between Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO). Additionally, the radical character and reaction mechanism of β-carotene in a radical environment are attempted to be explained based on the calculations. The theoretical inclination of whether β-carotene in cis or transforms is more active in reaction is also discussed. All these calculations are performed in the gas phase using the Integral Equation Formalism Polarizable Continuum Model IEFPCM method with dichloromethane as the solvent.

Keywords: β-carotene, n-pentyl peroxyl radical, DFT, TD-DFT

Procedia PDF Downloads 41
6081 Study υ_4 Fundamental Band of 12 CD4 Molecule

Authors: Kaarour Abdelkrim, Ouardi Okkacha, Meskine Mohamed

Abstract:

In this study, the υ_4 fundamental band of 12CD4 molecule has been studied by infrared spectroscopy with high resolution. Using XTDS and SPEVIEW software and the tensor formalism developed by ICB (laboratoire interdisciplinaire de Bourgogne) to several lines have been assigned and fitted with a standard deviation acceptable. This analysis allowed us to calculate several parameters of the molecule 12 CD4.

Keywords: XTDS, SPEVIEW, tetrahedral tensorial formalism, rovibrational band

Procedia PDF Downloads 287
6080 Free Vibration of Functionally Graded Smart Beams Based on the First Order Shear Deformation Theory

Authors: A. R. Nezamabadi, M. Veiskarami

Abstract:

This paper studies free vibration of simply supported functionally graded beams with piezoelectric layers based on the first order shear deformation theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. The governing equation is established. Resulting equation is solved using the Euler's equation. The effects of the constituent volume fractions, the influences of applied voltage on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: mechanical buckling, functionally graded beam, first order shear deformation theory, free vibration

Procedia PDF Downloads 445
6079 Application of Wavelet Based Approximation for the Solution of Partial Integro-Differential Equation Arising from Viscoelasticity

Authors: Somveer Singh, Vineet Kumar Singh

Abstract:

This work contributes a numerical method based on Legendre wavelet approximation for the treatment of partial integro-differential equation (PIDE). Operational matrices of Legendre wavelets reduce the solution of PIDE into the system of algebraic equations. Some useful results concerning the computational order of convergence and error estimates associated to the suggested scheme are presented. Illustrative examples are provided to show the effectiveness and accuracy of proposed numerical method.

Keywords: legendre wavelets, operational matrices, partial integro-differential equation, viscoelasticity

Procedia PDF Downloads 405
6078 Platform Integration for High-Throughput Functional Screening Applications

Authors: Karolis Leonavičius, Dalius Kučiauskas, Dangiras Lukošius, Arnoldas Jasiūnas, Kostas Zdanys, Rokas Stanislovas, Emilis Gegevičius, Žana Kapustina, Juozas Nainys

Abstract:

Screening throughput is a common bottleneck in many research areas, including functional genomics, drug discovery, and directed evolution. High-throughput screening techniques can be classified into two main categories: (i) affinity-based screening and (ii) functional screening. The first one relies on binding assays that provide information about the affinity of a test molecule for a target binding site. Binding assays are relatively easy to establish; however, they reveal no functional activity. In contrast, functional assays show an effect triggered by the interaction of a ligand at a target binding site. Functional assays might be based on a broad range of readouts, such as cell proliferation, reporter gene expression, downstream signaling, and other effects that are a consequence of ligand binding. Screening of large cell or gene libraries based on direct activity rather than binding affinity is now a preferred strategy in many areas of research as functional assays more closely resemble the context where entities of interest are anticipated to act. Droplet sorting is the basis of high-throughput functional biological screening, yet its applicability is limited due to the technical complexity of integrating high-performance droplet analysis and manipulation systems. As a solution, the Droplet Genomics Styx platform enables custom droplet sorting workflows, which are necessary for the development of early-stage or complex biological therapeutics or industrially important biocatalysts. The poster will focus on the technical design considerations of Styx in the context of its application spectra.

