Search results for: finite rings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2488

Search results for: finite rings

2458 On the Cyclic Property of Groups of Prime Order

Authors: Ying Yi Wu

Abstract:

The study of finite groups is a central topic in algebraic structures, and one of the most fundamental questions in this field is the classification of finite groups up to isomorphism. In this paper, we investigate the cyclic property of groups of prime order, which is a crucial result in the classification of finite abelian groups. We prove the following statement: If p is a prime, then every group G of order p is cyclic. Our proof utilizes the properties of group actions and the class equation, which provide a powerful tool for studying the structure of finite groups. In particular, we first show that any non-identity element of G generates a cyclic subgroup of G. Then, we establish the existence of an element of order p, which implies that G is generated by a single element. Finally, we demonstrate that any two generators of G are conjugate, which shows that G is a cyclic group. Our result has significant implications in the classification of finite groups, as it implies that any group of prime order is isomorphic to the cyclic group of the same order. Moreover, it provides a useful tool for understanding the structure of more complicated finite groups, as any finite abelian group can be decomposed into a direct product of cyclic groups. Our proof technique can also be extended to other areas of group theory, such as the classification of finite p-groups, where p is a prime. Therefore, our work has implications beyond the specific result we prove and can contribute to further research in algebraic structures.

Keywords: group theory, finite groups, cyclic groups, prime order, classification.

Procedia PDF Downloads 53
2457 Frobenius Manifolds Pairing and Invariant Theory

Authors: Zainab Al-Maamari, Yassir Dinar

Abstract:

The orbit space of an irreducible representation of a finite group is a variety with the ring of invariant polynomials as a coordinate ring. The invariant ring is a polynomial ring if and only if the representation is a reflection representation. Boris Dubrovin shows that the orbits spaces of irreducible real reflection representations acquire the structure of polynomial Frobenius manifolds. Dubrovin's method was also used to construct different examples of Frobenius manifolds on certain reflection representations. By successfully applying Dubrovin’s method on non-polynomial invariant rings of linear representations of dicyclic groups, it gives some results that magnify the relation between invariant theory and Frobenius manifolds.

Keywords: invariant ring, Frobenius manifold, inversion, representation theory

Procedia PDF Downloads 64
2456 Computation of Stress Intensity Factor Using Extended Finite Element Method

Authors: Mahmoudi Noureddine, Bouregba Rachid

Abstract:

In this paper the stress intensity factors of a slant-cracked plate of AISI 304 stainless steel, have been calculated using extended finite element method and finite element method (FEM) in ABAQUS software, the results were compared with theoretical values.

Keywords: stress intensity factors, extended finite element method, stainless steel, abaqus

Procedia PDF Downloads 585
2455 A New Computational Package for Using in CFD and Other Problems (Third Edition)

Authors: Mohammad Reza Akhavan Khaleghi

Abstract:

This paper shows changes done to the Reduced Finite Element Method (RFEM) that its result will be the most powerful numerical method that has been proposed so far (some forms of this method are so powerful that they can approximate the most complex equations simply Laplace equation!). Finite Element Method (FEM) is a powerful numerical method that has been used successfully for the solution of the existing problems in various scientific and engineering fields such as its application in CFD. Many algorithms have been expressed based on FEM, but none have been used in popular CFD software. In this section, full monopoly is according to Finite Volume Method (FVM) due to better efficiency and adaptability with the physics of problems in comparison with FEM. It doesn't seem that FEM could compete with FVM unless it was fundamentally changed. This paper shows those changes and its result will be a powerful method that has much better performance in all subjects in comparison with FVM and another computational method. This method is not to compete with the finite volume method but to replace it.

