Search results for: folded actuator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 221

Search results for: folded actuator

131 Study for Establishing a Concept of Underground Mining in a Folded Deposit with Weathering

Authors: Chandan Pramanik, Bikramjit Chanda

Abstract:

Large metal mines operated with open-cast mining methods must transition to underground mining at the conclusion of the operation; however, this requires a period of a difficult time when production convergence due to interference between the two mining methods. A transition model with collaborative mining operations is presented and established in this work, based on the case of the South Kaliapani Underground Project, to address these technical issues of inadequate production security and other mining challenges during the transition phase and beyond. By integrating the technology of the small-scale Drift and Fill method and Highly productive Sub Level Open Stoping at deep section, this hybrid mining concept tries to eliminate major bottlenecks and offers an optimized production profile with the safe and sustainable operation. Considering every geo-mining aspect, this study offers a genuine and precise technical deliberation for the transition from open pit to underground mining.

Keywords: drift and fill, geo-mining aspect, sublevel open stoping, underground mining method

Procedia PDF Downloads 65
130 Experiment and Analytical Study on Fire Resistance Performance of Slot Type Concrete-Filled Tube

Authors: Bum Yean Cho, Heung-Youl Kim, Ki-Seok Kwon, Kang-Su Kim

Abstract:

In this study, a full-scale test and analysis (numerical analysis) of fire resistance performance of bare CFT column on which slot was used instead of existing welding method to connect the steel pipe on the concrete-filled tube were conducted. Welded CFT column is known to be vulnerable to high or low temperature because of low brittleness of welding part. As a result of a fire resistance performance test of slot CFT column after removing the welding part and fixing it by a slot which was folded into the tube, slot type CFT column indicated the improved fire resistance performance than welded CFT column by 28% or more. And as a result of conducting finite element analysis of slot type column using ABAQUS, analysis result proved the reliability of the test result in predicting the fire behavior and fire resistance hour.

Keywords: CFT (concrete-filled tube) column, fire resistance performance, slot, weld

Procedia PDF Downloads 150
129 Psychogeographic Analysis of Spatial Appropriation within Walking Practice: The City Centre versus University Campus in the Case of Van, Turkey

Authors: Yasemin Ilkay

Abstract:

Urban spatial pattern interacts with the minds and bodies of citizens and influences their perception and attitudes, which leads to a two-folded map of the same space: physical and Psychogeographic maps. Psychogeography is a field of inquiry (rooted in literature and fiction) investigating how the environment affects the feelings and behaviors of individuals. This term was posed by Situationist International Movement in the 1950s by Guy Debord; in the course of time, the artistic framework evolved into a political issue, especially with the term Dérive, which indicates ‘deviation’ and ‘resistance’ to the existing spatial reality. The term Dérive appeared on the track of Flânéur after one hundred years; and turned out to be a political tool to transform everyday urban life. The three main concepts of psychogeography [walking, dérive, and palimpsest] construct the epistemological framework for a psychogeographic spatial analysis. Mental representations investigating this framework would provide a designer to capture the invisible layers of the gap between ‘how a space is conceived’ and ‘how the same space is perceived and experienced.’ This gap is a neglected but critical issue to discuss in the planning discipline, and psychogeography provides methodological inputs to cover the interrelation among top-down designs of urban patterning and bottom-up reproductions of ‘the soul’ of urban space at the intersection of geography and psychology. City centers and university campuses exemplify opposite poles of spatial organization and walking practice, which may result in differentiated spatial appropriation forms. There is a traditional city center in Van, located at the core of the city with a dense population and several activities, but not connected to Van Lake, which is the largest lake in the country. On the other hand, the university campus is located at the periphery, and although it has a promenade along the lake’s coast and a regional hospital, it presents a limited walking experience with ambiguous forms of spatial appropriation. The city center draws a vivid urban everyday life; however, the campus presents a relatively natural life far away from the center. This paper aims to reveal the differentiated psychogeographic maps of spatial appropriation at the city center vs. the university campus, which is located at the periphery of the city and along the coast of the largest lake in Turkey. The main question of the paper is, “how do the psychogeographic maps of spatial appropriation differentiate at the city center and university campus in Van within the walking experience with reference to the two-folded map assumption.” The experiential maps of a core group of 15 planning students will be created with the techniques of mental mapping, photographing, and narratives through attentive walks conducted together on selected routes; in addition to these attentive walks, 30 more in-depth interviews will be conducted by the core group. The narrative of psychogeographic mapping of spatial appropriation at the two spatial poles would display the conflicting soul of the city with reference to sub-behavioural regions of walking, differentiated forms of derive and layers of palimpsest.

