Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8415

Search results for: positive periodic solutions

8415 Existence of positive periodic solutions for certain delay differential equations

Authors: Farid Nouioua, Abdelouaheb Ardjouni

Abstract:

In this article, we study the existence of positive periodic solutions of certain delay differential equations. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ Krasnoselskii's fixed point theorem to obtain sufficient conditions for the existence of a positive periodic solution of the differential equation. The obtained results improve and extend the results in the literature. Finally, an example is given to illustrate our results.

Keywords: delay differential equations, positive periodic solutions, integral equations, Krasnoselskii fixed point theorem

Procedia PDF Downloads 292
8414 Exactly Fractional Solutions of Nonlinear Lattice Equation via Some Fractional Transformations

Authors: A. Zerarka, W. Djoudi

Abstract:

We use some fractional transformations to obtain many types of new exact solutions of nonlinear lattice equation. These solutions include rational solutions, periodic wave solutions, and doubly periodic wave solutions.

Keywords: fractional transformations, nonlinear equation, travelling wave solutions, lattice equation

Procedia PDF Downloads 568
8413 Symbolic Computation and Abundant Travelling Wave Solutions to Modified Burgers' Equation

Authors: Muhammad Younis

Abstract:

In this article, the novel (G′/G)-expansion method is successfully applied to construct the abundant travelling wave solutions to the modified Burgers’ equation with the aid of computation. The method is reliable and useful, which gives more general exact travelling wave solutions than the existing methods. These obtained solutions are in the form of hyperbolic, trigonometric and rational functions including solitary, singular and periodic solutions which have many potential applications in physical science and engineering. Some of these solutions are new and some have already been constructed. Additionally, the constraint conditions, for the existence of the solutions are also listed.

Keywords: traveling wave solutions, NLPDE, computation, integrability

Procedia PDF Downloads 342
8412 Periodicity of Solutions of a Nonlinear Impulsive Differential Equation with Piecewise Constant Arguments

Authors: Mehtap Lafcı

Abstract:

In recent years, oscillation, periodicity and convergence of solutions of linear differential equations with piecewise constant arguments have been significantly considered but there are only a few papers for impulsive differential equations with piecewise constant arguments. In this paper, a first order nonlinear impulsive differential equation with piecewise constant arguments is studied and the existence of solutions and periodic solutions of this equation are investigated by using Carvalho’s method. Finally, an example is given to illustrate these results.

Keywords: Carvalho's method, impulsive differential equation, periodic solution, piecewise constant arguments

Procedia PDF Downloads 411
8411 Zero-Dissipative Explicit Runge-Kutta Method for Periodic Initial Value Problems

Authors: N. Senu, I. A. Kasim, F. Ismail, N. Bachok

Abstract:

In this paper zero-dissipative explicit Runge-Kutta method is derived for solving second-order ordinary differential equations with periodical solutions. The phase-lag and dissipation properties for Runge-Kutta (RK) method are also discussed. The new method has algebraic order three with dissipation of order infinity. The numerical results for the new method are compared with existing method when solving the second-order differential equations with periodic solutions using constant step size.

Keywords: dissipation, oscillatory solutions, phase-lag, Runge-Kutta methods

Procedia PDF Downloads 321
8410 Existence of Positive Solutions for Second-Order Difference Equation with Discrete Boundary Value Problem

Authors: Thanin Sitthiwirattham, Jiraporn Reunsumrit

Abstract:

We study the existence of positive solutions to the three points difference summation boundary value problem. We show the existence of at least one positive solution if f is either superlinear or sublinear by applying the fixed point theorem due to Krasnoselskii in cones.

Keywords: positive solution, boundary value problem, fixed point theorem, cone

Procedia PDF Downloads 371
8409 Mapping Methods to Solve a Modified Korteweg de Vries Type Equation

Authors: E. V. Krishnan

Abstract:

In this paper, we employ mapping methods to construct exact travelling wave solutions for a modified Korteweg-de Vries equation. We have derived periodic wave solutions in terms of Jacobi elliptic functions, kink solutions and singular wave solutions in terms of hyperbolic functions.