Keywords: functional screening, droplet microfluidics, droplet sorting, dielectrophoresis

Procedia PDF Downloads 90
6077 From Linear to Nonlinear Deterrence: Deterrence for Rising Power

Authors: Farhad Ghasemi

Abstract:

Along with transforming the international system into a complex and chaotic system, the fundamental question arises: how can deterrence be reconstructed conceptually and theoretically in this system model? The deterrence system is much more complex today than it was seven decades ago. This article suggests that the perception of deterrence as a linear system is a fundamental mistake because it does not consider the new dynamics of the international system, including network power dynamics. The author aims to improve this point by focusing on complexity and chaos theories, especially their nonlinearity and cascading failure principles. This article proposes that the perception of deterrence as a linear system is a fundamental mistake, as the new dynamics of the surrounding international system do not take into account. The author recognizes deterrence as a nonlinear system and introduces it as a concept in strategic studies.

Keywords: complexity, international system, deterrence, linear deterrence, nonlinear deterrence

Procedia PDF Downloads 115
6076 Exact Solutions of Discrete Sine-Gordon Equation

Authors: Chao-Qing Dai

Abstract:

Two families of exact travelling solutions for the discrete sine-Gordon equation are constructed based on the variable-coefficient Jacobian elliptic function method and different transformations. When the modulus of Jacobian elliptic function solutions tends to 1, soliton solutions can be obtained. Some soliton solutions degenerate into the known solutions in literatures. Moreover, dynamical properties of exact solutions are investigated. Our analysis and results may have potential values for certain applications in modern nonlinear science and textile engineering.

Keywords: exact solutions, variable-coefficient Jacobian elliptic function method, discrete sine-Gordon equation, dynamical behaviors

Procedia PDF Downloads 386
6075 A Mathematical Based Prediction of the Forming Limit of Thin-Walled Sheet Metals

Authors: Masoud Ghermezi

Abstract:

Studying the sheet metals is one of the most important research areas in the field of metal forming due to their extensive applications in the aerospace industries. A useful method for determining the forming limit of these materials and consequently preventing the rupture of sheet metals during the forming process is the use of the forming limit curve (FLC). In addition to specifying the forming limit, this curve also delineates a boundary for the allowed values of strain in sheet metal forming; these characteristics of the FLC along with its accuracy of computation and wide range of applications have made this curve the basis of research in the present paper. This study presents a new model that not only agrees with the results obtained from the above mentioned theory, but also eliminates its shortcomings. In this theory, like in the M-K theory, a thin sheet with an inhomogeneity as a gradient thickness reduction with a sinusoidal function has been chosen and subjected to two-dimensional stress. Through analytical evaluation, ultimately, a governing differential equation has been obtained. The numerical solution of this equation for the range of positive strains (stretched region) yields the results that agree with the results obtained from M-K theory. Also the solution of this equation for the range of negative strains (tension region) completes the FLC curve. The findings obtained by applying this equation on two alloys with the hardening exponents of 0.4 and 0.24 indicate the validity of the presented equation.

Keywords: sheet metal, metal forming, forming limit curve (FLC), M-K theory

Procedia PDF Downloads 337
6074 Evaluation of Scenedesmus obliquus Carotenoids as Food Colorants, and Antioxidant Activity in Functional Cakes

Authors: Hanaa H. Abd El Baky, Gamal S. El Baroty, Eman A. Ibrahem

Abstract:

Microalgae Scenedesmus obliquus, the carotenoides (astaxanine and β-caroteine) were identified as the major bioactive constituents. In this work we prepared functional pre-biotic cakes to increase general mental health. Functional cakes were formulated by adding algal caroteinods at 2 and 4 mg/100g to flower and the cakes were storage for 20 days. Oxidative stability of both function cakes products were examined during storage periods by DPPH and TBA assays, and the results revealed that both values in function food products were significantly much low than that in untreated food products. Data of sensory evaluation revealed that treated biscuit and cakes with algae or algae extracts were significantly acceptable as control for main sensory characteristics (colour, odour/aroma, flavour, texture, the global appreciation, and overall acceptability). Thus, it could be concluded that functional biscuits and cakes (very popular and well balanced nutritional food) had good sensory and nutritional profiles and can be developed as new niche food market.

