Search results for: functional properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10843

Search results for: functional properties

1033 Discerning Divergent Nodes in Social Networks

Authors: Mehran Asadi, Afrand Agah

Abstract:

In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.

Keywords: online social networks, data mining, social cloud computing, interaction and collaboration

Procedia PDF Downloads 121
1032 Surface Sunctionalization Strategies for the Design of Thermoplastic Microfluidic Devices for New Analytical Diagnostics

Authors: Camille Perréard, Yoann Ladner, Fanny D'Orlyé, Stéphanie Descroix, Vélan Taniga, Anne Varenne, Cédric Guyon, Michael. Tatoulian, Frédéric Kanoufi, Cyrine Slim, Sophie Griveau, Fethi Bedioui

Abstract:

The development of micro total analysis systems is of major interest for contaminant and biomarker analysis. As a lab-on-chip integrates all steps of an analysis procedure in a single device, analysis can be performed in an automated format with reduced time and cost, while maintaining performances comparable to those of conventional chromatographic systems. Moreover, these miniaturized systems are either compatible with field work or glovebox manipulations. This work is aimed at developing an analytical microsystem for trace and ultra trace quantitation in complex matrices. The strategy consists in the integration of a sample pretreatment step within the lab-on-chip by a confinement zone where selective ligands are immobilized for target extraction and preconcentration. Aptamers were chosen as selective ligands, because of their high affinity for all types of targets (from small ions to viruses and cells) and their ease of synthesis and functionalization. This integrated target extraction and concentration step will be followed in the microdevice by an electrokinetic separation step and an on-line detection. Polymers consisting of cyclic olefin copolymer (COC) or fluoropolymer (Dyneon THV) were selected as they are easy to mold, transparent in UV-visible and have high resistance towards solvents and extreme pH conditions. However, because of their low chemical reactivity, surface treatments are necessary. For the design of this miniaturized diagnostics, we aimed at modifying the microfluidic system at two scales : (1) on the entire surface of the microsystem to control the surface hydrophobicity (so as to avoid any sample wall adsorption) and the fluid flows during electrokinetic separation, or (2) locally so as to immobilize selective ligands (aptamers) on restricted areas for target extraction and preconcentration. We developed different novel strategies for the surface functionalization of COC and Dyneon, based on plasma, chemical and /or electrochemical approaches. In a first approach, a plasma-induced immobilization of brominated derivatives was performed on the entire surface. Further substitution of the bromine by an azide functional group led to covalent immobilization of ligands through “click” chemistry reaction between azides and terminal alkynes. COC and Dyneon materials were characterized at each step of the surface functionalization procedure by various complementary techniques to evaluate the quality and homogeneity of the functionalization (contact angle, XPS, ATR). With the objective of local (micrometric scale) aptamer immobilization, we developed an original electrochemical strategy on engraved Dyneon THV microchannel. Through local electrochemical carbonization followed by adsorption of azide-bearing diazonium moieties and covalent linkage of alkyne-bearing aptamers through click chemistry reaction, typical dimensions of immobilization zones reached the 50 µm range. Other functionalization strategies, such as sol-gel encapsulation of aptamers, are currently investigated and may also be suitable for the development of the analytical microdevice. The development of these functionalization strategies is the first crucial step in the design of the entire microdevice. These strategies allow the grafting of a large number of molecules for the development of new analytical tools in various domains like environment or healthcare.

Keywords: alkyne-azide click chemistry (CuAAC), electrochemical modification, microsystem, plasma bromination, surface functionalization, thermoplastic polymers

Procedia PDF Downloads 415
1031 The Numerical and Experimental Analysis of Compressed Composite Plate in Asymmetrical Arrangement of Layers

Authors: Katarzyna Falkowicz

Abstract:

The work focused on the original concept of a thin-walled plate element with a cut-out, for use as a spring or load-bearing element. The subject of the study were rectangular plates with a cut-out with variable geometrical parameters and with a variable angle of fiber arrangement, made of a carbon-epoxy composite with high strength properties in an asymmetrical arrangement, subjected to uniform compression. The influence of geometrical parameters of the cut-out and the angle of fiber arrangement on the value of critical load of the structure and buckling form was investigated. Uniform thin plates are relatively cheap to manufacture, however due to their low bending stiffness; they can carry relatively small loads. The lowest form of loss of plate stability, which is the bending form, leads to its rapid destruction due to high deflection increases, with a slight increase in compressive load - low rigidity of the structure. However, the stiffness characteristics of the structure change significantly when the work of plate is forcing according to the higher flexural-torsional form of buckling. The plate is able to carry a much higher compressive load while maintaining much stiffer work characteristics in the post-critical range. The calculations carried out earlier show that plates with forced higher form of buckling are characterized by stable, progressive paths of post-critical equilibrium, enabling their use as elastic elements. The characteristics of such elements can be designed in a wide range by changing the geometrical parameters of the cut-out, i.e. height and width as well as by changing the angle of fiber arrangement The commercial ABAQUS program using the finite element method was used to develop the discrete model and perform numerical calculations. The obtained results are of significant practical importance in the design of structures with elastic elements, allowing to achieve the required maintenance characteristics of the device.

Keywords: buckling mode, numerical method, unsymmetrical laminates, thin-walled elastic elements

Procedia PDF Downloads 85
1030 One Pot Synthesis of Ultrasmall NiMo Catalysts Supported on Amorphous Alumina with Enhanced type 2 Sites for Hydrodesulfurization Reaction: A Combined Experimental and Theoretical Study

Authors: Shalini Arora, Sri Sivakumar

Abstract:

The deep removal of high molecular weight sulphur compounds (e.g., 4,6, dimethyl dibenzothiophene) is challenging due to their steric hindrance. Hydrogenation desulfurization (HYD) pathway is the main pathway to remove these sulfur compounds, and it is mainly governed by the number of type 2 sites. The formation of type 2 sites can be enhanced by modulating the pore structure and the interaction between the active metal and support. To this end, we report the enhanced HDS catalytic activity of ultrasmall NiMo supported on amorphous alumina (A-Al₂O₃) catalysts by one pot colloidal synthesis method followed by calcination and sulfidation. The amorphous alumina (A-Al₂O₃) was chosen as the support due to its lower surface energy, better physicochemical properties, and enhanced acidic sites (due to the dominance of tetra and penta coordinated [Al] sites) than crystalline alumina phase. At 20% metal oxide composition, NiMo supported on A-Al₂O₃ catalyst showed 1.4 and 1.2 times more reaction rate constant and turn over frequency (TOF) respectively than the conventional catalyst (wet impregnated NiMo catalysts) for HDS reaction of dibenzothiophene reactant molecule. A-Al₂O₃ supported catalysts represented enhanced type 2 sites formation (because this catalystpossesses higher sulfidation degree (80%) and NiMoS sites (19.3 x 10¹⁷ sites/mg) with desired optimum stacking degree (2.5) than wet impregnated catalyst at same metal oxide composition 20%) along with higher active metal dispersion, Mo edge site fraction. The experimental observations were also supported by DFT simulations. Lower heat of adsorption (< 4.2 ev for MoS2 interaction and < 3.15 ev for Ni doped MoS2 interaction) values for A-Al₂O₃ confirmed the presence of weaker metal-support interaction in A-Al₂O₃ in contrast to crystalline ℽ-Al₂O3. The weak metal-support interaction for prepared catalysts clearly suggests the higher formation of type 2 sites which leads to higher catalytic activity for HDS reaction.