Keywords: attentive walk, body, cognitive geography, derive, experiential maps, psychogeography, Van, Turkey

Procedia PDF Downloads 46
128 Design of Compact Dual-Band Planar Antenna for WLAN Systems

Authors: Anil Kumar Pandey

Abstract:

A compact planar monopole antenna with dual-band operation suitable for wireless local area network (WLAN) application is presented in this paper. The antenna occupies an overall area of 18 ×12 mm2. The antenna is fed by a coplanar waveguide (CPW) transmission line and it combines two folded strips, which radiates at 2.4 and 5.2 GHz. In the proposed antenna, by optimally selecting the antenna dimensions, dual-band resonant modes with a much wider impedance matching at the higher band can be produced. Prototypes of the obtained optimized design have been simulated using EM solver. The simulated results explore good dual-band operation with -10 dB impedance bandwidths of 50 MHz and 2400 MHz at bands of 2.4 and 5.2 GHz, respectively, which cover the 2.4/5.2/5.8 GHz WLAN operating bands. Good antenna performances such as radiation patterns and antenna gains over the operating bands have also been observed. The antenna with a compact size of 18×12×1.6 mm3 is designed on an FR4 substrate with a dielectric constant of 4.4.

Keywords: CPW antenna, dual-band, electromagnetic simulation, wireless local area network (WLAN)

Procedia PDF Downloads 181
127 Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach

Authors: Alexander S. Andreev, Olga A. Peregudova

Abstract:

In this paper, we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electro-mechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present back-stepping design based on the Euler approximate discrete-time model of a continuous-time plant. Theoretical considerations are verified by numerical simulation. The work was supported by RFFI (15-01-08482).

Keywords: actuator dynamics, back stepping, discrete-time controller, Lyapunov function, wheeled mobile robot

Procedia PDF Downloads 379
126 Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer

Authors: R. Loukil, M. Chtourou, T. Damak

Abstract:

In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure.

Keywords: fault detection and isolation FDI, fault tolerant control FTC, sliding mode observer, nonlinear system, robustness, stability

Procedia PDF Downloads 355
125 Comparing Two Non-Contact Squeeze Film Levitation Designs

Authors: Ahmed Almurshedi, Mark Atherton, Mares Cristinel, Tadeusz Stolarski, Masaaki Miyatake

Abstract:

Transportation and handling of delicate and lightweight objects is a significant issue in some industries. Two levitation prototype designs, a horn transducer design and surface-mounted piezoelectric actuator vibrating plate design, are compared. Both designs are based on the method of squeeze-film levitation (SFL) and the aim of this study is to evaluate the characteristics and performance of each. To this end, physical experiments are conducted and are demonstrated that the horn-type transducer prototype design produces better levitation performance but it design complexity and operating characteristics make it less suitable than the vibrating plate design for practical applications.

Keywords: floating, levitation, piezoelectric, squeeze-film, transducer

Procedia PDF Downloads 255
124 Optimal Design of Polymer Based Piezoelectric Actuator with Varying Thickness and Length Ratios

Authors: Vineet Tiwari, R. K. Dwivedi, Geetika Srivastava

Abstract:

Piezoelectric cantilevers are exploited for their use in sensors and actuators. In this study, a unimorph cantilever beam is considered as a study element with a piezoelectric polymer Polyvinylidene fluoride (PVDF) layer bonded to a substrate layer. The different substrates like polysilicon, stainless steel and silicon nitride are tried for the study. An effort has been made to optimize and study the effect of the various parameters of the device in order to achieve maximum tip deflection. The variation of the tip displacement of the cantilever with respect to the length ratio of the nonpiezoelectric layer to the piezoelectric layer has been studied. The electric response of this unimorph cantilever beam is simulated with the help of finite element analysis software COMSOL Multiphysics.