Keywords: Scenedesmus obliquus, carotenoids, functional cakes antioxidant, nutritional profiles

Procedia PDF Downloads 252
6073 New Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques, and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then, dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is an arbitrary nonempty closed subset of the real numbers. Then, the dynamic inequalities on time scales have received a lot of attention in the literature and has become a major field in pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on Hardy and Coposon inequalities, using Steklov operator on time scale in double integrals to obtain special cases of time-scale inequalities of Hardy and Copson on high dimensions. The advantage of this study is that it uses the one-dimensional classical Hardy inequality to obtain higher dimensional on time scale versions that will be applied in the solution of the Cauchy problem for the wave equation. In addition, the obtained inequalities have various applications involving discontinuous domains such as bug populations, phytoremediation of metals, wound healing, maximization problems. The proof can be done by introducing restriction on the operator in several cases. The concepts in time scale version such as time scales calculus will be used that allows to unify and extend many problems from the theories of differential and of difference equations. In addition, using chain rule, and some properties of multiple integrals on time scales, some theorems of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of hardy, inequality of coposon, steklov operator

Procedia PDF Downloads 56
6072 Fast and Accurate Finite-Difference Method Solving Multicomponent Smoluchowski Coagulation Equation

Authors: Alexander P. Smirnov, Sergey A. Matveev, Dmitry A. Zheltkov, Eugene E. Tyrtyshnikov

Abstract:

We propose a new computational technique for multidimensional (multicomponent) Smoluchowski coagulation equation. Using low-rank approximations in Tensor Train format of both the solution and the coagulation kernel, we accelerate the classical finite-difference Runge-Kutta scheme keeping its level of accuracy. The complexity of the taken finite-difference scheme is reduced from O(N^2d) to O(d^2 N log N ), where N is the number of grid nodes and d is a dimensionality of the problem. The efficiency and the accuracy of the new method are demonstrated on concrete problem with known analytical solution.

Keywords: tensor train decomposition, multicomponent Smoluchowski equation, runge-kutta scheme, convolution

Procedia PDF Downloads 387
6071 Multiple Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation

Authors: A. Guezane-Lakoud, S. Bensebaa

Abstract:

In this paper, we study a boundary value problem of nonlinear fractional differential equation. Existence and positivity results of solutions are obtained.

Keywords: positive solution, fractional caputo derivative, Banach contraction principle, Avery and Peterson fixed point theorem

Procedia PDF Downloads 382
6070 Existence of positive periodic solutions for certain delay differential equations

Authors: Farid Nouioua, Abdelouaheb Ardjouni

Abstract:

In this article, we study the existence of positive periodic solutions of certain delay differential equations. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ Krasnoselskii's fixed point theorem to obtain sufficient conditions for the existence of a positive periodic solution of the differential equation. The obtained results improve and extend the results in the literature. Finally, an example is given to illustrate our results.

Keywords: delay differential equations, positive periodic solutions, integral equations, Krasnoselskii fixed point theorem

Procedia PDF Downloads 405
6069 Characteristics of Meiofaunal Communities in Intertidal Habitats Along Albanian Adriatic Sea Coast

Authors: Fundime Miri, Emanuela Sulaj

Abstract:

Benthic ecosystems constitute important ecological habitats, providing fundamental services for spawning, foraging, and sheltering aquatic organisms. Benthic faunal communities are characterized by a large biological diversity, supported by a great physical variety of benthic habitats. Until late, the study of meiobenthic communities in Albania has been neglectedthus excluding an important component of benthos. The present study aims to bring characteristics of distribution pattern of meiofaunal communities with further focus on nematode genus-based diversity from different intertidal habitats along Albanian Adriatic Sea Coast. The investigation area is extended from Shkodra to Vlora District, including six sandy sampling sites in beaches and areas near river estuaries. Sediment samples were collected manually in low intertidal zone by using a cylindrical corer, with an internal diameter of 5 cm. The richness onmeiofaunalmajor taxon level did not show any significant change between different sampling sites compare to significant changes in nematode diversity at genus level, with distinct nematode assemblages per sampling sites and presence of exclusive genera. All meiofaunal communities under study were dominated by nematodes. Further assessment of functional diversity on nematode assemblages exhibited changes as well on trophic groups and life strategies due to diverse feeding behaviors and c-p values of nematode genera. This study emphasize the need for lower level taxonomic identification of meiofaunal organisms and extending of ecological assessments on trophic diversity and life strategies to understanding functional consequences.