Keywords: amorphous alumina, colloidal, desulfurization, metal-support interaction

Procedia PDF Downloads 241
1029 Satellite Images to Determine Levels of Fire Severity in a Native Chilean Forest: Assessing the Responses of Soil Mesofauna Diversity to a Fire Event

Authors: Carolina Morales, Ricardo Castro-Huerta, Enrique A. Mundaca

Abstract:

The edaphic fauna is the main factor involved in the transformation of nutrients and soil decomposition processes. Edaphic organisms are highly sensitive to soil disturbances, which normally causes changes in the composition and abundance of such organisms. Fire is known to be a disturbing factor since it affects the physical, chemical and biological properties of the soil and the whole ecosystem. During the summer (December-March) of 2017, Chile suffered the major fire events recorded in its modern history, which affected a vast area and a number of ecosystem types. The objective of this study was first to use remote sensing satellite images and GIS (Geographic Information Systems) to assess and identify levels of fire severity in disturbed areas and to compare the responses of the soil mesofauna diversity among such areas. We identified four areas (treatments) with an ascending level of severity, namely: mild, medium, high severity, and free of fire. A non-affected patch of forest was established as a control. Three samples from each treatment were collected in the form of a soil cube (10x10x10 cm). Edaphic mesofauna was obtained from each sample through the Berlese-Tullgren funnel method. Collected specimens were quantified and identified, using the RTU (Recognisable Taxonomic Unit) criterion. Diversity was analysed using inferential statistics to compare Simpson and Shannon-Wiener indexes across treatments. As predicted, the unburned forest patch (control) exhibited higher diversity values than the treatments. Significantly higher diversity values were recorded in those treatments subjected to lower fire severity. We conclude that remote sensing zoning is an adequate tool to identify different levels of fire severity and that an edaphic mesofauna is a group of organisms that qualify as good bioindicators for monitoring soil recovery after fire events.

Keywords: bioindicator, Chile, fire severity level, soil

Procedia PDF Downloads 139
1028 Use of Coconut Shell as a Replacement of Normal Aggregates in Rigid Pavements

Authors: Prakash Parasivamurthy, Vivek Rama Das, Ravikant Talluri, Veena Jawali

Abstract:

India ranks among third in the production of coconut besides Philippines and Indonesia. About 92% of the total production in the country is contributed from four southern states especially, Kerala (45.22%), Tamil Nadu (26.56%), Karnataka (10.85%), and Andhra Pradesh (8.93%). Other states, such as Goa, Maharashtra, Odisha, West Bengal, and those in the northeast (Tripura and Assam) account for the remaining 8.44%. The use of coconut shell as coarse aggregate in concrete has never been a usual practice in the industry, particularly in areas where light weight concrete is required for non-load bearing walls, non-structural floors, and strip footings. The high cost of conventional building materials is a major factor affecting construction delivery in India. In India, where abundant agricultural and industrial wastes are discharged, these wastes can be used as potential material or replacement material in the construction industry. This will have double the advantages viz., reduction in the cost of construction material and also as a means of disposal of wastes. Therefore, an attempt has been made in this study to utilize the coconut shell (CS) as coarse aggregate in rigid pavement. The present study was initiated with the characterization of materials by the basic material testing. The casted moulds are cured and tests are conducted for hardened concrete. The procedure is continued with determination of fck (Characteristic strength), E (Modulus of Elasticity) and µ (Poisson Value) by the test results obtained. For the analytical studies, rigid pavement was modeled by the KEN PAVE software, finite element software developed specially for road pavements and simultaneously design of rigid pavement was carried out with Indian standards. Results show that physical properties of CSAC (Coconut Shell Aggregate Concrete) with 10% replacement gives better results. The flexural strength of CSAC is found to increase by 4.25% as compared to control concrete. About 13 % reduction in pavement thickness is observed using optimum coconut shell.

Keywords: coconut shell, rigid pavement, modulus of elasticity, poison ratio

Procedia PDF Downloads 205
1027 Extracellular Production of the Oncolytic Enzyme, Glutaminase Free L-Asparaginase, from Newly Isolated Streptomyces Olivaceus NEAE-119: Optimization of Culture Conditions Using Response Surface Methodology

Authors: Noura El-Ahmady El-Naggar

Abstract:

Among the antitumour drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological and biochemical properties, together with 16S rDNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product(1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett–Burman experimental design and response surface methodology was carried out. Fifteen nutritional variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4.7H2O, NaCl and FeSO4. 7H2O) were screened using Plackett–Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age and agitation speed) were further optimized by the central composite face-centered design -response surface methodology. As a result, a medium of the following formula is the optimum for producing an extracellular L-asparaginase in the culture filtrate of Streptomyces olivaceus NEAE-119: Dextrose 3g, starch 20g, L-asparagine 10g, KNO3 1g, K2HPO4 1g, MgSO4.7H2O 0.1g, NaCl 0.1g, pH 7, temperature 37°C, agitation speed 200 rpm/min, inoculum size 4%, v/v, inoculum age 72 h and fermentation period 5 days.

Keywords: Streptomyces olivaceus NEAE-119, glutaminase free L-asparaginase, production, Plackett-Burman design, central composite face-centered design, 16S rRNA, scanning electron microscope

Procedia PDF Downloads 338
1026 Machine That Provides Mineral Fertilizer Equal to the Soil on the Slopes

Authors: Huseyn Nuraddin Qurbanov

Abstract:

The reliable food supply of the population of the republic is one of the main directions of the state's economic policy. Grain growing, which is the basis of agriculture, is important in this area. In the cultivation of cereals on the slopes, the application of equal amounts of mineral fertilizers the under the soil before sowing is a very important technological process. The low level of technical equipment in this area prevents producers from providing the country with the necessary quality cereals. Experience in the operation of modern technical means has shown that, at present, there is a need to provide an equal amount of fertilizer on the slopes to under the soil, fully meeting the agro-technical requirements. No fundamental changes have been made to the industrial machines that fertilize the under the soil, and unequal application of fertilizers under the soil on the slopes has been applied. This technological process leads to the destruction of new seedlings and reduced productivity due to intolerance to frost during the winter for the plant planted in the fall. In special climatic conditions, there is an optimal fertilization rate for each agricultural product. The application of fertilizers to the soil is one of the conditions that increase their efficiency in the field. As can be seen, the development of a new technical proposal for fertilizing and plowing the slopes in equal amounts on the slopes, improving the technological and design parameters, and taking into account the physical and mechanical properties of fertilizers is very important. Taking into account the above-mentioned issues, a combined plough was developed in our laboratory. Combined plough carries out pre-sowing technological operation in the cultivation of cereals, providing a smooth equal amount of mineral fertilizers under the soil on the slopes. Mathematical models of a smooth spreader that evenly distributes fertilizers in the field have been developed. Thus, diagrams and graphs obtained without distribution on the 8 partitions of the smooth spreader are constructed under the inclined angles of the slopes. Percentage and productivity of equal distribution in the field were noted by practical and theoretical analysis.