Keywords: travelling wave solutions, Jacobi elliptic functions, solitary wave solutions, Korteweg-de Vries equation

Procedia PDF Downloads 260
8408 Existence and Stability of Periodic Traveling Waves in a Bistable Excitable System

Authors: M. Osman Gani, M. Ferdows, Toshiyuki Ogawa

Abstract:

In this work, we proposed a modified FHN-type reaction-diffusion system for a bistable excitable system by adding a scaled function obtained from a given function. We study the existence and the stability of the periodic traveling waves (or wavetrains) for the FitzHugh-Nagumo (FHN) system and the modified one and compare the results. The stability results of the periodic traveling waves (PTWs) indicate that most of the solutions in the fast family of the PTWs are stable for the FitzHugh-Nagumo equations. The instability occurs only in the waves having smaller periods. However, the smaller period waves are always unstable. The fast family with sufficiently large periods is always stable in FHN model. We find that the oscillation of pulse widths is absent in the standard FHN model. That motivates us to study the PTWs in the proposed FHN-type reaction-diffusion system for the bistable excitable media. A good agreement is found between the solutions of the traveling wave ODEs and the corresponding whole PDE simulation.

Keywords: bistable system, Eckhaus bifurcation, excitable media, FitzHugh-Nagumo model, periodic traveling waves

Procedia PDF Downloads 116
8407 Shear Elastic Waves in Disordered Anisotropic Multi-Layered Periodic Structure

Authors: K. B. Ghazaryan, R. A. Ghazaryan

Abstract:

Based on the constitutive model and anti-plane equations of anisotropic elastic body of monoclinic symmetry we consider the problem of shear wave propagation in multi-layered disordered composite structure with point defect. Using transfer matrix method the analytic expression is obtained providing solutions of shear Floquet wave propagation in periodic disordered anisotropic structure. The usefulness of the obtained analytical expression was discussed also in reflection and refraction problems from multi-layered reflector as well as in vibration problem of multi-layered waveguides. Numerical results are presented highlighting the effects arising in disordered periodic structure due to defects of multi-layered structure.

Keywords: shear elastic waves, monoclinic anisotropic media, periodic structure, disordered multilayer laminae, multi-layered waveguide

Procedia PDF Downloads 304
8406 Stabilization of Displaced Periodic Orbit Using Feedback Linearization Control Scheme

Authors: Arun Kumar Yadav, Badam Singh Kushvah

Abstract:

In the present work, we investigated displaced periodic orbits in the linear order in the circular restricted three-body Sun-Jupiter system, where the third mass-less body utilizes solar electric sail. The electric solar sail is a new space propulsion concept which uses the solar wind momentum for producing thrust, and it is somewhat like to the more well-known solar radiation pressure sail which is often called simply the solar sail. Moreover, we implement the feedback linearization control scheme to perform the stabilization and trajectory tracking for the nonlinear system. Further, we derived periodic orbits analytically in linear order by introducing a first order approximation. These approximate analytic solutions are utilized in a numerical search to determine displaced periodic orbit in the full nonlinear model. We found the displaced periodic orbit for the defined non-linear model and stabilized the model.

Keywords: solar electric sail, circular restricted three-body problem (CRTBP), displaced orbit, feedback linearization control

Procedia PDF Downloads 124
8405 Existence of Positive Solutions to a Dirichlet Second Order Boundary Value Problem

Authors: Muhammad Sufian Jusoh, Mesliza Mohamed

Abstract:

In this paper, we investigate the existence of positive solutions for a Dirichlet second order boundary value problem by applying the Krasnosel'skii fixed point theorem on compression and expansion of cones.

Keywords: Krasnosel'skii fixed point theorem, positive solutions, Dirichlet boundary value problem, Dirichlet second order boundary problem

Procedia PDF Downloads 347
8404 Defuzzification of Periodic Membership Function on Circular Coordinates

Authors: Takashi Mitsuishi, Koji Saigusa

Abstract:

This paper presents circular polar coordinates transformation of periodic fuzzy membership function. The purpose is identification of domain of periodic membership functions in consequent part of IF-THEN rules. The proposed methods are applied to the simple color construct system.