Keywords: benthos, meiofauna, nematode genus-based diversity, functional diversity, intertidal, albanian adriatic coast

Procedia PDF Downloads 117
6068 Numerical Solution of Space Fractional Order Solute Transport System

Authors: Shubham Jaiswal

Abstract:

In the present article, a drive is taken to compute the solution of spatial fractional order advection-dispersion equation having source/sink term with given initial and boundary conditions. The equation is converted to a system of ordinary differential equations using second-kind shifted Chebyshev polynomials, which have finally been solved using finite difference method. The striking feature of the article is the fast transportation of solute concentration as and when the system approaches fractional order from standard order for specified values of the parameters of the system.

Keywords: spatial fractional order advection-dispersion equation, second-kind shifted Chebyshev polynomial, collocation method, conservative system, non-conservative system

Procedia PDF Downloads 231
6067 The Solution of Nonlinear Partial Differential Equation for The Phenomenon of Instability in Homogeneous Porous Media by Homotopy Analysis Method

Authors: Kajal K. Patel, M. N. Mehta, T. R. Singh

Abstract:

When water is injected in oil formatted area in secondary oil recovery process the instability occurs near common interface due to viscosity difference of injected water and native oil. The governing equation gives rise to the non-linear partial differential equation and its solution has been obtained by Homotopy analysis method with appropriate guess value of the solution together with some conditions and standard relations. The solution gives the average cross-sectional area occupied by the schematic fingers during the occurs of instability phenomenon. The numerical and graphical presentation has developed by using Maple software.

Keywords: capillary pressure, homotopy analysis method, instability phenomenon, viscosity

Procedia PDF Downloads 464
6066 Numerical Solutions of an Option Pricing Rainfall Derivatives Model

Authors: Clarinda Vitorino Nhangumbe, Ercília Sousa

Abstract:

Weather derivatives are financial products used to cover non catastrophic weather events with a weather index as the underlying asset. The rainfall weather derivative pricing model is modeled based in the assumption that the rainfall dynamics follows Ornstein-Uhlenbeck process, and the partial differential equation approach is used to derive the convection-diffusion two dimensional time dependent partial differential equation, where the spatial variables are the rainfall index and rainfall depth. To compute the approximation solutions of the partial differential equation, the appropriate boundary conditions are suggested, and an explicit numerical method is proposed in order to deal efficiently with the different choices of the coefficients involved in the equation. Being an explicit numerical method, it will be conditionally stable, then the stability region of the numerical method and the order of convergence are discussed. The model is tested for real precipitation data.

Keywords: finite differences method, ornstein-uhlenbeck process, partial differential equations approach, rainfall derivatives

Procedia PDF Downloads 68
6065 The Effect of Hydrogen on the Magnetic Properties of ZnO: A Density Functional Tight Binding Study

Authors: M. A. Lahmer, K. Guergouri

Abstract:

The ferromagnetic properties of carbon-doped ZnO (ZnO:CO) and hydrogenated carbon-doped ZnO (ZnO:CO+H) are investigated using the density functional tight binding (DFTB) method. Our results reveal that CO-doped ZnO is a ferromagnetic material with a magnetic moment of 1.3 μB per carbon atom. The presence of hydrogen in the material in the form of CO-H complex decreases the total magnetism of the material without suppressing ferromagnetism. However, the system in this case becomes quickly antiferromagnetic when the C-C separation distance was increased.

Keywords: ZnO, carbon, hydrogen, ferromagnetism, density functional tight binding

Procedia PDF Downloads 259
6064 On the Derivation of Variable Step BBDF for Solving Second Order Stiff ODEs

Authors: S. A. M. Yatim, Z. B. Ibrahim, K. I. Othman, M. Suleiman

Abstract:

The method of solving second order stiff ordinary differential equation (ODEs) that is based on backward differentiation formula (BDF) is considered in this paper. We derived the method by increasing the order of the existing method using an improved strategy in choosing the step size. Numerical results are presented to compare the efficiency of the proposed method to the MATLAB’s suite of ODEs solvers namely ode15s and ode23s. The method was found to be efficient to solve second order ordinary differential equation.

