Search results for: friction impact
11730 Effects of Ingredients Proportions on the Friction Performance of a Brake Pad Material
Authors: Rukiye Ertan
Abstract:
In this study, a brake friction material composition was investigated experimentally related to the effects of the friction modifiers and abrasive proportions on the tribological properties. The investigation was based on a simple experimental formulation, consisting of seven friction materials with different proportions of abrasives (ZrSiO4 and Fe2O3) and friction modifiers (cashew dust). The friction materials were evaluated using a Chase friction tester. The tribological properties, such as the wear resistance and friction stability, depending on the test temperature and the number of braking were obtained related to the friction material ingredient proportions. The results showed that the tribological properties of the brake pad were greatly affected by the abrasive and then cashew dust proportion.Keywords: brake pad, friction, wear, abrasives
Procedia PDF Downloads 43711729 Effect of Rotation Speed on Microstructure and Microhardness of AA7039 Rods Joined by Friction Welding
Authors: H. Karakoc, A. Uzun, G. Kırmızı, H. Çinici, R. Çitak
Abstract:
The main objective of this investigation was to apply friction welding for joining of AA7039 rods produced by powder metallurgy. Friction welding joints were carried out using a rotational friction welding machine. Friction welds were obtained under different rotational speeds between (2700 and 2900 rpm). The friction pressure of 10 MPa and friction time of 30 s was kept constant. The cross sections of joints were observed by optical microscopy. The microstructures were analyzed using scanning electron microscope/energy dispersive X-ray spectroscopy. The Vickers micro hardness measurement of the interface was evaluated using a micro hardness testing machine. Finally the results obtained were compared and discussed.Keywords: Aluminum alloy, powder metallurgy, friction welding, microstructure
Procedia PDF Downloads 36311728 Sliding Velocity in Impact with Friction in Three-Dimensional Multibody Systems
Authors: Hesham A. Elkaranshawy, Amr Abdelrazek, Hosam Ezzat
Abstract:
This paper analyzes a single point rough collision in three dimensional rigid-multibody systems. A set of nonlinear different equations describing the progress and outcome of the impact are obtained. Specifically in case of the tangential, referred to as sliding, component of impact velocity is of great importance. Numerical methods are used to solve this problem. In this work, all these possible sliding behaviors during impact are identified, conditions leading to each behavior are specified, and an appropriate numerical procedure is suggested. A case of a four-degrees-of-freedom spatial robot that collides with its environment is investigated. The phase portrait of the tangential velocity, which presents the flow trajectories for different initial conditions, is calculated. Using the coefficient of friction as a control parameter, few phase portraits are drawn, each for a specific value of this coefficient. In addition, the bifurcation associated with the variation of this coefficient will be investigated.Keywords: friction impact, three-dimensional rigid multibody systems, sliding velocity, nonlinear ordinary differential equations, phase portrait
Procedia PDF Downloads 38111727 Friction Estimation and Compensation for Steering Angle Control for Highly Automated Driving
Authors: Marcus Walter, Norbert Nitzsche, Dirk Odenthal, Steffen Müller
Abstract:
This contribution presents a friction estimator for industrial purposes which identifies Coulomb friction in a steering system. The estimator only needs a few, usually known, steering system parameters. Friction occurs on almost every mechanical system and has a negative influence on high-precision position control. This is demonstrated on a steering angle controller for highly automated driving. In this steering system the friction induces limit cycles which cause oscillating vehicle movement when the vehicle follows a given reference trajectory. When compensating the friction with the introduced estimator, limit cycles can be suppressed. This is demonstrated by measurements in a series vehicle.Keywords: friction estimation, friction compensation, steering system, lateral vehicle guidance
Procedia PDF Downloads 51411726 Friction Calculation and Simulation of Column Electric Power Steering System
Authors: Seyed Hamid Mirmohammad Sadeghi, Raffaella Sesana, Daniela Maffiodo
Abstract:
This study presents a procedure for friction calculation of column electric power steering (C-EPS) system which affects handling and comfort in driving. The friction losses estimation is obtained from experimental tests and mathematical calculation. Parts in C-EPS mainly involved in friction losses are bearings and worm gear. In the theoretical approach, the gear geometry and Hertz law were employed to measure the normal load and the sliding velocity and contact areas from the worm gears driving conditions. The viscous friction generated in the worm gear was obtained with a theoretical approach and the result was applied to model the friction in the steering system. Finally, by viscous friction coefficient and Coulomb friction coefficient, values of friction in worm gear were calculated. According to the Bearing Company and the characteristics of each bearing, the friction torques due to load and due to speed were calculated. A MATLAB Simulink model for calculating the friction in bearings and worm gear in C-EPS were done and the total friction value was estimated.Keywords: friction, worm gear, column electric power steering system, simulink, bearing, EPS
Procedia PDF Downloads 35711725 Identification of Dynamic Friction Model for High-Precision Motion Control
Authors: Martin Goubej, Tomas Popule, Alois Krejci
Abstract:
This paper deals with experimental identification of mechanical systems with nonlinear friction characteristics. Dynamic LuGre friction model is adopted and a systematic approach to parameter identification of both linear and nonlinear subsystems is given. The identification procedure consists of three subsequent experiments which deal with the individual parts of plant dynamics. The proposed method is experimentally verified on an industrial-grade robotic manipulator. Model fidelity is compared with the results achieved with a static friction model.Keywords: mechanical friction, LuGre model, friction identification, motion control
Procedia PDF Downloads 41211724 Determination of the Friction Coefficient of AL5754 Alloy by Ring Compression Test: Experimental and Numerical Survey
Authors: P. M. Keshtiban, M. Zadshakoyan
Abstract:
One of the important factors that alter different process and geometrical parameters on metal forming processes is friction between contacting surfaces. Some important factors that effected directly by friction are: stress, strain, required load, wear of surfaces and then geometrical parameters. In order to control friction effects permanent lubrication is necessary. In this article, the friction coefficient is elicited by the most effective method, ring compression tests. The tests were done by both finite element method and practical tests. Different friction curves that extracted by finite element simulations and has good conformity with published results, used for obtaining final friction coefficient. In this study Mos2 is used as the lubricant and Al5754 alloy used as the specimens material.Keywords: experiment, FEM, friction coefficient, ring compression
Procedia PDF Downloads 46111723 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction
Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat
Abstract:
The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge-Kutta solution using 38 time steps.Keywords: impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision
Procedia PDF Downloads 48611722 Studying the Impact of Soil Characteristics in Displacement of Retaining Walls Using Finite Element
Authors: Mojtaba Ahmadabadi, Akbar Masoudi, Morteza Rezai
Abstract:
In this paper, using the finite element method, the effect of soil and wall characteristics was investigated. Thirty and two different models were studied by different parameters. These studies could calculate displacement at any height of the wall for frictional-cohesive soils. The main purpose of this research is to determine the most effective soil characteristics in reducing the wall displacement. Comparing different models showed that the overall increase in internal friction angle, angle of friction between soil and wall and modulus of elasticity reduce the replacement of the wall. In addition, increase in special weight of soil will increase the wall displacement. Based on results, it can be said that all wall displacements were overturning and in the backfill, soil was bulging. Results show that the highest impact is seen in reducing wall displacement, internal friction angle, and the angle friction between soil and wall. One of the advantages of this study is taking into account all the parameters of the soil and walls replacement distribution in wall and backfill soil. In this paper, using the finite element method and considering all parameters of the soil, we investigated the impact of soil parameter in wall displacement. The aim of this study is to provide the best conditions in reducing the wall displacement and displacement wall and soil distribution.Keywords: retaining wall, fem, soil and wall interaction, angle of internal friction of the soil, wall displacement