Keywords: actuators, cantilever, piezoelectric, sensors, PVDF

Procedia PDF Downloads 403
123 Journal Bearing with Controllable Radial Clearance, Design and Analysis

Authors: Majid Rashidi, Shahrbanoo Farkhondeh Biabnavi

Abstract:

The hydrodynamic instability phenomenon in a journal bearing may occur by either a reduction in the load carried by journal bearing, by an increase in the journal speed, by change in the lubricant viscosity, or a combination of these factors. The previous research and development work done to overcome the instability issue of journal bearings, operating in hydrodynamic lubricate regime, can be categorized as follows: A) Actively controlling the bearing sleeve by using piezo actuator, b) Inclusion of strategically located and shaped internal grooves within inner surface of the bearing sleeve, c) Actively controlling the bearing sleeve using an electromagnetic actuator, d)Actively and externally pressurizing the lubricant within a journal bearing set, and e)Incorporating tilting pads within the inner surface of the bearing sleeve that assume different equilibrium angular position in response to changes in the bearing design parameter such as speed and load. This work presents an innovative design concept for a 'smart journal bearing' set to operate in a stable hydrodynamic lubrication regime, despite variations in bearing speed, load, and its lubricant viscosity. The proposed bearing design allows adjusting its radial clearance for an attempt to maintain a stable bearing operation under those conditions that may cause instability for a bearing with a fixed radial clearance. The design concept allows adjusting the radial clearance at small increments in the order of 0.00254 mm. This is achieved by axially moving two symmetric conical rigid cavities that are in close contact with the conically shaped outer shell of a sleeve bearing. The proposed work includes a 3D model of the bearing that depicts the structural interactions of the bearing components. The 3D model is employed to conduct finite element Analyses to simulate the mechanical behavior of the bearing from a structural point of view. The concept of controlling of the radial clearance, as presented in this work, is original and has not been proposed and discuss in previous research. A typical journal bearing was analyzed under a set of design parameters, namely r =1.27 cm (journal radius), c = 0.0254 mm (radial clearance), L=1.27 cm (bearing length), w = 445N (bearing load), μ = 0.028 Pascale (lubricant viscosity). A shaft speed as 3600 r.p.m was considered, and the mass supported by the bearing, m, is set to be 4.38kg. The Summerfield Number associated with the above bearing design parameters turn to be, S=0.3. These combinations resulted in stable bearing operation. Subsequently, the speed was postulated to increase from 3600 r.p.mto 7200 r.p.m; the bearing was found to be unstable under the new increased speed. In order to regain stability, the radial clearance was increased from c = 0.0254 mm to0.0358mm. The change in the radial clearance was shown to bring the bearing back to stable an operating condition.

Keywords: adjustable clearance, bearing, hydrodynamic, instability, journal

Procedia PDF Downloads 252
122 Fault Detection and Isolation in Attitude Control Subsystem of Spacecraft Formation Flying Using Extended Kalman Filters

Authors: S. Ghasemi, K. Khorasani

Abstract:

In this paper, the problem of fault detection and isolation in the attitude control subsystem of spacecraft formation flying is considered. In order to design the fault detection method, an extended Kalman filter is utilized which is a nonlinear stochastic state estimation method. Three fault detection architectures, namely, centralized, decentralized, and semi-decentralized are designed based on the extended Kalman filters. Moreover, the residual generation and threshold selection techniques are proposed for these architectures.