Keywords: reduced finite element method, new computational package, new finite element formulation, new higher-order form, new isogeometric analysis

Procedia PDF Downloads 80
2454 Study of Complex (CO) 3Ti (PHND) and CpV (PHND) (PHND = Phénanthridine)

Authors: Akila Tayeb-Benmachiche, Saber-Mustapha Zendaoui, Salah-Eddine Bouaoud, Bachir Zouchoune

Abstract:

The variation of the metal coordination site in π-coordinated polycyclic aromatic hydrocarbons (PAH) corresponds to the haptotropic rearrangement or haptotropic migration in which the metal fragment MLn is considered as the moveable moiety that is shifted between two rings of polycyclic or heteropolycyclic ligands. These structural characteristics and dynamical properties give to this category of transition metal complexes a considerable interest. We have investigated the coordination and the haptotropic shifts of (CO)3Ti and CpV moieties over the phenanthridine aromatic system and according to the metal atom nature. The optimization of (CO)3Ti(PHND) and CpV(PHND), using the Amsterdam Density Functional (ADF) program, without a symmetrical restriction of geometry gives an η6 coordination mode of the C6 and C5N rings, which in turn give rise to a six low-lying deficient 16-MVE of each (CO)3Ti(PHND) and CpV(PHND) structure (three singlet and three triplet state structures for Ti complexes and three triplet and three quintet state structures for V complexes). Thus, the η6–η6 haptotropic migration of the metal fragment MLn from the terminal C6 ring to the central C5N ring has been achieved by a loss of energy. However, its η6–η6 haptotropic migration from central C5N ring to the terminal C6 rings has been accomplished by a gain of energy. These results show the capability of the phenanthridine ligand to adapt itself to the electronic demand of the metal in agreement with the nature of the metal–ligand bonding and demonstrate that this theoretical study can also be applied to large fused π-systems.

Keywords: electronic structure, bonding analysis, density functional theory, coordination chemistry haptotropic migration

Procedia PDF Downloads 272
2453 Finite Element Method as a Solution Procedure for Problems in Tissue Biomechanics

Authors: Momoh Omeiza Sheidu

Abstract:

Finite element method as a method of providing solutions to problems in computational bio mechanics provides a framework for modeling the function of tissues that integrates structurally from cell to organ system and functionally across the physiological processes that affect tissue mechanics or are regulated by mechanical forces. In this paper, we present an integrative finite element strategy for solution to problems in tissue bio mechanics as a case study.

Keywords: finite element, biomechanics, modeling, computational biomechanics

Procedia PDF Downloads 468
2452 Effect of the Drawbar Force on the Dynamic Characteristics of a Spindle-Tool Holder System

Authors: Jui-Pui Hung, Yu-Sheng Lai, Tzuo-Liang Luo, Kung-Da Wu, Yun-Ji Zhan

Abstract:

This study presented the investigation of the influence of the tool holder interface stiffness on the dynamic characteristics of a spindle tool system. The interface stiffness was produced by drawbar force on the tool holder, which tends to affect the spindle dynamics. In order to assess the influence of interface stiffness on the vibration characteristic of spindle unit, we first created a three dimensional finite element model of a high speed spindle system integrated with tool holder. The key point for the creation of FEM model is the modeling of the rolling interface within the angular contact bearings and the tool holder interface. The former can be simulated by a introducing a series of spring elements between inner and outer rings. The contact stiffness was calculated according to Hertz contact theory and the preload applied on the bearings. The interface stiffness of the tool holder was identified through the experimental measurement and finite element modal analysis. Current results show that the dynamic stiffness was greatly influenced by the tool holder system. In addition, variations of modal damping, static stiffness and dynamic stiffness of the spindle tool system were greatly determined by the interface stiffness of the tool holder which was in turn dependent on the draw bar force applied on the tool holder. Overall, this study demonstrates that identification of the interface characteristics of spindle tool holder is of very importance for the refinement of the spindle tooling system to achieve the optimum machining performance.