Procedia PDF Downloads 38711721 Change of Internal Friction on Magnesium Alloy with 5.48% Al Dependence on the Temperature
Authors: Milan Uhríčik, Andrea Soviarová, Zuzana Dresslerová, Peter Palček, Alan Vaško
Abstract:
The article is focused on the analysis changes dependence on the temperature on the magnesium alloy with 5,48% Al, 0,813% Zn and 0,398% Mn by internal friction. Internal friction is a property of the material is measured on the ultrasonic resonant aparature at a frequency about f = 20470 Hz. The measured temperature range was from 30 °C up to 420 °C. Precisely measurement of the internal friction can be monitored ongoing structural changes and various mechanisms that prevent these changes.Keywords: internal friction, magnesium alloy, temperature, resonant frequency
Procedia PDF Downloads 70011720 Dry Friction Fluctuations in Plain Journal Bearings
Authors: James Moran, Anusarn Permsuwan
Abstract:
This paper compares oscillations in the dry friction coefficient in different journal bearings. Measurements are made of the average and standard deviation in the coefficient of friction as a function of sliding velocity. The standard deviation of the friction coefficient changed dramatically with sliding velocity. The magnitude and frequency of the oscillations were a function of the velocity. A numerical model was developed for the frictional oscillations. There was good agreement between the model and results. Five different materials were used as the sliding surfaces in the experiments, Aluminum, Bronze, Mild Steel, Stainless Steel, and Nylon.Keywords: Coulomb friction, dynamic friction, non-lubricated bearings, frictional oscillations
Procedia PDF Downloads 36511719 Simulation of Kinetic Friction in L-Bending of Sheet Metals
Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang
Abstract:
This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.Keywords: friction, L-bending, springback, Stribeck curves
Procedia PDF Downloads 49111718 Friction Stir Welding Process as a Solid State Joining -A Review
Authors: Mohd Anees Siddiqui, S. A. H. Jafri, Shahnawaz Alam
Abstract:
Through this paper an attempt is made to review a special welding technology of friction stir welding (FSW) which is a solid-state joining. Friction stir welding is used for joining of two plates which are applied compressive force by using fixtures over the work table. This is a non consumable type welding technique in which a rotating tool of cylindrical shape is used. Process parameters such as tool geometry, joint design and process speed are discussed in the paper. Comparative study of Friction stir welding with other welding techniques such as MIG, TIG & GMAW is also done. Some light is put on several major applications of friction stir welding in different industries. Quality and environmental aspects of friction stir welding is also discussed.Keywords: friction stir welding (FSW), process parameters, tool, solid state joining processes
Procedia PDF Downloads 50111717 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide
Authors: Almontas Vilutis, Vytenis Jankauskas
Abstract:
The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against WC-Co cemented carbide. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy dispersive spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.Keywords: friction, composite, carbide, factors
Procedia PDF Downloads 8211716 A Comparison of Double Sided Friction Stir Welding in Air and Underwater for 6mm S275 Steel Plate
Authors: Philip Baillie, Stuart W. Campbell, Alexander M. Galloway, Stephen R. Cater, Norman A. McPherson
Abstract:
This study compared the mechanical and microstructural properties produced during friction stir welding(FSW) of S275 structural steel in air and underwater. Post weld tests assessed the tensile strength, micro-hardness, distortion, Charpy impact toughness and fatigue performance in each case. The study showed that there was no significant difference in the strength, hardness or fatigue life of the air and underwater specimens. However, Charpy impact toughness was shown to decrease for the underwater specimens and was attributed to a lower degree of recrystallization caused by the higher rate of heat loss experienced when welding underwater. Reduced angular and longitudinal distortion was observed in the underwater welded plate compared to the plate welded in air.Keywords: Charpy impact toughness, distortion, fatigue, friction stir welding(FSW), micro-hardness, underwater
Procedia PDF Downloads 42211715 “Friction Surfaces” of Airport Emergency Plan