Keywords: component, formation flight of satellites, extended Kalman filter, fault detection and isolation, actuator fault

Procedia PDF Downloads 410
121 Limit State of Heterogeneous Smart Structures under Unknown Cyclic Loading

Authors: M. Chen, S-Q. Zhang, X. Wang, D. Tate

Abstract:

This paper presents a numerical solution, namely limit and shakedown analysis, to predict the safety state of smart structures made of heterogeneous materials under unknown cyclic loadings, for instance, the flexure hinge in the micro-positioning stage driven by piezoelectric actuator. In combination of homogenization theory and finite-element method (FEM), the safety evaluation problem is converted to a large-scale nonlinear optimization programming for an acceptable bounded loading as the design reference. Furthermore, a general numerical scheme integrated with the FEM and interior-point-algorithm based optimization tool is developed, which makes the practical application possible.

Keywords: limit state, shakedown analysis, homogenization, heterogeneous structure

Procedia PDF Downloads 305
120 Improvement of Buckling Behavior of Cold Formed Steel Uprights with Open Cross Section Used in Storage Rack Systems

Authors: Yasar Pala, Safa Senaysoy, Emre Calis

Abstract:

In this paper, structural behavior and improvement of buckling behavior of cold formed steel uprights with open cross-section used storage rack system are studied. As a first step, in the case of a stiffener having an inclined part on the flange, experimental and nonlinear finite element analysis are carried out for three different upright lengths. In the uprights with long length, global buckling is observed while distortional buckling and local buckling are observed in the uprights with medium length and those with short length, respectively. After this point, the study is divided into two groups. One of these groups is the case where the stiffener on the flange is folded at 90°. For this case, four different distances of the stiffener from the web are taken into account. In the other group, the case where different depth of stiffener on the web is considered. Combining experimental and finite element results, the cross-section giving the ultimate critical buckling load is selected.

Keywords: steel, upright, buckling, modes, nonlinear finite element analysis, optimization

Procedia PDF Downloads 235
119 Simulation of an Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform

Authors: Shield B. Lin, Sameer Abdali

Abstract:

Computer simulations were performed using MATLAB/Simulink for a vibration isolation system for astronaut’s exercise platform. Simulation parameters initially were based on an on-going experiment in a laboratory at NASA Johnson Space Center. The authors expanded later simulations to include other parameters. A discrete proportional-integral-derivative controller with a low-pass filter commanding a linear actuator served as the active control unit to push and pull a counterweight in balancing the disturbance forces. A spring-damper device is used as an optional passive control unit. Simulation results indicated such design could achieve near complete vibration isolation with small displacements of the exercise platform.

Keywords: control, counterweight, isolation, vibration

Procedia PDF Downloads 116
118 Design of Permanent Sensor Fault Tolerance Algorithms by Sliding Mode Observer for Smart Hybrid Powerpack

Authors: Sungsik Jo, Hyeonwoo Kim, Iksu Choi, Hunmo Kim

Abstract:

In the SHP, LVDT sensor is for detecting the length changes of the EHA output, and the thrust of the EHA is controlled by the pressure sensor. Sensor is possible to cause hardware fault by internal problem or external disturbance. The EHA of SHP is able to be uncontrollable due to control by feedback from uncertain information, on this paper; the sliding mode observer algorithm estimates the original sensor output information in permanent sensor fault. The proposed algorithm shows performance to recovery fault of disconnection and short circuit basically, also the algorithm detect various of sensor fault mode.

Keywords: smart hybrid powerpack (SHP), electro hydraulic actuator (EHA), permanent sensor fault tolerance, sliding mode observer (SMO), graphic user interface (GUI)

Procedia PDF Downloads 523
117 F-IVT Actuation System to Power Artificial Knee Joint

Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo

Abstract:

The efficiency of the actuation system of lower limb exoskeletons and of active orthoses is a significant aspect of the design of such devices because it affects their efficacy. F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel, that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated how F-IVT is still an advantageous actuator, even when it does not work in nominal conditions.

Keywords: active orthoses, actuators, lower extremity exoskeletons, knee joint

Procedia PDF Downloads 573
116 Time-Domain Simulations of the Coupled Dynamics of Surface Riding Wave Energy Converter

Authors: Chungkuk Jin, Moo-Hyun Kim, HeonYong Kang

Abstract:

A surface riding (SR) wave energy converter (WEC) is designed and its feasibility and performance are numerically simulated by the author-developed floater-mooring-magnet-electromagnetics fully-coupled dynamic analysis computer program. The biggest advantage of the SR-WEC is that the performance is equally effective even in low sea states and its structural robustness is greatly improved by simply riding along the wave surface compared to other existing WECs. By the numerical simulations and actuator testing, it is clearly demonstrated that the concept works and through the optimization process, its efficiency can be improved.