Keywords: combined plough, mineral fertilizer, equal sowing, fertilizer norm, grain-crops, sowing fertilizer

Procedia PDF Downloads 114
1025 Highly Efficient in Vitro Regeneration of Swertia chirayita (Roxb. ex Fleming) Karsten: A Critically Endangered Medicinal Plant

Authors: Mahendran Ganesan, Sanjeet Kumar Verma, Zafar Iqbal, Ashish Chandran, Zakir Husain, Shama Afroz, Sana Shahid, Laiq Ur Rahman

Abstract:

Highly efficient in vitro regeneration system has been developed for Swertia chirayita (Roxb. ex Fleming) H. Karst, a high prized traditional medicinal plant to treat numerous ailments such as liver disorders, malaria and diabetes and are reported to have a wide spectrum of pharmacological properties. Its medicinal usage is well-documented in Indian pharmaceutical codex, the British and the American pharmacopeias, and in different traditional medicine such as the Ayurveda, Unani and Siddha medical systems. Nodal explants were cultured on MS medium supplemented with various phytohormones for multiple shoot induction. The nodal segments failed to respond in growth regulator free medium. All the concentrations of BAP, Kin and TDZ facilitated shoot bud break and multiple shoot induction. Among the various cytokinins tested, BAP was found to be more effective with respect to initiation and subsequent development of shoots. Of the various concentrations BAP tested, BAP at 4.0 mg/L showed the higher average number of shoot regeneration (10.80 shoots per explant). Kin at 4 mg/L and TDZ at 4 mg/L induced 5.70 and 04.5+0 shoots per explant, respectively. Further increase in concentration did not favour an increase in the number of shoots. However, these shoots failed to elongate further. Hence, addition of GA₃ (1 mg/L) was added to the above medium. This treatment resulted in the elongation of shoots (2.50 cm) and a further increase in the number of microshoots (34.20 shoots/explant). Roots were also induced in the same medium containing BAP (4 mg/L) + GA₃ (1 mg/L) + NAA (0.5 mg/L). In vitro derived plantlets with well-developed roots were transferred to the potting media containing garden soil: sand: vermicompost (2:1:1). Plantlets were covered with a polyethylene bag and irrigated with water. The pots were maintained at 25 ± 2ºC, and then the polyethylene cover was gradually loosened, thus dropping the humidity (65–70%). This procedure subsequently resulted in in vitro hardening of the plantlet.

Keywords: micropropagation, nodal explant, plant growth regulators, Swertia chirayita

Procedia PDF Downloads 95
1024 Studying the Simultaneous Effect of Petroleum and DDT Pollution on the Geotechnical Characteristics of Sands

Authors: Sara Seyfi

Abstract:

DDT and petroleum contamination in coastal sand alters the physical and mechanical properties of contaminated soils. This article aims to understand the effects of DDT pollution on the geotechnical characteristics of sand groups, including sand, silty sand, and clay sand. First, the studies conducted on the topic of the article will be reviewed. In the initial stage of the tests, this article deals with the identification of the used sands (sand, silty sand, clay sand) by FTIR, µ-XRF and SEM methods. Then, the geotechnical characteristics of these sand groups, including density, permeability, shear strength, compaction, and plasticity, are investigated using a sand cone, head permeability test, Vane shear test, strain gauge penetrometer, and plastic limit test. Sand groups are artificially contaminated with petroleum substances with 1, 2, 4, 8, 10, 12% by weight. In a separate experiment, amounts of 2, 4, 8, 12, 16, 20 mg/liter of DDT were added to the sand groups. Geotechnical characteristics and identification analysis are performed on the contaminated samples. In the final tests, the mentioned amounts of oil pollution and DDT are simultaneously added to the sand groups, and identification and measurement processes are carried out. The results of the tests showed that petroleum contamination had reduced the optimal moisture content, permeability, and plasticity of all samples. Except silty sand’s plasticity, which petroleum increased it by 1-4% and decreased it by 8-12%. The dry density of sand and clay sand increased, but that of silty sand decreased. Also, the shear strength of sand and silty sand increased, but that of clay sand decreased. DDT contamination increased the maximum dry density and decreased the permeability of all samples. It also reduced the optimum moisture content of the sand. The shear resistance of silty sand and clayey sand decreased, and plasticity of clayey sand increased, and silty sand decreased. The simultaneous effect of petroleum and DDT pollution on the maximum dry density of sand and clayey sand has been synergistic, on the plasticity of clayey sand and silty sand, there has been antagonism. This process has caused antagonism of optimal sand content, shear strength of silty sand and clay sand. In other cases, the effect of synergy or antagonism is not observed.

Keywords: DDT contamination, geotechnical characteristics, petroleum contamination, sand

Procedia PDF Downloads 7
1023 Mechanical and Tribological Performances of (Nb: H-D: a-C) Thin Films for Biomedical Applications

Authors: Sara Khamseh, Kambiz Javanruee, Hamid Khorsand

Abstract:

Plenty of metallic materials are used for biomedical applications like hip joints and screws. Besides, it is reported that metal platforms such as stainless steel show significant deterioration because of wear and friction. The surface of metal substrates has been coated with a variety of multicomponent coatings to prevail these problems. The carbon-based multicomponent coatings such as metal-added amorphous carbon and diamond coatings are crucially important because of their remarkable tribological performance and chemical stability. In the current study, H-D contained Nb: (a-C) multicomponent coatings (H-D: hexagonal diamond, a-C: amorphous carbon) coated on A 304 steel substrates using an unbalanced magnetron (UBM) sputtering system. The effects of Nb and H-D content and ID/IG ratio on microstructure, mechanical and tribological characteristics of (Nb: H-D: a-C) composite coatings were investigated. The results of Raman spectroscopy represented that a-C phase with a Graphite-like structure (GLC with high value of sp2 carbon bonding) is formed, and its domain size increased with increasing Nb content of the coatings. Moreover, the Nb played a catalyst for the formation of the H-D phase. The nanoindentation hardness value of the coatings ranged between ~17 to ~35 GPa and (Nb: H-D: a-C) composite coatings with more H-D content represented higher hardness and plasticity index. It seems that the existence of extra-hard H-D particles straightly increased hardness. The tribological performance of the coatings was evaluated using the pin-on-disc method under the wet environment of SBF (Simulated Body Fluid). The COF value of the (Nb: H-D: a-C) coatings decreased with an increasing ID/IG ratio. The lower coefficient of friction is a result of the lamelliform array of graphitic domains. Also, the wear rate of the coatings decreased with increasing H-D content of the coatings. Based on the literature, a-C coatings with high hardness and H3/E2 ratio represent lower wear rates and better tribological performance. According to the nanoindentation analysis, hardness and H3/E2 ratio of (Nb: H-D: a-C) multicomponent coatings increased with increasing H-D content, which in turn decreased the wear rate of the coatings. The mechanical and tribological potency of (Nb: H-D: a-C) composite coatings on A 304 steel substrates paved the way for the development of innovative advanced coatings to ameliorate the performance of A 304 steel for biomedical applications.

Keywords: COF, mechanical properties, (Nb: H-D: a-C) coatings, wear rate

Procedia PDF Downloads 71
1022 Comparison of Methods for the Detection of Biofilm Formation in Yeast and Lactic Acid Bacteria Species Isolated from Dairy Products

Authors: Goksen Arik, Mihriban Korukluoglu

Abstract:

Lactic acid bacteria (LAB) and some yeast species are common microorganisms found in dairy products and most of them are responsible for the fermentation of foods. Such cultures are isolated and used as a starter culture in the food industry because of providing standardisation of the final product during the food processing. Choice of starter culture is the most important step for the production of fermented food. Isolated LAB and yeast cultures which have the ability to create a biofilm layer can be preferred as a starter in the food industry. The biofilm formation could be beneficial to extend the period of usage time of microorganisms as a starter. On the other hand, it is an undesirable property in pathogens, since biofilm structure allows a microorganism become more resistant to stress conditions such as antibiotic presence. It is thought that the resistance mechanism could be turned into an advantage by promoting the effective microorganisms which are used in the food industry as starter culture and also which have potential to stimulate the gastrointestinal system. Development of the biofilm layer is observed in some LAB and yeast strains. The resistance could make LAB and yeast strains dominant microflora in the human gastrointestinal system; thus, competition against pathogen microorganisms can be provided more easily. Based on this circumstance, in the study, 10 LAB and 10 yeast strains were isolated from various dairy products, such as cheese, yoghurt, kefir, and cream. Samples were obtained from farmer markets and bazaars in Bursa, Turkey. As a part of this research, all isolated strains were identified and their ability of biofilm formation was detected with two different methods and compared with each other. The first goal of this research was to determine whether isolates have the potential for biofilm production, and the second was to compare the validity of two different methods, which are known as “Tube method” and “96-well plate-based method”. This study may offer an insight into developing a point of view about biofilm formation and its beneficial properties in LAB and yeast cultures used as a starter in the food industry.