Keywords: periodic membership function, polar coordinates transformation, defuzzification, circular coordinates

Procedia PDF Downloads 235
8403 Periodicity of Solutions to Impulsive Equations

Authors: Jin Liang, James H. Liu, Ti-Jun Xiao

Abstract:

It is known that there exist many physical phenomena where abrupt or impulsive changes occur either in the system dynamics, for example, ad-hoc network, or in the input forces containing impacts, for example, the bombardment of space antenna by micrometeorites. There are many other examples such as ultra high-speed optical signals over communication networks, the collision of particles, inventory control, government decisions, interest changes, changes in stock price, etc. These are impulsive phenomena. Hence, as a combination of the traditional initial value problems and the short-term perturbations whose duration can be negligible in comparison with the duration of the process, the systems with impulsive conditions (i.e., impulsive systems) are more realistic models for describing the impulsive phenomenon. Such a situation is also suitable for the delay systems, which include some of the past states of the system. So far, there have been a lot of research results in the study of impulsive systems with delay both in finite and infinite dimensional spaces. In this paper, we investigate the periodicity of solutions to the nonautonomous impulsive evolution equations with infinite delay in Banach spaces, where the coefficient operators (possibly unbounded) in the linear part depend on the time, which are impulsive systems in infinite dimensional spaces and come from the optimal control theory. It was indicated that the study of periodic solutions for these impulsive evolution equations with infinite delay was challenging because the fixed point theorems requiring some compactness conditions are not applicable to them due to the impulsive condition and the infinite delay. We are happy to report that after detailed analysis, we are able to combine the techniques developed in our previous papers, and some new ideas in this paper, to attack these impulsive evolution equations and derive periodic solutions. More specifically, by virtue of the related transition operator family (evolution family), we present a Poincaré operator given by the nonautonomous impulsive evolution system with infinite delay, and then show that the operator is a condensing operator with respect to Kuratowski's measure of non-compactness in a phase space by using an Amann's lemma. Finally, we derive periodic solutions from bounded solutions in view of the Sadovskii fixed point theorem. We also present a relationship between the boundedness and the periodicity of the solutions of the nonautonomous impulsive evolution system. The new results obtained here extend some earlier results in this area for evolution equations without impulsive conditions or without infinite delay.

Keywords: impulsive, nonautonomous evolution equation, optimal control, periodic solution

Procedia PDF Downloads 164
8402 Boundedness and Asymptotic Behavior of Solutions for Gierer-Meinhardt Systems

Authors: S. Henine, A. Youkana

Abstract:

This work is devoted to study the global existence and asymptotic behavior of solutions for Gierer-Meinhardt systems arising in biological phenomena. We prove that the solutions are global and uniformly bounded by a positive constant independent of the time. Our technique is based on Lyapunov functional argument. Under suitable conditions, we established a result on the asymptotic behavior of solutions. These results are valid for any positive continuous initial data, and improve some recently results established.

Keywords: asymptotic behavior, Gierer-Meinhardt systems, global existence, Lyapunov functional

Procedia PDF Downloads 315
8401 Multiple Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation

Authors: A. Guezane-Lakoud, S. Bensebaa

Abstract:

In this paper, we study a boundary value problem of nonlinear fractional differential equation. Existence and positivity results of solutions are obtained.

Keywords: positive solution, fractional caputo derivative, Banach contraction principle, Avery and Peterson fixed point theorem

Procedia PDF Downloads 341
8400 Kernel Parallelization Equation for Identifying Structures under Unknown and Periodic Loads

Authors: Seyed Sadegh Naseralavi

Abstract:

This paper presents a Kernel parallelization equation for damage identification in structures under unknown periodic excitations. Herein, the dynamic differential equation of the motion of structure is viewed as a mapping from displacements to external forces. Utilizing this viewpoint, a new method for damage detection in structures under periodic loads is presented. The developed method requires only two periods of load. The method detects the damages without finding the input loads. The method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering the concept, kernel parallelization equation (KPE) is derived for damage detection under unknown periodic loads. The method is verified for a case study under periodic loads.