Keywords: computer simulation, electromagnetics fully-coupled dynamics, floater-mooring-magnet, optimization, performance evaluation, surface riding, WEC

Procedia PDF Downloads 112
115 Carbonate Microfacies and Diagenesis of Klapanunggal Formation in Cileungsi District, Bogor Regency, West Java Province, Indonesia

Authors: Reghina Karyadi, Abdurrokhim, Lili Fauzielly

Abstract:

Administratively, the research area is located in Cileungsi District, Bogor Regency, West Java Province, Indonesia. Geographically, it located at 106° 56’ 1,9392” - 107° 1’ 27,8112” East Longitude and 6° 32’ 29,3712” - 6° 27’ 5,6124” South Latitude. This research is being held as a purpose to observe microfacies and limestone diagenesis that happened in the study area. Dominantly, the area fulfills of various hills that formed by carbonate and sediment stones which folded and faulted. The method that using in this research is analysis the outcrop data and petrography by using red alizarin for differentiating of minerals type. Microfacies type and diagenesis processes can be known from petrography analysis results like rock texture, rock structure, porosity, type of grain and fossils. The result of research shows that carbonate rocks in the study area can be divided into 3 types microfasies, which is Reef Microfacies (SMF 7), Shallow Water Microfacies (SMF 9), and Textural Inversion Microfacies (SMF 10). Whereas diagenesis process that happened is microbial micritization, compaction, neomorphism, cementation and dissolution process.

Keywords: carbonate, limestone, microfacies, diagenesis

Procedia PDF Downloads 342
114 A Tutorial on Model Predictive Control for Spacecraft Maneuvering Problem with Theory, Experimentation and Applications

Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini

Abstract:

This paper discusses the recent advances and future prospects of spacecraft position and attitude control using Model Predictive Control (MPC). First, the challenges of the space missions are summarized, in particular, taking into account the errors, uncertainties, and constraints imposed by the mission, spacecraft and, onboard processing capabilities. The summary of space mission errors and uncertainties provided in categories; initial condition errors, unmodeled disturbances, sensor, and actuator errors. These previous constraints are classified into two categories: physical and geometric constraints. Last, real-time implementation capability is discussed regarding the required computation time and the impact of sensor and actuator errors based on the Hardware-In-The-Loop (HIL) experiments. The rationales behind the scenarios’ are also presented in the scope of space applications as formation flying, attitude control, rendezvous and docking, rover steering, and precision landing. The objectives of these missions are explained, and the generic constrained MPC problem formulations are summarized. Three key design elements used in MPC design: the prediction model, the constraints formulation and the objective cost function are discussed. The prediction models can be linear time invariant or time varying depending on the geometry of the orbit, whether it is circular or elliptic. The constraints can be given as linear inequalities for input or output constraints, which can be written in the same form. Moreover, the recent convexification techniques for the non-convex geometrical constraints (i.e., plume impingement, Field-of-View (FOV)) are presented in detail. Next, different objectives are provided in a mathematical framework and explained accordingly. Thirdly, because MPC implementation relies on finding in real-time the solution to constrained optimization problems, computational aspects are also examined. In particular, high-speed implementation capabilities and HIL challenges are presented towards representative space avionics. This covers an analysis of future space processors as well as the requirements of sensors and actuators on the HIL experiments outputs. The HIL tests are investigated for kinematic and dynamic tests where robotic arms and floating robots are used respectively. Eventually, the proposed algorithms and experimental setups are introduced and compared with the authors' previous work and future plans. The paper concludes with a conjecture that MPC paradigm is a promising framework at the crossroads of space applications while could be further advanced based on the challenges mentioned throughout the paper and the unaddressed gap.