Keywords: biofilm, dairy products, lactic acid bacteria, yeast

Procedia PDF Downloads 234
1021 Fault-Tolerant Control Study and Classification: Case Study of a Hydraulic-Press Model Simulated in Real-Time

Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Iker Elorza, Ana Maria Macarulla

Abstract:

Society demands more reliable manufacturing processes capable of producing high quality products in shorter production cycles. New control algorithms have been studied to satisfy this paradigm, in which Fault-Tolerant Control (FTC) plays a significant role. It is suitable to detect, isolate and adapt a system when a harmful or faulty situation appears. In this paper, a general overview about FTC characteristics are exposed; highlighting the properties a system must ensure to be considered faultless. In addition, a research to identify which are the main FTC techniques and a classification based on their characteristics is presented in two main groups: Active Fault-Tolerant Controllers (AFTCs) and Passive Fault-Tolerant Controllers (PFTCs). AFTC encompasses the techniques capable of re-configuring the process control algorithm after the fault has been detected, while PFTC comprehends the algorithms robust enough to bypass the fault without further modifications. The mentioned re-configuration requires two stages, one focused on detection, isolation and identification of the fault source and the other one in charge of re-designing the control algorithm by two approaches: fault accommodation and control re-design. From the algorithms studied, one has been selected and applied to a case study based on an industrial hydraulic-press. The developed model has been embedded under a real-time validation platform, which allows testing the FTC algorithms and analyse how the system will respond when a fault arises in similar conditions as a machine will have on factory. One AFTC approach has been picked up as the methodology the system will follow in the fault recovery process. In a first instance, the fault will be detected, isolated and identified by means of a neural network. In a second instance, the control algorithm will be re-configured to overcome the fault and continue working without human interaction.

Keywords: fault-tolerant control, electro-hydraulic actuator, fault detection and isolation, control re-design, real-time

Procedia PDF Downloads 150
1020 Investigation of the Technological Demonstrator 14x B in Different Angle of Attack in Hypersonic Velocity

Authors: Victor Alves Barros Galvão, Israel Da Silveira Rego, Antonio Carlos Oliveira, Paulo Gilberto De Paula Toro

Abstract:

The Brazilian hypersonic aerospace vehicle 14-X B, VHA 14-X B, is a vehicle integrated with the hypersonic airbreathing propulsion system based on supersonic combustion (scramjet), developing in Aerothermodynamics and hypersonic Prof. Henry T. Nagamatsu Laboratory, to conduct demonstration in atmospheric flight at the speed corresponding to Mach number 7 at an altitude of 30km. In the experimental procedure the hypersonic shock tunnel T3 was used, installed in that laboratory. This device simulates the flow over a model is fixed in the test section and can also simulate different atmospheric conditions. The scramjet technology offers substantial advantages to improve aerospace vehicle performance which flies at a hypersonic speed through the Earth's atmosphere by reducing fuel consumption on board. Basically, the scramjet is an aspirated aircraft engine fully integrated that uses oblique/conic shock waves generated during hypersonic flight, to promote the deceleration and compression of atmospheric air in scramjet inlet. During the hypersonic flight, the vehicle VHA 14-X will suffer atmospheric influences, promoting changes in the vehicle's angles of attack (angle that the mean line of vehicle makes with respect to the direction of the flow). Based on this information, a study is conducted to analyze the influences of changes in the vehicle's angle of attack during the atmospheric flight. Analytical theoretical analysis, simulation computational fluid dynamics and experimental investigation are the methodologies used to design a technological demonstrator prior to the flight in the atmosphere. This paper considers analysis of the thermodynamic properties (pressure, temperature, density, sound velocity) in lower surface of the VHA 14-X B. Also, it considers air as an ideal gas and chemical equilibrium, with and without boundary layer, considering changes in the vehicle's angle of attack (positive and negative in relation to the flow) and bi-dimensional expansion wave theory at the expansion section (Theory of Prandtl-Meyer).

Keywords: angle of attack, experimental hypersonic, hypersonic airbreathing propulsion, Scramjet

Procedia PDF Downloads 381
1019 Empirical Modeling and Optimization of Laser Welding of AISI 304 Stainless Steel

Authors: Nikhil Kumar, Asish Bandyopadhyay

Abstract:

Laser welding process is a capable technology for forming the automobile, microelectronics, marine and aerospace parts etc. In the present work, a mathematical and statistical approach is adopted to study the laser welding of AISI 304 stainless steel. A robotic control 500 W pulsed Nd:YAG laser source with 1064 nm wavelength has been used for welding purpose. Butt joints are made. The effects of welding parameters, namely; laser power, scanning speed and pulse width on the seam width and depth of penetration has been investigated using the empirical models developed by response surface methodology (RSM). Weld quality is directly correlated with the weld geometry. Twenty sets of experiments have been conducted as per central composite design (CCD) design matrix. The second order mathematical model has been developed for predicting the desired responses. The results of ANOVA indicate that the laser power has the most significant effect on responses. Microstructural analysis as well as hardness of the selected weld specimens has been carried out to understand the metallurgical and mechanical behaviour of the weld. Average micro-hardness of the weld is observed to be higher than the base metal. Higher hardness of the weld is the resultant of grain refinement and δ-ferrite formation in the weld structure. The result suggests that the lower line energy generally produce fine grain structure and improved mechanical properties than the high line energy. The combined effects of input parameters on responses have been analyzed with the help of developed 3-D response surface and contour plots. Finally, multi-objective optimization has been conducted for producing weld joint with complete penetration, minimum seam width and acceptable welding profile. Confirmatory tests have been conducted at optimum parametric conditions to validate the applied optimization technique.

Keywords: ANOVA, laser welding, modeling and optimization, response surface methodology

Procedia PDF Downloads 271
1018 Beneficial Effects of Curcumin against Stress Oxidative and Mitochondrial Dysfunction Induced by Trinitrobenzene Sulphonic Acid in Colon

Authors: Souad Mouzaoui, Bahia Djerdjouri

Abstract:

Oxidative stress is one of the main factors involved in the onset and chronicity of inflammatory bowel disease (IBD). In this study, we investigated the beneficial effects of a potent natural antioxidant, curcumin (Cur) on colitis and mitochondrial dysfunction in trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Rectal instillation of the chemical irritant TNBS (30 mg kg-1) induced the disruption of distal colonic architecture and a massive inflammatory cells influx to the mucosa and submucosa layers. Under these conditions, daily administration of Cur (25 mg kg-1) efficiently decreased colitis scores in the inflamed distal colon by reducing leukocyte infiltrate as attested by reduced myeloperoxidase (MPO) activity. Moreover, the levels of nitrite, an end product of inducible NO synthase activity (iNOS) and malonyl dialdehyde (MDA), a marker of lipid peroxidation increased in a time depending manner in response to TNBS challenge. Conversely, the markers of the antioxidant pool, reduced glutathione (GSH) and catalase activity (CAT) were drastically reduced. Cur attenuated oxidative stress markers and partially restored CAT and GSH levels. Moreover, our results expanded the effect of Cur on TNBS-induced colonic mitochondrial dysfunction. In fact, TNBS induced mitochondrial swelling and lipids peroxidation. These events reflected in the opening of mitochondrial transition pore and could be an initial indication in the cascade process leading to cell death. TNBS inhibited also mitochondrial respiratory activity, caused overproduction of mitochondrial superoxide anion (O2-.) and reduced level of mitochondrial GSH. Nevertheless, Cur reduced the extent of mitochondrial oxidative stress induced by TNBS and restored colonic mitochondrial function. In conclusion, our results showed the critical role of oxidative stress in TNBS-induced colitis. They highlight the role of colonic mitochondrial dysfunction induced by TNBS, as a potential source of oxidative damages. Due to its potent antioxidant properties, Cur opens a promising therapeutic approach against oxidative inflammation in IBD.