Authors: Jakub Kraus, Vladimír Plos, Peter Vittek
Abstract:
This article focuses on the issue of airport emergency plans, which are documents describing reactions to events with impact on aviation safety or aviation security. The article specifically focuses on the use and creation of emergency plans, where could be found a number of disagreements between different stakeholders, for which the airport emergency plan applies. Those are the friction surfaces of interfaces, which is necessary to identify and ensure them smooth process to avoid dangerous situations or delay.Keywords: airport emergency plan, aviation safety, aviation security, comprehensive management system, friction surfaces of airport emergency plan, interfaces of processes
Procedia PDF Downloads 51811714 Influence of Boron Doping and Thermal Treatment on Internal Friction of Monocrystalline Si1-xGex(x≤0,02) Alloys
Authors: I. Kurashvili, G. Darsavelidze, G. Bokuchava, A. Sichinava, I. Tabatadze
Abstract:
The impact of boron doping on the internal friction (IF) and shear modulus temperature spectra of Si1-xGex(x≤0,02) monocrsytals has been investigated by reverse torsional pendulum oscillations characteristics testing. At room temperatures, microhardness and indentation modulus of the same specimens have been measured by dynamic ultra microhardness tester. It is shown that boron doping causes two kinds effect: At low boron concentration (~1015 cm-3) significant strengthening is revealed, while at the high boron concentration (~1019 cm-3) strengthening effect and activation characteristics of relaxation origin IF processes are reduced.Keywords: boron, doping, internal friction, si-ge alloys, thermal treatment
Procedia PDF Downloads 45611713 Tribological Investigation of Piston Ring Liner Assembly
Authors: Bharatkumar Sutaria, Tejaskumar Chaudhari
Abstract:
An engine performance can be increased by minimizing losses. There are various losses observed in the engines. i.e. thermal loss, heat loss and mechanical losses. Mechanical losses are in the tune of 15 to 20 % of the overall losses. Piston ring assembly contributes the highest friction in the mechanical frictional losses. The variation of piston speed in stroke length the friction force development is not uniform. In present work, comparison has been made between theoretical and experimental friction force under different operating conditions. The experiments are performed using variable operating parameters such as load, speed, temperature and lubricants. It is found that reducing trend of friction force and friction coefficient is in good nature with mixed lubrication regime of the Stribeck curve. Overall outcome from the laboratory test performance of segmented piston ring assembly using multi-grade oil offers reasonably good results at room and elevated temperatures.Keywords: friction force, friction coefficient, piston rings, Stribeck curve
Procedia PDF Downloads 48111712 Study of Drawing Characteristics due to Friction between the Materials by FEM
Authors: Won Jin Ryu, Mok Tan Ahn, Hyeok Choi, Joon Hong Park, Sung Min Kim, Jong Bae Park
Abstract:
Pipes for offshore plants require specifications that satisfy both high strength and high corrosion resistance. Therefore, currently, clad pipes are used in offshore plants. Clad pipes can be made using either overlay welding or clad plates. The present study was intended to figure out the effects of friction between two materials, which is a factor that affects two materials, were figured out using FEM to make clad pipes through heterogenous material drawing instead of the two methods mentioned above. Therefore, FEM has conducted while all other variables that the variable friction was fixed. The experimental results showed increases in pullout force along with increases in the friction in the boundary layer.Keywords: clad pipe, FEM, friction, pullout force
Procedia PDF Downloads 49311711 Modelling of Atomic Force Microscopic Nano Robot's Friction Force on Rough Surfaces
Authors: M. Kharazmi, M. Zakeri, M. Packirisamy, J. Faraji
Abstract:
Micro/Nanorobotics or manipulation of nanoparticles by Atomic Force Microscopic (AFM) is one of the most important solutions for controlling the movement of atoms, particles and micro/nano metrics components and assembling of them to design micro/nano-meter tools. Accurate modelling of manipulation requires identification of forces and mechanical knowledge in the Nanoscale which are different from macro world. Due to the importance of the adhesion forces and the interaction of surfaces at the nanoscale several friction models were presented. In this research, friction and normal forces that are applied on the AFM by using of the dynamic bending-torsion model of AFM are obtained based on Hurtado-Kim friction model (HK), Johnson-Kendall-Robert contact model (JKR) and Greenwood-Williamson roughness model (GW). Finally, the effect of standard deviation of asperities height on the normal load, friction force and friction coefficient are studied.Keywords: atomic force microscopy, contact model, friction coefficient, Greenwood-Williamson model