Keywords: Kernel, unknown periodic load, damage detection, Kernel parallelization equation

Procedia PDF Downloads 201
8399 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations

Authors: Hussaini Doko Ibrahim, Hamilton Cyprian Chinwenyi, Henrietta Nkem Ude

Abstract:

In this paper, efforts were made to examine and compare the algorithmic iterative solutions of the conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax=b, where A is a real n×n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3×3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi, and conjugate gradient methods), respectively. From the results obtained, we discovered that the conjugate gradient method converges faster to exact solutions in fewer iterative steps than the two other methods, which took many iterations, much time, and kept tending to the exact solutions.

Keywords: conjugate gradient, linear equations, symmetric and positive definite matrix, gauss-seidel, Jacobi, algorithm

Procedia PDF Downloads 67
8398 Hybrid Inventory Model Optimization under Uncertainties: A Case Study in a Manufacturing Plant

Authors: E. Benga, T. Tengen, A. Alugongo

Abstract:

Periodic and continuous inventory models are the two classical management tools used to handle inventories. These models have advantages and disadvantages. The implementation of both continuous (r,Q) inventory and periodic (R, S) inventory models in most manufacturing plants comes with higher cost. Such high inventory costs are due to the fact that most manufacturing plants are not flexible enough. Since demand and lead-time are two important variables of every inventory models, their effect on the flexibility of the manufacturing plant matter most. Unfortunately, these effects are not clearly understood by managers. The reason is that the decision parameters of the continuous (r, Q) inventory and periodic (R, S) inventory models are not designed to effectively deal with the issues of uncertainties such as poor manufacturing performances, delivery performance supplies performances. There is, therefore, a need to come up with a predictive and hybrid inventory model that can combine in some sense the feature of the aforementioned inventory models. A linear combination technique is used to hybridize both continuous (r, Q) inventory and periodic (R, S) inventory models. The behavior of such hybrid inventory model is described by a differential equation and then optimized. From the results obtained after simulation, the continuous (r, Q) inventory model is more effective than the periodic (R, S) inventory models in the short run, but this difference changes as time goes by. Because the hybrid inventory model is more cost effective than the continuous (r,Q) inventory and periodic (R, S) inventory models in long run, it should be implemented for strategic decisions.

Keywords: periodic inventory, continuous inventory, hybrid inventory, optimization, manufacturing plant

Procedia PDF Downloads 315
8397 Measure-Valued Solutions to a Class of Nonlinear Parabolic Equations with Degenerate Coercivity and Singular Initial Data

Authors: Flavia Smarrazzo

Abstract:

Initial-boundary value problems for nonlinear parabolic equations having a Radon measure as initial data have been widely investigated, looking for solutions which for positive times take values in some function space. On the other hand, if the diffusivity degenerates too fast at infinity, it is well known that function-valued solutions may not exist, singularities may persist, and it looks very natural to consider solutions which, roughly speaking, for positive times describe an orbit in the space of the finite Radon measures. In this general framework, our purpose is to introduce a concept of measure-valued solution which is consistent with respect to regularizing and smoothing approximations, in order to develop an existence theory which does not depend neither on the level of degeneracy of diffusivity at infinity nor on the choice of the initial measures. In more detail, we prove existence of suitably defined measure-valued solutions to the homogeneous Dirichlet initial-boundary value problem for a class of nonlinear parabolic equations without strong coerciveness. Moreover, we also discuss some qualitative properties of the constructed solutions concerning the evolution of their singular part, including conditions (depending both on the initial data and on the strength of degeneracy) under which the constructed solutions are in fact unction-valued or not.