Keywords: colitis, curcumin, mitochondria, oxidative stress, TNBS

Procedia PDF Downloads 223
1017 Modern Cardiac Surgical Outcomes in Nonagenarians: A Multicentre Retrospective Observational Study

Authors: Laurence Weinberg, Dominic Walpole, Dong-Kyu Lee, Michael D’Silva, Jian W. Chan, Lachlan F. Miles, Bradley Carp, Adam Wells, Tuck S. Ngun, Siven Seevanayagam, George Matalanis, Ziauddin Ansari, Rinaldo Bellomo, Michael Yii

Abstract:

Background: There have been multiple recent advancements in the selection, optimization and management of cardiac surgical patients. However, there is limited data regarding the outcomes of nonagenarians undergoing cardiac surgery, despite this vulnerable cohort increasingly receiving these interventions. This study describes the patient characteristics, management and outcomes of a group of nonagenarians undergoing cardiac surgery in the context of contemporary peri-operative care. Methods: A retrospective observational study was conducted of patients 90 to 99 years of age (i.e., nonagenarians) who had undergone cardiac surgery requiring a classic median sternotomy (i.e., open-heart surgery). All operative indications were included. Patients who underwent minimally invasive surgery, transcatheter aortic valve implantation and thoracic aorta surgery were excluded. Data were collected from four hospitals in Victoria, Australia, over an 8-year period (January 2012 – December 2019). The primary objective was to assess six-month mortality in nonagenarians undergoing open-heart surgery and to evaluate the incidence and severity of postoperative complications using the Clavien-Dindo classification system. The secondary objective was to provide a detailed description of the characteristics and peri-operative management of this group. Results: A total of 12,358 adult patients underwent cardiac surgery at the study centers during the observation period, of whom 18 nonagenarians (0.15%) fulfilled the inclusion criteria. The median (IQR) [min-max] age was 91 years (90.0:91.8) [90-94] and 14 patients (78%) were men. Cardiovascular comorbidities, polypharmacy and frailty, were common. The median (IQR) predicted in-hospital mortality by EuroSCORE II was 6.1% (4.1-14.5). All patients were optimized preoperatively by a multidisciplinary team of surgeons, cardiologists, geriatricians and anesthetists. All index surgeries were performed on cardiopulmonary bypass. Isolated coronary artery bypass grafting (CABG) and CABG with aortic valve replacement were the most common surgeries being performed in four and five patients, respectively. Half the study group underwent surgery involving two or more major procedures (e.g. CABG and valve replacement). Surgery was undertaken emergently in 44% of patients. All patients except one experienced at least one postoperative complication. The most common complications were acute kidney injury (72%), new atrial fibrillation (44%) and delirium (39%). The highest Clavien-Dindo complication grade was IIIb occurring once each in three patients. Clavien-Dindo grade IIIa complications occurred in only one patient. The median (IQR) postoperative length of stay was 11.6 days (9.8:17.6). One patient was discharged home and all others to an inpatient rehabilitation facility. Three patients had an unplanned readmission within 30 days of discharge. All patients had follow-up to at least six months after surgery and mortality over this period was zero. The median (IQR) duration of follow-up was 11.3 months (6.0:26.4) and there were no cases of mortality observed within the available follow-up records. Conclusion: In this group of nonagenarians undergoing cardiac surgery, postoperative six-month mortality was zero. Complications were common but generally of low severity. These findings support carefully selected nonagenarian patients being offered cardiac surgery in the context of contemporary, multidisciplinary perioperative care. Further, studies are needed to assess longer-term mortality and functional and quality of life outcomes in this vulnerable surgical cohort.

Keywords: cardiac surgery, mortality, nonagenarians, postoperative complications

Procedia PDF Downloads 93
1016 Practice and Understanding of Fracturing Renovation for Risk Exploration Wells in Xujiahe Formation Tight Sandstone Gas Reservoir

Authors: Fengxia Li, Lufeng Zhang, Haibo Wang

Abstract:

The tight sandstone gas reservoir in the Xujiahe Formation of the Sichuan Basin has huge reserves, but its utilization rate is low. Fracturing and stimulation are indispensable technologies to unlock their potential and achieve commercial exploitation. Slickwater is the most widely used fracturing fluid system in the fracturing and renovation of tight reservoirs. However, its viscosity is low, its sand-carrying performance is poor, and the risk of sand blockage is high. Increasing the sand carrying capacity by increasing the displacement will increase the frictional resistance of the pipe string, affecting the resistance reduction performance. The variable viscosity slickwater can flexibly switch between different viscosities in real-time online, effectively overcoming problems such as sand carrying and resistance reduction. Based on a self-developed indoor loop friction testing system, a visualization device for proppant transport, and a HAAKE MARS III rheometer, a comprehensive evaluation was conducted on the performance of variable viscosity slickwater, including resistance reduction, rheology, and sand carrying. The indoor experimental results show that: 1. by changing the concentration of drag-reducing agents, the viscosity of the slippery water can be changed between 2~30mPa. s; 2. the drag reduction rate of the variable viscosity slickwater is above 80%, and the shear rate will not reduce the drag reduction rate of the liquid; under indoor experimental conditions, 15mPa. s of variable viscosity and slickwater can basically achieve effective carrying and uniform placement of proppant. The layered fracturing effect of the JiangX well in the dense sandstone of the Xujiahe Formation shows that the drag reduction rate of the variable viscosity slickwater is 80.42%, and the daily production of the single layer after fracturing is over 50000 cubic meters. This study provides theoretical support and on-site experience for promoting the application of variable viscosity slickwater in tight sandstone gas reservoirs.

Keywords: slickwater, hydraulic fracturing, dynamic sand laying, drag reduction rate, rheological properties

Procedia PDF Downloads 51
1015 Superchaotropicity: Grafted Surface to Probe the Adsorption of Nano-Ions

Authors: Raimoana Frogier, Luc Girard, Pierre Bauduin, Diane Rebiscoul, Olivier Diat

Abstract:

Nano-ions (NIs) are ionic species or clusters of nanometric size. Their low charge density and the delocalization of their charges give special properties to some of NIs belonging to chemical classes of polyoxometalates (POMs) or boron clusters. They have the particularity of interacting non-covalently with neutral hydrated surface or interfaces such as assemblies of surface-active molecules (micelles, vesicles, lyotropic liquid crystals), foam bubbles or emulsion droplets. This makes possible to classify those NIs in the Hofmeister series as superchaotropic ions. The mechanism of adsorption is complex, linked to the simultaneous dehydration of the ion and the molecule or supramolecular assembly with which it can interact, all with an enthalpic gain on the free energy of the system. This interaction process is reversible and is sufficiently pronounced to induce changes in molecular and supramolecular shape or conformation, phase transitions in the liquid phase, all at sub-millimolar ionic concentrations. This new property of some NIs opens up new possibilities for applications in fields as varied as biochemistry for solubilization, recovery of metals of interest by foams in the form of NIs... In order to better understand the physico-chemical mechanisms at the origin of this interaction, we use silicon wafers functionalized by non-ionic oligomers (polyethylene glycol chains or PEG) to study in situ by X-ray reflectivity this interaction of NIs with the grafted chains. This study carried out at ESRF (European Synchrotron Radiation Facility) and has shown that the adsorption of the NIs, such as POMs, has a very fast kinetics. Moreover the distribution of the NIs in the grafted PEG chain layer was quantify. These results are very encouraging and confirm what has been observed on soft interfaces such as micelles or foams. The possibility to play on the density, length and chemical nature of the grafted chains makes this system an ideal tool to provide kinetic and thermodynamic information to decipher the complex mechanisms at the origin of this adsorption.