Keywords: backward differentiation formulae, block backward differentiation formulae, stiff ordinary differential equation, variable step size

Procedia PDF Downloads 469
6063 Experimental Study on the Effectiveness of Functional Training for Female College Students' Physical Fitness and Sport Skills

Authors: Yangming Zhu, Mingming Guo, Xiaozan Wang

Abstract:

Introduction: The purpose of this study is to integrate functional training into physical education to test the effectiveness of functional training in improving the physical fitness (PF) and sport skills (SS) of female college students. Methods: A total of 54 female college students from East China Normal University were selected for this study (27 in the experimental group and 27 in the control group), and 13 weeks of the experimental intervention was conducted during the semester. During the experimental period, the experimental group was functionally trained for 1 hour per week. The control group performed one-hour weekly sports (such as basketball, football, etc.) as usual. Before and after the experiment, the national students' physical fitness test was used to test the PF of the experimental group and the control group, and the SS of the experimental group and the control group were tested before and after the intervention. Then using SPSS and Excel to organize and analyze the data. Results: The independent sample T-test showed that there was no significant difference in the PF and SS between the experimental group and the control group before the experiment (T PF=71.86, p PF> 0.05, Tₛₛ=82.41,pₛₛ > 0.05); After the experiment, the PF of the experimental group was significantly higher than that of the control group (T Improve=71.86, p Improve < 0.05); after the experiment, the SS of the experimental group was significantly higher than that of the control group (Tₛₛ = 1.31, pₛₛ <0.01) Conclusions: Integrating functional training into physical education can improve the PF of female college students. At the same time, the integration of functional training into physical education can also effectively improve the SS of female college students. Therefore, it is suggested that functional training be integrated into the daily physical education of female college students so as to improve their PF and SS.

Keywords: functional training, physical fitness, sport skills, female college students

Procedia PDF Downloads 103
6062 Finite Element Approximation of the Heat Equation under Axisymmetry Assumption

Authors: Raphael Zanella

Abstract:

This works deals with the finite element approximation of axisymmetric problems. The weak formulation of the heat equation under the axisymmetry assumption is established for continuous finite elements. The weak formulation is implemented in a C++ solver with implicit march-in-time. The code is verified by space and time convergence tests using a manufactured solution. The solving of an example problem with an axisymmetric formulation is compared to that with a full-3D formulation. Both formulations lead to the same result, but the code based on the axisymmetric formulation is much faster due to the lower number of degrees of freedom. This confirms the correctness of our approach and the interest in using an axisymmetric formulation when it is possible.

Keywords: axisymmetric problem, continuous finite elements, heat equation, weak formulation

Procedia PDF Downloads 161
6061 Task Based Functional Connectivity within Reward Network in Food Image Viewing Paradigm Using Functional MRI

Authors: Preetham Shankapal, Jill King, Kori Murray, Corby Martin, Paula Giselman, Jason Hicks, Owen Carmicheal

Abstract:

Activation of reward and satiety networks in the brain while processing palatable food cues, as well as functional connectivity during rest has been studied using functional Magnetic Resonance Imaging of the brain in various obesity phenotypes. However, functional connectivity within the reward and satiety network during food cue processing is understudied. 14 obese individuals underwent two fMRI scans during viewing of Macronutrient Picture System images. Each scan included two blocks of images of High Sugar/High Fat (HSHF), High Carbohydrate/High Fat (HCHF), Low Sugar/Low Fat (LSLF) and also non-food images. Seed voxels within seven food reward relevant ROIs: Insula, putamen and cingulate, precentral, parahippocampal, medial frontal and superior temporal gyri were isolated based on a prior meta-analysis. Beta series correlation for task-related functional connectivity between these seed voxels and the rest of the brain was computed. Voxel-level differences in functional connectivity were calculated between: first and the second scan; individuals who saw novel (N=7) vs. Repeated (N=7) images in the second scan; and between the HC/HF, HSHF blocks vs LSLF and non-food blocks. Computations and analysis showed that during food image viewing, reward network ROIs showed significant functional connectivity with each other and with other regions responsible for attentional and motor control, including inferior parietal lobe and precentral gyrus. These functional connectivity values were heightened among individuals who viewed novel HS/HF images in the second scan. In the second scan session, functional connectivity was reduced within the reward network but increased within attention, memory and recognition regions, suggesting habituation to reward properties and increased recollection of previously viewed images. In conclusion it can be inferred that Functional Connectivity within reward network and between reward and other brain regions, varies by important experimental conditions during food photography viewing, including habituation to shown foods.