Keywords: degenerate parabolic equations, measure-valued solutions, Radon measures, young measures

Procedia PDF Downloads 211
8396 Rich 3-Tori Dynamics in Small-Aspect-Ratio Highly Counter-Rotating Taylor-Couette Flow with Reversal of Spiraling Vortices

Authors: S. Altmeyer, B. Hof, F. Marques, J. M. Lopez

Abstract:

We present numerical simulations concerning the reversal of spiraling vortices in short highly counter-rotating cylinders. Increasing the differential cylinder rotation results in global flow-inversion is which develops various different and complex flow dynamics of several quasi-periodic solutions that differ in their number of vortex cells in the bulk. The dynamics change from being dominated of the inner cylinder boundary layer with ’passive’ only responding outer one to be dominated by the outer cylinder boundary layer with only responding inner one. Solutions exist on either two or three tori invariant manifolds whereby they appear as symmetric or asymmetric states. We find for either moderate and high inner cylinder rotation speed the quasiperiodic flow to consist of only two vortex cells but differ as the vortices has opposite spiraling direction. These both flows live on 2-tori but differ in number of symmetries. While for the quasi-periodic flow (q^a_2) at lower rotation speed a pair of symmetrically related 2-tori T2 exists the quasi-periodic flow (q^s_2) at higher rotation speeds is symmetric living on a single 2-torus T2. In addition these both flows differ due to their dominant azimuthal m modes. The first is dominated by m=1 whereas for the latter m=3 contribution is largest. The 2-tori states are separated by a further quasi-periodic flow (q^a_3) living on pair of symmetrically related 3-tori T3. This flow offers a ’periodical’ competition between a two and three vortex cell states in the bulk. This flow is also an m=1 solution as for the quasiperiodic flows living on the pair of symmetrically-related 2-tori states. Moreover we find hysteresis resulting in coexisting regions of different quasiperiodic flows q^s_2 and q^a_3 with increasing and decreasing the differential rotation.

Keywords: transition, bifurcation, torus, symmetries

Procedia PDF Downloads 300
8395 On Periodic Integer-Valued Moving Average Models

Authors: Aries Nawel, Bentarzi Mohamed

Abstract:

This paper deals with the study of some probabilistic and statistical properties of a Periodic Integer-Valued Moving Average Model (PINMA_{S}(q)). The closed forms of the mean, the second moment and the periodic autocovariance function are obtained. Furthermore, the time reversibility of the model is discussed in details. Moreover, the estimation of the underlying parameters are obtained by the Yule-Walker method, the Conditional Least Square method (CLS) and the Weighted Conditional Least Square method (WCLS). A simulation study is carried out to evaluate the performance of the estimation method. Moreover, an application on real data set is provided.

Keywords: periodic integer-valued moving average, periodically correlated process, time reversibility, count data

Procedia PDF Downloads 80
8394 Role of Additional Food Resources in an Ecosystem with Two Discrete Delays

Authors: Ankit Kumar, Balram Dubey

Abstract:

This study proposes a three dimensional prey-predator model with additional food, provided to predator individuals, including gestation delay in predators and delay in supplying the additional food to predators. It is assumed that the interaction between prey and predator is followed by Holling type-II functional response. We discussed the steady states and their local and global asymptotic behavior for the non-delayed system. Hopf-bifurcation phenomenon with respect to different parameters has also been studied. We obtained a range of predator’s tendency factor on provided additional food, in which the periodic solutions occur in the system. We have shown that oscillations can be controlled from the system by increasing the tendency factor. Moreover, the existence of periodic solutions via Hopf-bifurcation is shown with respect to both the delays. Our analysis shows that both delays play an important role in governing the dynamics of the system. It changes the stability behavior into instability behavior. The direction and stability of Hopf-bifurcation are also investigated through the normal form theory and the center manifold theorem. Lastly, some numerical simulations and graphical illustrations have been carried out to validate our analytical findings.

Keywords: additional food, gestation delay, Hopf-bifurcation, prey-predator

Procedia PDF Downloads 57
8393 Acoustic Radiation from an Infinite Cylindrical Shell with Periodic Lengthwise Ribs

Authors: Yunzhe Tong, Jun Fan, Bin Wang

Abstract:

The vibroacoustic behavior of an immersed infinite cylindrical shell with periodic lengthwise ribs has been studied in this paper. The motions of the shell are described by the Donnell equations. Each lengthwise rib is modeled as an elastic beam. The motions of the bulkheads are decomposed into the longitudinal motions and flexural motions. The analytical expressions of the shell motions can be obtained through circumferential mode expansion, Fourier Transform and periodic boundary condition in the circumferential direction. Furthermore, the far-field radiated pressure has been obtained using the stationary phase. The analysis of wavenumber domain shows that periodic lengthwise stiffeners in the circumferential direction can produce flexural Bloch waves. The dominant feature in far-field pressure amplitude is the resonance of the supersonic components of the flexural Bloch waves in the circumferential direction.