Keywords: adsorption, nano-ions, solid-liquid interface, superchaotropicity

Procedia PDF Downloads 40
1014 Predicting and Optimizing the Mechanical Behavior of a Flax Reinforced Composite

Authors: Georgios Koronis, Arlindo Silva

Abstract:

This study seeks to understand the mechanical behavior of a natural fiber reinforced composite (epoxy/flax) in more depth, utilizing both experimental and numerical methods. It is attempted to identify relationships between the design parameters and the product performance, understand the effect of noise factors and reduce process variations. Optimization of the mechanical performance of manufactured goods has recently been implemented by numerous studies for green composites. However, these studies are limited and have explored in principal mass production processes. It is expected here to discover knowledge about composite’s manufacturing that can be used to design artifacts that are of low batch and tailored to niche markets. The goal is to reach greater consistency in the performance and further understand which factors play significant roles in obtaining the best mechanical performance. A prediction of response function (in various operating conditions) of the process is modeled by the DoE. Normally, a full factorial designed experiment is required and consists of all possible combinations of levels for all factors. An analytical assessment is possible though with just a fraction of the full factorial experiment. The outline of the research approach will comprise of evaluating the influence that these variables have and how they affect the composite mechanical behavior. The coupons will be fabricated by the vacuum infusion process defined by three process parameters: flow rate, injection point position and fiber treatment. Each process parameter is studied at 2-levels along with their interactions. Moreover, the tensile and flexural properties will be obtained through mechanical testing to discover the key process parameters. In this setting, an experimental phase will be followed in which a number of fabricated coupons will be tested to allow for a validation of the design of the experiment’s setup. Finally, the results are validated by performing the optimum set of in a final set of experiments as indicated by the DoE. It is expected that after a good agreement between the predicted and the verification experimental values, the optimal processing parameter of the biocomposite lamina will be effectively determined.

Keywords: design of experiments, flax fabrics, mechanical performance, natural fiber reinforced composites

Procedia PDF Downloads 182
1013 Epigenetic Modifying Potential of Dietary Spices: Link to Cure Complex Diseases

Authors: Jeena Gupta

Abstract:

In the today’s world of pharmaceutical products, one should not forget the healing properties of inexpensive food materials especially spices. They are known to possess hidden pharmaceutical ingredients, imparting them the qualities of being anti-microbial, anti-oxidant, anti-inflammatory and anti-carcinogenic. Further aberrant epigenetic regulatory mechanisms like DNA methylation, histone modifications or altered microRNA expression patterns, which regulates gene expression without changing DNA sequence, contribute significantly in the development of various diseases. Changing lifestyles and diets exert their effect by influencing these epigenetic mechanisms which are thus the target of dietary phytochemicals. Bioactive components of plants have been in use since ages but their potential to reverse epigenetic alterations and prevention against diseases is yet to be explored. Spices being rich repositories of many bioactive constituents are responsible for providing them unique aroma and taste. Some spices like curcuma and garlic have been well evaluated for their epigenetic regulatory potential, but for others, it is largely unknown. We have evaluated the biological activity of phyto-active components of Fennel, Cardamom and Fenugreek by in silico molecular modeling, in vitro and in vivo studies. Ligand-based similarity studies were conducted to identify structurally similar compounds to understand their biological phenomenon. The database searching has been done by using Fenchone from fennel, Sabinene from cardamom and protodioscin from fenugreek as a query molecule in the different small molecule databases. Moreover, the results of the database searching exhibited that these compounds are having potential binding with the different targets found in the Protein Data Bank. Further in addition to being epigenetic modifiers, in vitro study had demonstrated the antimicrobial, antifungal, antioxidant and cytotoxicity protective effects of Fenchone, Sabinene and Protodioscin. To best of our knowledge, such type of studies facilitate the target fishing as well as making the roadmap in drug design and discovery process for identification of novel therapeutics.

Keywords: epigenetics, spices, phytochemicals, fenchone

Procedia PDF Downloads 127
1012 Evaluation of Different Anticoagulant Effects on Flow Properties of Human Blood Using Falling Needle Rheometer

Authors: Hiroki Tsuneda, Takamasa Suzuki, Hideki Yamamoto, Kimito Kawamura, Eiji Tamura, Katharina Wochner, Roberto Plasenzotti

Abstract:

Flow property of human blood is one of the important factors on the prevention of the circulatory condition such as a high blood pressure, a diabetes mellitus, and a cardiac infarction. However, the measurement of flow property of human blood, especially blood viscosity, is not so easy, because of their coagulation or aggregation behaviors after taking a sample from blood vessel. In the experiment, some kinds of anticoagulant were added into the human blood to avoid its solidification. Anticoagulant used in the blood test has been chosen for each purpose of blood test, for anticoagulant effect on blood is different mechanism for each. So that, there is a problem that the evaluation of measured blood property with different anticoagulant is so difficult. Therefore, it is so important to make clear the difference of anticoagulant effect on the blood property. In the previous work, a compact-size falling needle rheometer (FNR) has been developed in order to measure the flow property of human blood such as a flow curve, an apparent viscosity. It was found that FNR system can apply to a rheometer or a viscometry for various experimental conditions for not only human blood but also mammalians blood. In this study, the measurements of human blood viscosity with different anticoagulant (EDTA and Heparin) were carried out using newly developed FNR system. The effect of anticoagulant on blood viscosity was also tested by using the standard liquid for each. The accuracy on the viscometry was also tested by using the standard liquid for calibrating materials (JS-10, JS-20) and observed data have satisfactory agreement with reference data around 1.0% at 310K. The flow curve of six males and females with different anticoagulant were measured using FNR. In this experiment, EDTA and Heparin were chosen as anticoagulant for blood. Heparin can inhibit the coagulation of human blood by activating the body of anti-thrombin. To examine the effect of human blood viscosity on anticoagulant, flow curve was measured at high shear rate (>350s-1), and apparent viscosity of each person were determined with different anticoagulant. The apparent viscosity of human blood with heparin was 2%-9% higher than that with EDTA. However, the difference of blood viscosity for two anticoagulants for same blood was different for each. Further discussion, we need the consideration of effect on other physical property, such as cellular component and plasma component.

Keywords: falling-needle rheometer, human blood, viscosity, anticoagulant

Procedia PDF Downloads 416
1011 Comparative Evaluation of Root Uptake Models for Developing Moisture Uptake Based Irrigation Schedules for Crops

Authors: Vijay Shankar

Abstract:

In the era of water scarcity, effective use of water via irrigation requires good methods for determining crop water needs. Implementation of irrigation scheduling programs requires an accurate estimate of water use by the crop. Moisture depletion from the root zone represents the consequent crop evapotranspiration (ET). A numerical model for simulating soil water depletion in the root zone has been developed by taking into consideration soil physical properties, crop and climatic parameters. The governing differential equation for unsaturated flow of water in the soil is solved numerically using the fully implicit finite difference technique. The water uptake by plants is simulated by using three different sink functions. The non-linear model predictions are in good agreement with field data and thus it is possible to schedule irrigations more effectively. The present paper describes irrigation scheduling based on moisture depletion from the different layers of the root zone, obtained using different sink functions for three cash, oil and forage crops: cotton, safflower and barley, respectively. The soil is considered at a moisture level equal to field capacity prior to planting. Two soil moisture regimes are then imposed for irrigated treatment, one wherein irrigation is applied whenever soil moisture content is reduced to 50% of available soil water; and other wherein irrigation is applied whenever soil moisture content is reduced to 75% of available soil water. For both the soil moisture regimes it has been found that the model incorporating a non-linear sink function which provides best agreement of computed root zone moisture depletion with field data, is most effective in scheduling irrigations. Simulation runs with this moisture uptake function result in saving 27.3 to 45.5% & 18.7 to 37.5%, 12.5 to 25% % &16.7 to 33.3% and 16.7 to 33.3% & 20 to 40% irrigation water for cotton, safflower and barley respectively, under 50 & 75% moisture depletion regimes over other moisture uptake functions considered in the study. Simulation developed can be used for an optimized irrigation planning for different crops, choosing a suitable soil moisture regime depending upon the irrigation water availability and crop requirements.