Keywords: convex optimization, model predictive control, rendezvous and docking, spacecraft autonomy

Procedia PDF Downloads 85
113 A Forearm-Wrist Rehabilitation Module for Stroke and Spinal Cord Injuries

Authors: Vahid Mehrabi, Iman Sharifi, H. A. Talebi

Abstract:

The automation of rehabilitation procedure by the implementation of robotic devices can overcome the limitation in conventional physiotherapy methods by increasing training sessions and duration of process. In this paper, the design of a simple rehabilitation robot for forearm-wrist therapy in stroke and spinal cord injuries is presented. Wrist’s biological joint motion is modeled by a gimbal-like mechanism which resembles the human arm anatomy. Presented device is an exoskeleton robot with rotation axes corresponding to human skeleton anatomy. The mechanical structure, actuator and sensor selection, system kinematics and comparison between our device range of motion and required active daily life values is illustrated.

Keywords: rehabilitation, robotic devices, physiotherapy, forearm-wrist

Procedia PDF Downloads 244
112 Experimental and Numerical Investigation of Flow Control Using a Novel Active Slat

Authors: Basman Elhadidi, Islam Elqatary, Osama Saaid, Hesham Othman

Abstract:

An active slat is developed to increase the lift and delay the separation for a DU96-W180 airfoil. The active slat is a fixed slat that can be closed, fully opened or intermittently opened by a rotating vane depending on the need. Experimental results show that the active slat has reduced the mean pressure and increased the mean velocity on the suction side of the airfoil for all positive angles of attack, indicating an increase of lift. The experimental data and numerical simulations also show that the direction of actuator vane rotation can influence the mixing of the flow streams on the suction side and hence influence the aerodynamic performance.

Keywords: active slat, flow control, experimental investigation, aerodynamic performance

Procedia PDF Downloads 403
111 Energy Absorption of Circular Thin-Walled Tube with Curved-Crease Patterns under Axial Crushing

Authors: Grzegorz Dolzyk, Sungmoon Jung

Abstract:

Thin-walled tubes are commonly used as energy absorption devices for their excellent mechanical properties and high manufacturability. Techniques such as grooving and pre-folded origami shapes were introduced to circular and polygonal tubes to improve its energy absorption efficiency. This paper examines the energy absorption characteristics of circular tubes with pre-embedded curved-crease pattern. Set of numerical analyzes were conducted with different grooving patterns for tubes with various diameter (D) to thickness (t) ratio. It has been found that even very shallow grooving can positively affect thin wall tubes, leading to increased energy absorption and higher crushing load efficiency. The phenomenon is associated with nonsymmetric deformation that is usually observed for tubes with a high D/t ratio ( > 90). Grooving can redirect a natural mode of post-buckling deformation to a one with a higher number of lobes such that its beneficial and more stable. Also, the opposite effect can be achieved, and highly disrupted deformation can be a cause of reduced energy absorption capabilities. Curved-crease engraved patterns can be used to stabilize and change a form of hazardous post-buckling deformation.

Keywords: axial crushing, energy absorption, grooving, thin-wall structures

Procedia PDF Downloads 115
110 Insights of Interaction Studies between HSP-60, HSP-70 Proteins and HSF-1 in Bubalus bubalis

Authors: Ravinder Singh, C Rajesh, Saroj Badhan, Shailendra Mishra, Ranjit Singh Kataria

Abstract:

Heat shock protein 60 and 70 are crucial chaperones that guide appropriate folding of denatured proteins under heat stress conditions. HSP60 and HSP70 provide assistance in correct folding of a multitude of denatured proteins. The heat shock factors are the family of some transcription factors which controls the regulation of gene expression of proteins involved in folding of damaged or improper folded proteins during stress conditions. Under normal condition heat shock proteins bind with HSF-1 and act as its repressor as well as aids in maintaining the HSF-1’s nonactive and monomeric confirmation. The experimental protein structure for all these proteins in Bubalus bubalis is not known till date. Therefore computational approach was explored to identify three-dimensional structure analysis of all these proteins. In this study, an extensive in silico analysis has been performed including sequence comparison among species to comparative modeling of Bubalus bubalis HSP60, HSP70 and HSF-1 protein. The stereochemical properties of proteins were assessed by utilizing several scrutiny bioinformatics tools to ensure model accuracy. Further docking approach was used to study interactions between Heat shock proteins and HSF-1.