Keywords: fMRI, functional connectivity, task-based, beta series correlation

Procedia PDF Downloads 235
6060 Partial Differential Equation-Based Modeling of Brain Response to Stimuli

Authors: Razieh Khalafi

Abstract:

The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli.

Keywords: brain, stimuli, partial differential equation, response, EEG signal

Procedia PDF Downloads 527
6059 Schrödinger Equation with Position-Dependent Mass: Staggered Mass Distributions

Authors: J. J. Peña, J. Morales, J. García-Ravelo, L. Arcos-Díaz

Abstract:

The Point canonical transformation method is applied for solving the Schrödinger equation with position-dependent mass. This class of problem has been solved for continuous mass distributions. In this work, a staggered mass distribution for the case of a free particle in an infinite square well potential has been proposed. The continuity conditions as well as normalization for the wave function are also considered. The proposal can be used for dealing with other kind of staggered mass distributions in the Schrödinger equation with different quantum potentials.

Keywords: free particle, point canonical transformation method, position-dependent mass, staggered mass distribution

Procedia PDF Downloads 365
6058 The Effectiveness of Using Functional Rehabilitation with Children of Cerebral Palsy

Authors: Bara Yousef

Abstract:

The development of independency and functional participation is an important therapeutic goal for many children with cerebral palsy,They was many therapeutic approach have been used for treatment those children like neurodevelopment treatment, balance training strengthening and stretching exercise. More recently, therapy for children with cerebral palsy has focused on achieving functional goals using task-oriented interventions and summer camping model, which focus on activities that relevant and meaningful to the child, to learn more efficient and effective motor skills. We explore the effectiveness of using functional rehabilitation comparing with regular rehabilitation among 40 Saudi children with cerebral palsy in pediatric unit at Sultan Bin Abdul Aziz Humanitarian City-Ksa ,where 20 children randomly assign in control group who received rehabilitation based on regular therapy approach and other 20 children assign on experiment group who received rehabilitation based on functional therapy approach with an average of 45min OT treatment and 45 min PT treatment- daily within a period of 6 week. Our finding reported that children in experiment group has improved in gross motor function with an average from 49.4 to 57.6 based on GMFM 66 as primary outcome measure and improved in WeeFIM with an average from 52 to 62 while children in control group has improved with an average from 48.4 to 53.7 in GMFM and from 53 to and 58 in WeeFIM. Consequently, there has been growing interest in determining the effects of functional training programs as promising approach for these children.

Keywords: Cerebral Palsy (CP), gross motor function measure (GMFM66), pediatric Functional Independent Measure (WeeFIM), rehabilitation, disability

Procedia PDF Downloads 356
6057 On Parameter Estimation of Simultaneous Linear Functional Relationship Model for Circular Variables

Authors: N. A. Mokhtar, A. G. Hussin, Y. Z. Zubairi

Abstract:

This paper proposes a new simultaneous simple linear functional relationship model by assuming equal error variances. We derive the maximum likelihood estimate of the parameters in the simultaneous model and the covariance. We show by simulation study the small bias values of the parameters suggest the suitability of the estimation method. As an illustration, the proposed simultaneous model is applied to real data of the wind direction and wave direction measured by two different instruments.

Keywords: simultaneous linear functional relationship model, Fisher information matrix, parameter estimation, circular variables

Procedia PDF Downloads 329
6056 Proximate, Functional and Sensory Evaluation of Some Brands of Instant Noodles in Nigeria

Authors: Olakunle Moses Makanjuola, Adebola Ajayi

Abstract:

Noodles are made from unleavened dough, rolled flat and cut into shapes. The instant noodle market is growing fast in Asian countries and is gaining popularity in the western market. This project reports on the proximate functional and sensory evaluation of different brands of instant noodles in Nigeria. The comparisons were based on proximate functional and sensory evaluation of the product. The result obtained from the proximate analysis showed that sample QHR has the highest moisture content, sample BMG has the highest protein content, sample CPO has the highest fat content, sample. The obtained result from the functional properties showed that sample BMG (Dangote noodles) had the highest volume increase after cooking due to its high swelling capacity, high water absorption capacity and high hydration capacity. Sample sensory analysis of the noodles showed that all the samples are of significant difference (at P < 0.05) in terms of colour, texture, and aroma but there is no significant difference in terms of taste and overall acceptability. Sample QHR (Indomie noodles) is the most preferred by the panelists.