Procedia PDF Downloads 19911710 Microstructure and Mechanical Evaluation of PMMA/Al₂O₃ Nanocomposite Fabricated via Friction Stir Processing
Authors: Reham K. El Sawah, N. S. M. El-Tayeb
Abstract:
This study aims to produce a polymer matrix composite reinforced with Al₂O₃ nanoparticles in order to enhance the mechanical properties of PMMA. The composite was fabricated via Friction stir processing to ensure homogenous dispersion of Al₂O₃ nanoparticles in the polymer, and the processing was submerged to prevent the sputtering of nanoparticles. The surface quality, microstructure, impact energy and hardness of the prepared samples were investigated. Good surface quality and dispersion of nanoparticles were attained through employing sufficient processing conditions. The experimental results indicated that as the percentage of nanoparticles increased, the impact energy and hardness increased, reaching 2 kJ/m2 and 14.7 HV at a nanoparticle concentration of 25%, which means that the toughness and the hardness of the polymer-ceramic produced composite is higher than unprocessed PMMA by 66% and 33% respectively.Keywords: friction stir processing, polymer matrix nanocomposite, mechanical properties, microstructure
Procedia PDF Downloads 17611709 Friction Stir Welding of Aluminum Alloys: A Review
Authors: S. K. Tiwari, Dinesh Kumar Shukla, R. Chandra
Abstract:
Friction stir welding is a solid state joining process. High strength aluminum alloys are widely used in aircraft and marine industries. Generally, the mechanical properties of fusion-welded aluminum joints are poor. As friction stir welding occurs in the solid state, no solidification structures are created thereby eliminating the brittle and eutectic phases common in fusion welding of high strength aluminum alloys. In this review, the process parameters, microstructural evolution and effect of friction stir welding on the properties of weld specific to aluminum alloys have been discussed.Keywords: aluminum alloys, friction stir welding (FSW), microstructure, Properties.
Procedia PDF Downloads 41411708 CFD Investigation on Heat Transfer and Friction Characteristics of Rib Roughened Evacuated Tube Collector Solar Air Heater
Authors: Mohit Singla, Vishavjeet Singh Hans, Sukhmeet Singh
Abstract:
Heat transfer and friction characteristics of evacuated tube collector solar air heater artificially roughened with periodic circular rib of uniform cross-section were investigated. The present investigation was carried out in ANSYS Fluent 15.0 to study the impact of roughness geometry parameters, i.e. relative roughness pitch (P/e) of 8 and relative roughness height (e/Dh) of 0.064 and flow parameters, i.e. Reynolds number range of 2500-8000 on Nusselt number and friction factor. RNG k-ε with enhanced wall treatment turbulence model was selected for analysis. The results obtained for roughened evacuated tube collector has been compared with smooth evacuated tube collector for the similar flow conditions. With the increment in Reynolds number from 2500 to 8000, Nusselt number augments while friction factor decreases. Maximum enhancement ratio of Nusselt number and friction factor was 1.71 and 2.7 respectively, obtained at Reynolds number value of 8000. The value of thermo-hydraulic performance parameter was varied between 1.18 - 1.23 for the entire range of Reynolds number, indicates the advantage to use the roughened evacuated tube collector over smooth evacuated tube collector in solar air heater.Keywords: artificial roughness, evacuated tube collector, friction factor, Nusselt number
Procedia PDF Downloads 16111707 Effect of Friction Pressure on the Properties of Friction Welded Aluminum–Ceramic Dissimilar Joints
Authors: Fares Khalfallah, Zakaria Boumerzoug, Selvarajan Rajakumar, Elhadj Raouache
Abstract:
The ceramic-aluminum bond is strongly present in industrial tools, due to the need to combine the properties of metals, such as ductility, thermal and electrical conductivity, with ceramic properties like high hardness, corrosion and wear resistance. In recent years, some joining techniques have been developed to achieve a good bonding between these materials such as brazing, diffusion bonding, ultrasonic joining and friction welding. In this work, AA1100 aluminum alloy rods were welded with Alumina 99.9 wt% ceramic rods, by friction welding. The effect of friction pressure on mechanical and structural properties of welded joints was studied. The welding was performed by direct friction welding machine. The welding samples were rotated at a constant rotational speed of 900 rpm, friction time of 4 sec, forging strength of 18 MPa, and forging time of 3 sec. Three different friction pressures were applied to 20, 34 and 45 MPa. The three-point bending test and Vickers microhardness measurements were used to evaluate the strength of the joints and investigate the mechanical properties of the welding area. The microstructure of joints was examined by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that bending strength increased, and then decreased after reaching a maximum value, with increasing friction pressure. The SEM observation shows that the increase in friction pressure led to the appearance of cracks in the microstructure of the interface area, which is decreasing the bending strength of joints.Keywords: welding of ceramic to aluminum, friction welding, alumina, AA1100 aluminum alloy
Procedia PDF Downloads 12811706 Friction and Wear, Including Mechanisms, Modeling,Characterization, Measurement and Testing (Bangladesh Case)
Authors: Gor Muradyan
Abstract:
The paper is about friction and wear, including mechanisms, modeling, characterization, measurement and testing case in Bangladesh. Bangladesh is a country under development, A lot of people live here, approximately 145 million. The territory of this country is very small. Therefore buildings are very close to each other. As the pipe lines are very old, and people get almost dirty water, there are a lot of ongoing projects under ADB. In those projects the contractors using HDD machines (Horizontal Directional Drilling ) and grundoburst. These machines are working underground. As ground in Bangladesh is very sludge, machine can't work relevant because of big friction in the soil. When drilling works are finished machine is pulling the pipe underground. Very often the pulling of the pipes becomes very complicated because of the friction. Therefore long section of the pipe laying can’t be done because of a big friction. In that case, additional problems rise, as well as additional work must be done. As we mentioned above it is not possible to do big section of the pipe laying because of big friction in the soil, Because of this it is coming out that contractors must do more joints, more pressure test. It is always connected with additional expenditure and losing time. This machine can pull in 75 mm to 500 mm pipes connected with the soil condition. Length is possible till 500m related how much friction it will had on the puller. As less as much it can pull. Another machine grundoburst is not working at this soil condition at all. The machine is working with air compressor. This machine are using for the smaller diameter pipes, 20 mm to 63 mm. Most of the cases these machines are being used for the installing of the house connection pipes, for making service connection. To make a friction less contractors using bigger pulling had then the pipe. It is taking down the friction, But the problem of this machine is that it can't work at sludge. Because of mentioned reasons the friction has a big mining during this kind of works. There are a lot of ways to reduce the friction. In this paper we'll introduce the ways that we have researched during our practice in Bangladesh.Keywords: Bangladesh, friction and wear, HDD machines, reducing friction
Procedia PDF Downloads 31611705 Modeling of the Friction Behavior of Carbon/Epoxy Prepreg Composite
Authors: David Aveiga, Carlos Gonzalez
Abstract:
Thermoforming of pre-impregnated composites (prepreg) is the most employed process to build high-performance composite structures due to their visible advantage over alternative manufacturing techniques. This method allows easy shape moulding with a simple manufacturing system and a more refined outcome. The achievement of complex geometries can be exposed to undesired defects such as wrinkles. It is known that interply and ply-mould sliding behavior governs this defect generation. This work analyses interply and ply-mould friction coefficients for UD AS4/8552 Carbon/Epoxy prepreg. Friction coefficients are determined by a pull-out test method considering actual velocity, pressure and temperature conditions employed in a thermoforming process of an aeronautical composite component. A Stribeck curve is then constructed to find a mathematical expression that relates all the friction coefficients with the test variables through the Hersey number parameter. Two expressions are proposed to model ply-ply and ply-tool friction behaviors.Keywords: friction, prepreg composite, stribeck curve, thermoforming.