Keywords: Bubalus bubalis, comparative modelling, docking, heat shock protein

Procedia PDF Downloads 291
109 Design and Analysis of an Electro Thermally Symmetrical Actuated Microgripper

Authors: Sh. Foroughi, V. Karamzadeh, M. Packirisamy

Abstract:

This paper presents design and analysis of an electrothermally symmetrical actuated microgripper applicable for performing micro assembly or biological cell manipulation. Integration of micro-optics with microdevice leads to achieve extremely precise control over the operation of the device. Geometry, material, actuation, control, accuracy in measurement and temperature distribution are important factors which have to be taken into account for designing the efficient microgripper device. In this work, analyses of four different geometries are performed by means of COMSOL Multiphysics 5.2 with implementing Finite Element Methods. Then, temperature distribution along the fingertip, displacement of gripper site as well as optical efficiency vs. displacement and electrical potential are illustrated. Results show in addition to the industrial application of this device, the usage of that as a cell manipulator is possible.

Keywords: electro thermal actuator, MEMS, microgripper, MOEMS

Procedia PDF Downloads 139
108 Experimental and Numerical Investigation of Flow Control Using a Novel Active Slat

Authors: Basman Elhadidi, Islam Elqatary, Osama Mohamady, Hesham Othman

Abstract:

An active slat is developed to increase the lift and delay the separation for a DU96-W180 airfoil. The active slat is a fixed slat that can be closed, fully opened or intermittently opened by a rotating vane depending on the need. Experimental results show that the active slat has reduced the mean pressure and increased the mean velocity on the suction side of the airfoil for all positive angles of attack, indicating an increase of lift. The experimental data and numerical simulations also show that the direction of actuator vane rotation can influence the mixing of the flow streams on the suction side and hence influence the aerodynamic performance.

Keywords: active slat, flow control, DU96-W180 airfoil, flow streams

Procedia PDF Downloads 351
107 Spectral Coherence Analysis between Grinding Interaction Forces and the Relative Motion of the Workpiece and the Cutting Tool

Authors: Abdulhamit Donder, Erhan Ilhan Konukseven

Abstract:

Grinding operation is performed in order to obtain desired surfaces precisely in machining process. The needed relative motion between the cutting tool and the workpiece is generally created either by the movement of the cutting tool or by the movement of the workpiece or by the movement of both of them as in our case. For all these cases, the coherence level between the movements and the interaction forces is a key influential parameter for efficient grinding. Therefore, in this work, spectral coherence analysis has been performed to investigate the coherence level between grinding interaction forces and the movement of the workpiece on our robotic-grinding experimental setup in METU Mechatronics Laboratory.

Keywords: coherence analysis, correlation, FFT, grinding, hanning window, machining, Piezo actuator, reverse arrangements test, spectral analysis

Procedia PDF Downloads 374
106 Fault-Tolerant Fuzzy Gain-Adaptive PID Control for a 2 DOF Helicopter, TRMS System

Authors: Abderrahmen Bouguerra, Kamel Kara, Djamel Saigaa, Samir Zeghlache, Keltoum Loukal

Abstract:

In this paper, a Fault-Tolerant control of 2 DOF Helicopter (TRMS System) Based on Fuzzy Gain-Adaptive PID is presented. In particular, the introduction part of the paper presents a Fault-Tolerant Control (FTC), the first part of this paper presents a description of the mathematical model of TRMS, an adaptive PID controller is proposed for fault-tolerant control of a TRMS helicopter system in the presence of actuator faults, A fuzzy inference scheme is used to tune in real-time the controller gains, The proposed adaptive PID controller is compared with the conventional PID. The obtained results show the effectiveness of the proposed method.