Keywords: proximate, functional, sensory evaluation, noodles

Procedia PDF Downloads 216
6055 Automotive Quality Engineering: A Roadmap for Functional Safety

Authors: Hugo d’Albert, Udo Lindemann

Abstract:

The number of automotive electronic systems that allow realizing new functions, like driver assistance systems, has been increasing extremely in the last decade. Although they bring several benefits, their malfunctions can lead to severe consequences, such as personal injury of road users. Functional safety is an approach to identify these critical malfunctions and arrange technical systems that include only tolerable risk. This approach is– in comparison with other technical areas– relatively new in the automotive sector. For a long time, the automotive systems have based on mechanical components and approved principles, like robust design. With a growing number of electric and electronic components in the modern cars and realizing by software of the system functions, the need for new standards and methods to assure the functional safety has arisen. This paper described the current state of engineering for safety in automotive sector and discusses new directions to meet the challenges of the future.

Keywords: automotive systems, functional safety, quality engineering, quality management

Procedia PDF Downloads 272
6054 Treatment and Characterization of Cadmium Metal From Textile Factory Wastewater by Electrochemical Process Using Aluminum Plate Electrode

Authors: Dessie Tibebe, Yeshifana Ayenew, Marye Mulugeta, Yezbie Kassa, Zerubabel Moges, Dereje Yenealem, Tarekegn Fentie, Agmas Amare, Hailu Sheferaw Ayele

Abstract:

Electrochemical treatment technology is a technique used for wastewater treatment due to its ability to eliminate impurities that are not easily removed by chemical processes. The objective of the study is the treatment and characterization of textile wastewater by an electrochemical process. The results obtained at various operational parameters indicated that at 20 minutes of electrochemical process at ( pH =7), initial concentration 10 mg/L, current density 37.5 mA/cm², voltage 9 v and temperature 25⁰C the highest removal efficiency was achieved. The kinetics of removal of selected metal by electrochemical treatment has been successfully described by the first-order rate equation. The results of microscopic techniques using SEM for the scarified electrode before treatment were uniform and smooth, but after the electrochemical process, the morphology was completely changed. This is due to the detection of the adsorbed aluminum hydroxide coming from adsorption of the conducting electrolyte, chemicals used in the experiments, alloying and the scrap impurities of the anode and cathode. The FTIR spectroscopic analysis broad bands at 3450 cm-¹ representing O-H functional groups, while the presence of H-O-H and Al-H groups are indicated by the bands at 2850-2750 cm-¹ and 1099 representing C-H functional groups.

Keywords: electrochemical, treatment, textile wastewater, kinetics, removal efficiency

Procedia PDF Downloads 51
6053 Comparison of the Boundary Element Method and the Method of Fundamental Solutions for Analysis of Potential and Elasticity

Authors: S. Zenhari, M. R. Hematiyan, A. Khosravifard, M. R. Feizi

Abstract:

The boundary element method (BEM) and the method of fundamental solutions (MFS) are well-known fundamental solution-based methods for solving a variety of problems. Both methods are boundary-type techniques and can provide accurate results. In comparison to the finite element method (FEM), which is a domain-type method, the BEM and the MFS need less manual effort to solve a problem. The aim of this study is to compare the accuracy and reliability of the BEM and the MFS. This comparison is made for 2D potential and elasticity problems with different boundary and loading conditions. In the comparisons, both convex and concave domains are considered. Both linear and quadratic elements are employed for boundary element analysis of the examples. The discretization of the problem domain in the BEM, i.e., converting the boundary of the problem into boundary elements, is relatively simple; however, in the MFS, obtaining appropriate locations of collocation and source points needs more attention to obtain reliable solutions. The results obtained from the presented examples show that both methods lead to accurate solutions for convex domains, whereas the BEM is more suitable than the MFS for concave domains.

Keywords: boundary element method, method of fundamental solutions, elasticity, potential problem, convex domain, concave domain

Procedia PDF Downloads 62