Keywords: flexural Bloch wave, stiffened shell, vibroacoustics, wavenumber analysis

Procedia PDF Downloads 143
8392 Soliton Solutions in (3+1)-Dimensions

Authors: Magdy G. Asaad

Abstract:

Solitons are among the most beneficial solutions for science and technology for their applicability in physical applications including plasma, energy transport along protein molecules, wave transport along poly-acetylene molecules, ocean waves, constructing optical communication systems, transmission of information through optical fibers and Josephson junctions. In this talk, we will apply the bilinear technique to generate a class of soliton solutions to the (3+1)-dimensional nonlinear soliton equation of Jimbo-Miwa type. Examples of the resulting soliton solutions are computed and a few solutions are plotted.

Keywords: Pfaffian solutions, N-soliton solutions, soliton equations, Jimbo-Miwa

Procedia PDF Downloads 372
8391 The Role of ICT for Income Inequality: The Model and the Simulations

Authors: Shoji Katagiri

Abstract:

This paper is to clarify the relationship between ICT and income inequality. To do so, we develop the general equilibrium model with ICT investment, obtain the equilibrium solutions, and then simulate the model with these solutions for some OECD countries. As a result, generally, during the corresponding periods we confirm that the relationship between ICT investment and income inequality is positive. In this mode, the increment of the ratio of ICT investment to the aggregated investment in stock enhances the capital’s share of income, and finally leads to income inequality such as the increase of the share of the top decile income. Although we confirm the positive relationship between ICT investment and income inequality, the upward trend for that relationship depends on the values of parameters for the making use of the simulations and these parameters are not deterministic in the magnitudes on the calculated results for the simulations.

Keywords: ICT, inequality, capital accumulation, technology

Procedia PDF Downloads 143
8390 Theoretical Analysis of Mechanical Vibration for Offshore Platform Structures

Authors: Saeed Asiri, Yousuf Z. AL-Zahrani

Abstract:

A new class of support structures, called periodic structures, is introduced in this paper as a viable means for isolating the vibration transmitted from the sea waves to offshore platform structures through its legs. A passive approach to reduce transmitted vibration generated by waves is presented. The approach utilizes the property of periodic structural components that creates stop and pass bands. The stop band regions can be tailored to correspond to regions of the frequency spectra that contain harmonics of the wave frequency, attenuating the response in those regions. A periodic structural component is comprised of a repeating array of cells, which are themselves an assembly of elements. The elements may have differing material properties as well as geometric variations. For the purpose of this research, only geometric and material variations are considered and each cell is assumed to be identical. A periodic leg is designed in order to reduce transmitted vibration of sea waves. The effectiveness of the periodicity on the vibration levels of platform will be demonstrated theoretically. The theory governing the operation of this class of periodic structures is introduced using the transfer matrix method. The unique filtering characteristics of periodic structures are demonstrated as functions of their design parameters for structures with geometrical and material discontinuities; and determine the propagation factor by using the spectral finite element analysis and the effectiveness of design on the leg structure by changing the ratio of step length and area interface between the materials is demonstrated in order to find the propagation factor and frequency response.

Keywords: vibrations, periodic structures, offshore, platforms, transfer matrix method

Procedia PDF Downloads 226
8389 An Ancient Rule for Constructing Dodecagonal Quasi-Periodic Formations

Authors: Rima A. Ajlouni

Abstract:

The discovery of quasi-periodic structures in material science is revealing an exciting new class of symmetries, which has never been explored before. Due to their unique structural and visual properties, these symmetries are drawing interest from many scientific and design disciplines. Especially, in art and architecture, these symmetries can provide a rich source of geometry for exploring new patterns, forms, systems, and structures. However, the structural systems of these complicated symmetries are still posing a perplexing challenge. While much of their local order has been explored, the global governing system is still unresolved. Understanding their unique global long-range order is essential to their generation and application. The recent discovery of dodecagonal quasi-periodic patterns in historical Islamic architecture is generating a renewed interest into understanding the mathematical principles of traditional Islamic geometry. Astonishingly, many centuries before its description in the modern science, ancient artists, by using the most primitive tools (a compass and a straight edge), were able to construct patterns with quasi-periodic formations. These ancient patterns can be found all over the ancient Islamic world, many of which exhibit formations with 5, 8, 10 and 12 quasi-periodic symmetries. Based on the examination of these historical patterns and derived from the generating principles of Islamic geometry, a global multi-level structural model is presented that is able to describe the global long-range order of dodecagonal quasi-periodic formations in Islamic Architecture. Furthermore, this method is used to construct new quasi-periodic tiling systems as well as generating their deflation and inflation rules. This method can be used as a general guiding principle for constructing infinite patches of dodecagon-based quasi-periodic formations, without the need for local strategies (tiling, matching, grid, substitution, etc.) or complicated mathematics; providing an easy tool for scientists, mathematicians, teachers, designers and artists, to generate and study a wide range of dodecagonal quasi-periodic formations.

Keywords: dodecagonal, Islamic architecture, long-range order, quasi-periodi

Procedia PDF Downloads 331
8388 Homogenization of a Non-Linear Problem with a Thermal Barrier

Authors: Hassan Samadi, Mustapha El Jarroudi

Abstract:

In this work, we consider the homogenization of a non-linear problem in periodic medium with two periodic connected media exchanging a heat flux throughout their common interface. The interfacial exchange coefficient λ is assumed to tend to zero or to infinity following a rate λ=λ(ε) when the size ε of the basic cell tends to zero. Three homogenized problems are determined according to some critical value depending of λ and ε. Our method is based on Γ-Convergence techniques.

Keywords: variational methods, epiconvergence, homogenization, convergence technique

Procedia PDF Downloads 420
8387 Developing Performance Model for Road Side Elements Receiving Periodic Maintenance

Authors: Ayman M. Othman, Hassan Y. Ahmed, Tallat A. Ali

Abstract:

Inadequate maintenance programs and funds allocated for highway networks in the developed countries have led to fast deterioration of road side elements. Therefore, this research focuses on developing a performance model for road side elements periodic maintenance activities. Road side elements that receive periodic maintenance include; earthen shoulder, road signs and traffic markings. Using the level of service concept, the developed model can determine the optimal periodic maintenance intervals for those elements based on a selected level of service suitable with the available periodic maintenance budget. Data related to time periods for progressive deterioration stages for the chosen elements were collected. Ten maintenance experts in Aswan, Sohag and Assiut cities were interviewed for that purpose. Time in months related to 10%, 25%, 40%, 50%, 75%, 90% and 100% deterioration of each road side element was estimated based on the experts opinion. Least square regression analysis has shown that a power function represents the best fit for earthen shoulders edge drop-off and damage of road signs with time. It was also evident that, the progressive dirtiness of road signs could be represented by a quadratic function an a linear function could represent the paint degradation nature of both traffic markings and road signs. Actual measurements of earthen shoulder edge drop-off agree considerably with the developed model.

Keywords: deterioration, level of service, periodic maintenance, performance model, road side element

Procedia PDF Downloads 502
8386 Fabrication of Periodic Graphene-Like Structure of Zinc Oxide Piezoelectric Device

Authors: Zi-Gui Huang, Shen-Hsien Hu

Abstract:

This study proposes a fabrication of phononic-crystal acoustic wave device. A graphene-like atomic structure was adopted as the main research subject, and a graphene-like structure was designed using piezoelectric material zinc oxide and its periodic boundary conditions were defined using the finite element method. The effects of a hexagonal honeycomb structure were investigated regarding the band gap phenomenon. The use of micro-electromechanical systems process technology to make the film etched micron graphics, designed to produce four kinds of different piezoelectric structure (plat, periodic, single defect and double defects). Frequency response signals and phase change were also measured in this paper.

Keywords: MEMS, phononic crystal, piezoelectric material, Zinc oxide

Procedia PDF Downloads 445