Keywords: irrigation water, evapotranspiration, root uptake models, water scarcity

Procedia PDF Downloads 305
1010 High Heating Value Bio-Chars from a Bio-Oil Upgrading Process

Authors: Julius K. Gane, Mohamad N. Nahil, Paul T. Williams

Abstract:

In today’s world of rapid population growth and a changing climate, one way to mitigate various negative effects is via renewable energy solutions. Energy and power as basic requirements in almost all human endeavours are also the banes of the changing climate and the impacts thereof. Thus it is crucial to develop innovative and environmentally friendly energy options to ameliorate various negative repercussions. Upgrading of fast pyrolysis bio-oil via hydro-treatment offers such opportunities, as quality renewable liquid transportation fuels can be produced. The process, however, is typically accompanied by bio-char formation as a by-product. The goal of this work was to study the yield and some properties of bio-chars formed from a hydrotreatment process, with an overall aim to promote the valuable utilization of wastes or by-products from renewable energy technologies. It is assumed that bio-chars that have comparable energy contents with coals will be more desirable as solid energy materials due to renewability and environmental friendliness. Therefore, the analytical work in this study focused mainly on determining the higher heating value (HHV) of the chars. The method involved the reaction of bio-oil in an autoclave supplied by the Parr Instrument Company, IL, USA. Two main parameters (different temperatures and resident times) were investigated. The chars were characterized using a Thermo EA2000 CHNS analyser, then oxygen contents and HHVs computed based on the literature. From the results, these bio-chars can readily serve as feedstocks for the production of renewable solid fuels. Their HHVs ranged between 29.26-39.18 MJ/kg, affected by different temperatures and retention times. There was an inverse relationship between the oxygen content and the HHVs of the chars. It can, therefore, be concluded that it is possible to optimize the process efficiency of the hydrotreatment process used through the production of renewable energy materials from the 'waste’ char by-products. Future work should consider developing a suitable balance between the primary objective of bio-oil upgrading processes (which is to improve the quality of the liquid fuels) and the conversion of its solid wastes into value-added products such as smokeless briquettes.

Keywords: bio-char, renewable solid biofuels, valorisation, waste-to-energy

Procedia PDF Downloads 105
1009 Effect of Three Desensitizers on Dentinal Tubule Occlusion and Bond Strength of Dentin Adhesives

Authors: Zou Xuan, Liu Hongchen

Abstract:

The ideal dentin desensitizing agent should not only have good biological safety, simple clinical operation mode, the superior treatment effect, but also should have a durable effect to resist the oral environmental temperature change and oral mechanical abrasion, so as to achieve a persistent desensitization effect. Also, when using desensitizing agent to prevent the post-operative hypersensitivity, we should not only prevent it from affecting crowns’ retention, but must understand its effects on bond strength of dentin adhesives. There are various of desensitizers and dentin adhesives in clinical treatment. They have different chemical or physical properties. Whether the use of desensitizing agent would affect the bond strength of dentin adhesives still need further research. In this in vitro study, we built the hypersensitive dentin model and post-operative dentin model, to evaluate the sealing effects and durability on exposed tubule by three different dentin desensitizers and to evaluate the sealing effects and the bond strength of dentin adhesives after using three different dentin desensitizers on post-operative dentin. The result of this study could provide some important references for clinical use of dentin desensitizing agent. 1. As to the three desensitizers, the hypersensitive dentin model was built to evaluate their sealing effects on exposed tubule by SEM observation and dentin permeability analysis. All of them could significantly reduce the dentin permeability. 2. Test specimens of three groups treated by desensitizers were subjected to aging treatment with 5000 times thermal cycling and toothbrush abrasion, and then dentin permeability was measured to evaluate the sealing durability of these three desensitizers on exposed tubule. The sealing durability of three groups were different. 3. The post-operative dentin model was built to evaluate the sealing effects of the three desensitizers on post-operative dentin by SEM and methylene blue. All of three desensitizers could reduce the dentin permeability significantly. 4. The influences of three desensitizers on the bonding efficiency of total-etch and self-etch adhesives were evaluated with the micro-tensile bond strength study and bond interface morphology observation. The dentin bond strength for Green or group was significantly lower than the other two groups (P<0.05).

Keywords: dentin, desensitizer, dentin permeability, thermal cycling, micro-tensile bond strength

Procedia PDF Downloads 371
1008 Projected Uncertainties in Herbaceous Production Result from Unpredictable Rainfall Pattern and Livestock Grazing in a Humid Tropical Savanna Ecosystem

Authors: Daniel Osieko Okach, Joseph Otieno Ondier, Gerhard Rambold, John Tenhunen, Bernd Huwe, Dennis Otieno

Abstract:

Increased human activities such as grazing, logging, and agriculture alongside unpredictable rainfall patterns have been detrimental to the ecosystem service delivery, therefore compromising its productivity potential. This study aimed at simulating the impact of drought (50%) and enhanced rainfall (150%) on the future herbaceous CO2 uptake, biomass production and soil C:N dynamics in a humid savanna ecosystem influenced by livestock grazing. Rainfall pattern was predicted using manipulation experiments set up to reduce (50%) and increase (150%) ambient (100%) rainfall amounts in grazed and non-grazed plots. The impact of manipulated rainfall regime on herbaceous CO2 fluxes, biomass production and soil C:N dynamics was measured against volumetric soil water content (VWC) logged every 30 minutes using the 5TE (Decagon Devices Inc., Washington, USA) soil moisture sensors installed (at 20 cm soil depth) in every plots. Herbaceous biomass was estimated using destructive method augmented by standardized photographic imaging. CO2 fluxes were measured using the ecosystem chamber method and the gas analysed using LI-820 gas analyzer (USA). C:N ratio was calculated from the soil carbon and Nitrogen contents (analyzed using EA2400CHNS/O and EA2410 N elemental analyzers respectively) of different plots under study. The patterning of VWC was directly influenced by the rainfall amount with lower VWC observed in the grazed compared to the non-grazed plots. Rainfall variability, grazing and their interaction significantly affected changes in VWC (p < 0.05) and subsequently total biomass and CO2 fluxes. VWC had a strong influence on CO2 fluxes under 50% rainfall reduction in the grazed (r2 = 0.91; p < 0.05) and ambient rainfall in the ungrazed (r2 = 0.77; p < 0.05). The dependence of biomass on VWC across plots was enhanced under grazed (r2 = 0.78 - 0.87; p < 0.05) condition as compared to ungrazed (r2 = 0.44 - 0.85; p < 0.05). The C:N ratio was however not correlated to VWC across plots. This study provides insight on how the predicted trends in humid savanna will respond to changes influenced by rainfall variability and livestock grazing and consequently the sustainable management of such ecosystems.