Keywords: dynamic stiffness, spindle-tool holder, interface stiffness, drawbar force

Procedia PDF Downloads 364
2451 Using ε Value in Describe Regular Languages by Using Finite Automata, Operation on Languages and the Changing Algorithm Implementation

Authors: Abdulmajid Mukhtar Afat

Abstract:

This paper aims at introducing nondeterministic finite automata with ε value which is used to perform some operations on languages. a program is created to implement the algorithm that converts nondeterministic finite automata with ε value (ε-NFA) to deterministic finite automata (DFA).The program is written in c++ programming language. The program inputs are FA 5-tuples from text file and then classifies it into either DFA/NFA or ε -NFA. For DFA, the program will get the string w and decide whether it is accepted or rejected. The tracking path for an accepted string is saved by the program. In case of NFA or ε-NFA automation, the program changes the automation to DFA to enable tracking and to decide if the string w exists in the regular language or not.

Keywords: DFA, NFA, ε-NFA, eclose, finite automata, operations on languages

Procedia PDF Downloads 462
2450 Finite Element Analysis of RC Frames with Retrofitted Infill Walls

Authors: M. Ömer Timurağaoğlu, Adem Doğangün, Ramazan Livaoğlu

Abstract:

The evaluation of performance of infilled reinforced concrete (RC) frames has been a significant challenge for engineers. The strengthening of infill walls has been an important concern to enhance the behavior of RC infilled frames. The aim of this study is to investigate the behaviour of retrofitted infill walls of RC frames using finite element analysis. For this purpose, a one storey, one bay infilled and strengthened infilled RC frame which have the same geometry and material properties with the frames tested in laboratory are modelled using different analytical approaches. A fibrous material is used to strengthen infill walls and frame. As a consequence, the results of the finite element analysis were evaluated of whether these analytical approaches estimate the behavior or not. To model the infilled and strengthened infilled RC frames, a finite element program ABAQUS is used. Finally, data obtained from the nonlinear finite element analysis is compared with the experimental results.

Keywords: finite element analysis, infilled RC frames, infill wall, strengthening

Procedia PDF Downloads 492
2449 A Study on Finite Element Modelling of Earth Retaining Wall Anchored by Deadman Anchor

Authors: K. S. Chai, S. H. Chan

Abstract:

In this paper, the earth retaining wall anchored by discrete deadman anchor to support excavations in sand is modelled and analysed by finite element analysis. A study is conducted to examine how deadman anchorage system helps in reducing the deflection of earth retaining wall. A simplified numerical model is suggested in order to reduce the simulation duration. A comparison between 3-D and 2-D finite element analyses is illustrated.

Keywords: finite element, earth retaining wall, deadman anchor, sand

Procedia PDF Downloads 440
2448 Finite Sample Inferences for Weak Instrument Models

Authors: Gubhinder Kundhi, Paul Rilstone

Abstract:

It is well established that Instrumental Variable (IV) estimators in the presence of weak instruments can be poorly behaved, in particular, be quite biased in finite samples. Finite sample approximations to the distributions of these estimators are obtained using Edgeworth and Saddlepoint expansions. Departures from normality of the distributions of these estimators are analyzed using higher order analytical corrections in these expansions. In a Monte-Carlo experiment, the performance of these expansions is compared to the first order approximation and other methods commonly used in finite samples such as the bootstrap.

Keywords: bootstrap, Instrumental Variable, Edgeworth expansions, Saddlepoint expansions

Procedia PDF Downloads 284
2447 Degradation of Polycyclic Aromatic Hydrocarbons-Contaminated Soil by Proxy-Acid Method

Authors: Reza Samsami

Abstract:

The aim of the study was to degradation of polycyclic aromatic hydrocarbons (PAHs) by proxy-acid method. The amounts of PAHs were determined in a silty-clay soil sample of an aged oil refinery field in Abadan, Iran. Proxy-acid treatment method was investigated. The results have shown that the proxy-acid system is an effective method for degradation of PAHs. The results also demonstrated that the number of fused aromatic rings have not significant effects on PAH removal by proxy-acid method. The results also demonstrated that the number of fused aromatic rings have not significant effects on PAH removal by proxy-acid method.