Procedia PDF Downloads 18311704 Friction Stir Welding of Al-Mg-Mn Aluminum Alloy Plates: A Review
Authors: K. Subbaiah, C. V. Jayakumar
Abstract:
Friction stir welding is a solid state welding process. Friction stir welding process eliminates the defects found in fusion welding processes. It is environmentally friend process. 5000 and 6000 series aluminum alloys are widely used in the transportation industries. The Al-Mg-Mn (5000) and Al-Mg-Si (6000) alloys are preferably offer best combination of use in Marine construction. The medium strength and high corrosion resistant 5000 series alloys are the aluminum alloys, which are found maximum utility in the world. In this review, the tool pin profile, process parameters such as hardness, yield strength and tensile strength, and microstructural evolution of friction stir welding of Al-Mg-Mn alloys (5000 Series) have been discussed.Keywords: Al-Mg-Mn alloys, friction stir welding, tool pin profile, microstructure and mechanical properties
Procedia PDF Downloads 44011703 An Interlock Model of Friction and Superlubricity
Authors: Azadeh Malekan, Shahin Rouhani
Abstract:
Superlubricity is a phenomenon where two surfaces in contact show negligible friction;this may be because the asperities of the two surfaces do not interlock. Two rough surfaces, when pressed against each other, can get into a formation where the summits of asperities of one surface lock into the valleys of the other surface. The amount of interlock depends on the geometry of the two surfaces. We suggest the friction force may then be proportional to the amount of interlock; this explains Superlubricity as the situation where there is little interlock. Then the friction force will be directly proportional to the normal force as it is related to the work necessary to lift the upper surface in order to clear the interlock. To investigate this model, we simulate the contact of two surfaces. In order to validate our model, we first investigate Amontons‘ law. Assuming that asperities retain deformations in the time scale while the top asperity moves across the lattice spacing Amonton’s law is observed. Structural superlubricity is examined by the hypothesis that surfaces are very rigid and there is no deformation in asperities. This may happen at small normal forces. When two identical surfaces come into contact, rotating the top surface we observe a peak in friction force near the angle of orientation where the two surfaces can interlock.Keywords: friction, amonton`s law, superlubricity, contact model
Procedia PDF Downloads 14511702 Dry Friction Occurring in the Suspensions for Passive and Switchable Damper Systems and Its Effect on Ride Comfort
Authors: Aref M. A. Soliman, Mahmoud A. Hassan
Abstract:
In all vehicle suspension, there is a dry friction. One of the various active suspensions, which have been shown to have considerable practical potential, is a switchable damper suspension system. In this paper, vehicle ride comfort for the passive and switchable damper suspension systems as affected by the value of frictional force generated in springs is discussed. A mathematical model of a quarter vehicle model for two setting switchable damper suspension system with dry friction force is developed to evaluate vehicle ride comfort in terms of suspension performance criteria. The vehicle itself is treated as a rigid body undergoing vertical motions. Comparisons between passive and switchable damper suspensions systems with dry friction force in terms of ride performance are also discussed. The results showed that the ride comfort for the passive and switchable damper suspension systems was deteriorated due to dry friction occurring in the suspensions. The two setting switchable damper with and without dry friction force gives better ride improvements compared with the passive suspension system. Also, the obtained results show an optimum value of damping ratio of the passive suspension system.Keywords: ride comfort, dry friction, switchable damper, passive suspension
Procedia PDF Downloads 37111701 Assessment of the High-Speed Ice Friction of Bob Skeleton Runners
Authors: Agata Tomaszewska, Timothy Kamps, Stephan R. Turnock, Nicola Symonds
Abstract:
Bob skeleton is a highly competitive sport in which an athlete reaches speeds up to 40 m/s sliding, head first, down an ice track. It is believed that the friction between the runners and ice significantly contributes to the amount of the total energy loss during a bob skeleton descent. There is only limited available experimental data regarding the friction of bob skeleton runners or indeed steel on the ice at high sliding speeds ( > 20 m/s). Testing methods used to investigate the friction of steel on ice in winter sports have been outlined, and their accuracy and repeatability discussed. A system thinking approach was used to investigate the runner-ice interaction during sliding and create concept designs of three ice tribometers. The operational envelope of the bob skeleton system has been defined through mathematical modelling. Designs of a drum, linear and inertia pin-on-disk tribometers were developed specifically for bob skeleton runner testing with the requirement of reaching up to 40 m/s speed and facilitate fresh ice sliding. The design constraints have been outline and the proposed solutions compared based on the ease of operation, accuracy and the development cost.Keywords: bob skeleton, ice friction, high-speed tribometers, sliding friction
Procedia PDF Downloads 259