Keywords: CO2 fluxes, rainfall manipulation, soil properties, sustainability

Procedia PDF Downloads 106
1007 3D Interpenetrated Network Based on 1,3-Benzenedicarboxylate and 1,2-Bis(4-Pyridyl) Ethane

Authors: Laura Bravo-García, Gotzone Barandika, Begoña Bazán, M. Karmele Urtiaga, Luis M. Lezama, María I. Arriortua

Abstract:

Solid coordination networks (SCNs) are materials consisting of metal ions or clusters that are linked by polyfunctional organic ligands and can be designed to form tridimensional frameworks. Their structural features, as for example high surface areas, thermal stability, and in other cases large cavities, have opened a wide range of applications in fields like drug delivery, host-guest chemistry, biomedical imaging, chemical sensing, heterogeneous catalysis and others referred to greenhouse gases storage or even separation. In this sense, the use of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce extended structures with the needed characteristics for these applications. In this context, a novel compound, [Cu4(m-BDC)4(bpa)2DMF]•DMF has been obtained by microwave synthesis, where m-BDC is 1,3-benzenedicarboxylate and bpa 1,2-bis(4-pyridyl)ethane. The crystal structure can be described as a three dimensional framework formed by two equal, interpenetrated networks. Each network consists of two different CuII dimers. Dimer 1 have two coppers with a square pyramidal coordination, and dimer 2 have one with a square pyramidal coordination and other with octahedral one, the last dimer is unique in literature. Therefore, the combination of both type of dimers is unprecedented. Thus, benzenedicarboxylate ligands form sinusoidal chains between the same type of dimers, and also connect both chains forming these layers in the (100) plane. These layers are connected along the [100] direction through the bpa ligand, giving rise to a 3D network with 10 Å2 voids in average. However, the fact that there are two interpenetrated networks results in a significant reduction of the available volume. Structural analysis was carried out by means of single crystal X-ray diffraction and IR spectroscopy. Thermal and magnetic properties have been measured by means of thermogravimetry (TG), X-ray thermodiffractometry (TDX), and electron paramagnetic resonance (EPR). Additionally, CO2 and CH4 high pressure adsorption measurements have been carried out for this compound.

Keywords: gas adsorption, interpenetrated networks, magnetic measurements, solid coordination network (SCN), thermal stability

Procedia PDF Downloads 295
1006 Development of Composition and Technology of Vincristine Nanoparticles Using High-Molecular Carbohydrates of Plant Origin

Authors: L. Ebralidze, A. Tsertsvadze, D. Berashvili, A. Bakuridze

Abstract:

Current cancer therapy strategies are based on surgery, radiotherapy and chemotherapy. The problems associated with chemotherapy are one of the biggest challenges for clinical medicine. These include: low specificity, broad spectrum of side effects, toxicity and development of cellular resistance. Therefore, anti-cance drugs need to be develop urgently. Particularly, in order to increase efficiency of anti-cancer drugs and reduce their side effects, scientists work on formulation of nano-drugs. The objective of this study was to develop composition and technology of vincristine nanoparticles using high-molecular carbohydrates of plant origin. Plant polysacharides, particularly, soy bean seed polysaccharides, flaxseed polysaccharides, citrus pectin, gum arabic, sodium alginate were used as objects. Based on biopharmaceutical research, vincristine containing nanoparticle formulations were prepared. High-energy emulsification and solvent evaporation methods were used for preparation of nanosystems. Polysorbat 80, polysorbat 60, sodium dodecyl sulfate, glycerol, polyvinyl alcohol were used in formulation as emulsifying agent and stabilizer of the system. The ratio of API and polysacharides, also the type of the stabilizing and emulsifying agents are very effective on the particle size of the final product. The influence of preparation technology, type and concentration of stabilizing agents on the properties of nanoparticles were evaluated. For the next stage of research, nanosystems were characterized. Physiochemical characterization of nanoparticles: their size, shape, distribution was performed using Atomic force microscope and Scanning electron microscope. The present study explored the possibility of production of NPs using plant polysaccharides. Optimal ratio of active pharmaceutical ingredient and plant polysacharids, the best stabilizer and emulsifying agent was determined. The average range of nanoparticles size and shape was visualized by SEM.

Keywords: nanoparticles, target delivery, natural high molecule carbohydrates, surfactants

Procedia PDF Downloads 243
1005 Chemical Aging of High-Density Polyethylene (HDPE-100) in Interaction with Aggressive Environment

Authors: Berkas Khaoula, Chaoui Kamel

Abstract:

Polyethylene (PE) pipes are one of the best options for water and gas transmission networks. The main reason for such a choice is its high-quality performance in service conditions over long periods of time. PE pipes are installed in contact with different soils having various chemical compositions with confirmed aggressiveness. As a result, PE pipe surfaces undergo unwanted oxidation reactions. Usually, the polymer mixture is designed to include some additives, such as anti-oxidants, to inhibit or reduce the degradation effects. Some other additives are intended to increase resistance to the ESC phenomenon associated with polymers (ESC: Environmental Stress Cracking). This situation occurs in contact with aggressive external environments following different contaminations of soil, groundwater and transported fluids. In addition, bacterial activity and other physical or chemical media, such as temperature and humidity, can play an enhancing role. These conditions contribute to modifying the PE pipe structure and degrade its properties during exposure. In this work, the effect of distilled water, sodium hypochlorite (bleach), diluted sulfuric acid (H2SO4) and toluene-methanol (TM) mixture are studied when extruded PE samples are exposed to those environments for given periods. The chosen exposure periods are 7, 14 and 28 days at room temperature and in sealed glass containers. Post-exposure observations and ISO impact tests are presented as a function of time and chemical medium. Water effects are observed to be limited in explaining such use in real applications, whereas the changes in TM and acidic media are very significant. For the TM medium, the polymer toughness increased drastically (from 15.95 kJ/m² up to 32.01 kJ/m²), while sulfuric acid showed a steady augmentation over time. This situation may correspond to a hardening phenomenon of PE increasing its brittleness and its ability for structural degradation because of localized oxidation reactions and changes in crystallinity.

Keywords: polyethylene, toluene-methanol mixture, environmental stress cracking, degradation, impact resistance

Procedia PDF Downloads 50
1004 Angiogenic, Cytoprotective, and Immunosuppressive Properties of Human Amnion and Chorion-Derived Mesenchymal Stem Cells

Authors: Kenichi Yamahara, Makiko Ohshima, Shunsuke Ohnishi, Hidetoshi Tsuda, Akihiko Taguchi, Toshihiro Soma, Hiroyasu Ogawa, Jun Yoshimatsu, Tomoaki Ikeda

Abstract:

We have previously reported the therapeutic potential of rat fetal membrane(FM)-derived mesenchymal stem cells (MSCs) using various rat models including hindlimb ischemia, autoimmune myocarditis, glomerulonephritis, renal ischemia-reperfusion injury, and myocardial infarction. In this study, 1) we isolated and characterized MSCs from human amnion and chorion; 2) we examined their differences in the expression profile of growth factors and cytokines; and 3) we investigated the therapeutic potential and difference of these MSCs using murine hindlimb ischemia and acute graft-versus-host disease (GVHD) models. Isolated MSCs from both amnion and chorion layers of FM showed similar morphological appearance, multipotency, and cell-surface antigen expression. Conditioned media obtained from amnion- and chorion-derived MSCs inhibited cell death caused by serum starvation or hypoxia in endothelial cells and cardiomyocytes. Amnion and chorion MSCs secreted significant amounts of angiogenic factors including HGF, IGF-1, VEGF, and bFGF, although differences in the cellular expression profile of these soluble factors were observed. Transplantation of human amnion or chorion MSCs significantly increased blood flow and capillary density in a murine hindlimb ischemia model. In addition, compared to human chorion MSCs, human amnion MSCs markedly reduced T-lymphocyte proliferation with the enhanced secretion of PGE2, and improved the pathological situation of a mouse model of GVHD disease. Our results highlight that human amnionand chorion-derived MSCs, which showed differences in their soluble factor secretion and angiogenic/immuno-suppressive function, could be ideal cell sources for regenerative medicine.

Keywords: amnion, chorion, fetal membrane, mesenchymal stem cells

Procedia PDF Downloads 395