Keywords: fuzzy control, gain-adaptive PID, helicopter model, PID control, TRMS system

Procedia PDF Downloads 442
105 Clinicopathological Findings of Partuberclosis in Camels: Possible Steps for Control Strategy

Authors: A. M. Almujalli, G. M. Al-Ghamdi

Abstract:

Mycobacterium avium subspecies paratuberculosis causes paratuberculosis, a chronic debilitating granulomatous enteritis, in camels as well as domestic and wild ruminants. The clinical manifestation of the disease in camel is not well characterized, therefore this study was aimed to investigate the clinical and pathological pictures of camels that are suffering from partuberculosis. Twelve young camels that were presented to the Veterinary Teaching Hospital, King Faisal University were investigated. Clinical and pathological examination were performed. The results revealed highly significant increase in creatinine, blood urea nitrogen, magnesium, AST and ALT in diseased camels, while glucose, total protein and albumin were highly significantly decreased in diseased camels when compared to healthy ones. Post-mortem testing indicated thickening, corrugation of the intestinal wall, folded mucosa, enlarged and oedemated ileocaecal and mesenteric lymph nodes. The microscopic findings detected short, blunt and distorted intestinal villi with hyperactive goblet cells of the villi and the crypts of lieberkuhn contained mucin droplets. The lamina propria was heavily infiltrated with mononuclear cells mostly macrophages. This clinical picture of paratuberculosis may be used to initiate control strategy to limit the spread of the disease in camel herds.

Keywords: camel, partuberclosis, control, Saudi Arabia

Procedia PDF Downloads 166
104 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nano composite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25 oC) and (480 ± 25 oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1 oC) and captured double melting point at 84 (±2 oC) and 108 (±2 oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: thermal properties, nano MH, nano particles, cable and wire, LDPE/EVA

Procedia PDF Downloads 431
103 Approach to Functional Safety-Compliant Design of Electric Power Steering Systems for Commercial Vehicles

Authors: Hyun Chul Koag, Hyun-Sik Ahn

Abstract:

In this paper, we propose a design approach for the safety mechanism of an actuator used in a commercial vehicle’s EPS system. As the number of electric/electronic system in a vehicle increases, the importance of the functional safety has been receiving much attention. EPS(Electric Power Steering) systems for commercial vehicles require large power than passenger vehicles, and hence, dual motor can be applied to get more torque. We show how to formulate the development process for the design of hardware and software of an EPS system using dual motors. A lot of safety mechanisms for the processor, sensors, and memory have been suggested, however, those for actuators have not been fully researched. It is shown by metric analyses that the target ASIL(Automotive Safety Integrated Level) is satisfied in the point of view of hardware of EPS controller.

Keywords: safety mechanism, functional safety, commercial vehicles, electric power steering

Procedia PDF Downloads 359
102 Low Power CMOS Amplifier Design for Wearable Electrocardiogram Sensor

Authors: Ow Tze Weng, Suhaila Isaak, Yusmeeraz Yusof

Abstract:

The trend of health care screening devices in the world is increasingly towards the favor of portability and wearability, especially in the most common electrocardiogram (ECG) monitoring system. This is because these wearable screening devices are not restricting the patient’s freedom and daily activities. While the demand of low power and low cost biomedical system on chip (SoC) is increasing in exponential way, the front end ECG sensors are still suffering from flicker noise for low frequency cardiac signal acquisition, 50 Hz power line electromagnetic interference, and the large unstable input offsets due to the electrode-skin interface is not attached properly. In this paper, a high performance CMOS amplifier for ECG sensors that suitable for low power wearable cardiac screening is proposed. The amplifier adopts the highly stable folded cascode topology and later being implemented into RC feedback circuit for low frequency DC offset cancellation. By using 0.13 µm CMOS technology from Silterra, the simulation results show that this front end circuit can achieve a very low input referred noise of 1 pV/√Hz and high common mode rejection ratio (CMRR) of 174.05 dB. It also gives voltage gain of 75.45 dB with good power supply rejection ratio (PSSR) of 92.12 dB. The total power consumption is only 3 µW and thus suitable to be implemented with further signal processing and classification back end for low power biomedical SoC.

Keywords: CMOS, ECG, amplifier, low power

Procedia PDF Downloads 216