Keywords: proxy-acid treatment, silty-clay soil, PAHs, degradation

Procedia PDF Downloads 238
2446 Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method

Authors: Ž. Nikolić, H. Smoljanović, N. Živaljić

Abstract:

This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures.

Keywords: dry stone masonry structures, dynamic load, finite-discrete element method, static load

Procedia PDF Downloads 378
2445 Study of Climate Change Process on Hyrcanian Forests Using Dendroclimatology Indicators (Case Study of Guilan Province)

Authors: Farzad Shirzad, Bohlol Alijani, Mehry Akbary, Mohammad Saligheh

Abstract:

Climate change and global warming are very important issues today. The process of climate change, especially changes in temperature and precipitation, is the most important issue in the environmental sciences. Climate change means changing the averages in the long run. Iran is located in arid and semi-arid regions due to its proximity to the equator and its location in the subtropical high pressure zone. In this respect, the Hyrcanian forest is a green necklace between the Caspian Sea and the south of the Alborz mountain range. In the forty-third session of UNESCO, it was registered as the second natural heritage of Iran. Beech is one of the most important tree species and the most industrial species of Hyrcanian forests. In this research, using dendroclimatology, the width of the tree ring, and climatic data of temperature and precipitation from Shanderman meteorological station located in the study area, And non-parametric Mann-Kendall statistical method to investigate the trend of climate change over a time series of 202 years of growth ringsAnd Pearson statistical method was used to correlate the growth of "ring" growth rings of beech trees with climatic variables in the region. The results obtained from the time series of beech growth rings showed that the changes in beech growth rings had a downward and negative trend and were significant at the level of 5% and climate change occurred. The average minimum, medium, and maximum temperatures and evaporation in the growing season had an increasing trend, and the annual precipitation had a decreasing trend. Using Pearson method during fitting the correlation of diameter of growth rings with temperature, for the average in July, August, and September, the correlation is negative, and the average temperature in July, August, and September is negative, and for the average The average maximum temperature in February was correlation-positive and at the level of 95% was significant, and with precipitation, in June the correlation was at the level of 95% positive and significant.

Keywords: climate change, dendroclimatology, hyrcanian forest, beech

Procedia PDF Downloads 76
2444 A Finite Element Method Simulation for Rocket Motor Material Selection

Authors: T. Kritsana, P. Sawitri, P. Teeratas

Abstract:

This article aims to study the effect of pressure on rocket motor case by Finite Element Method simulation to select optimal material in rocket motor manufacturing process. In this study, cylindrical tubes with outside diameter of 122 mm and thickness of 3 mm are used for simulation. Defined rocket motor case materials are AISI4130, AISI1026, AISI1045, AL2024 and AL7075. Internal pressure used for the simulation is 22 MPa. The result from Finite Element Method shows that at a pressure of 22 MPa rocket motor case produced by AISI4130, AISI1045 and AL7075 can be used. A comparison of the result between AISI4130, AISI1045 and AL7075 shows that AISI4130 has minimum principal stress and confirm the results of Finite Element Method by the used of calculation method found that, the results from Finite Element Method has good reliability.

Keywords: rocket motor case, finite element method, principal stress, simulation

Procedia PDF Downloads 416
2443 Discovering the Real Psyche of Human Beings

Authors: Sheetla Prasad

Abstract:

The objective of this study is ‘discovering the real psyche of human beings for prediction of mode, direction and strength of the potential of actions of the individual. The human face was taken as a source of central point to search for the route of real psyche. Analysis of the face architecture (shape and salient features of face) was done by three directional photographs ( 600 left and right and camera facing) of human beings. The shapes and features of the human face were scaled in 177 units on the basis of face–features locations (FFL). The mathematical analysis was done of FFLs by self developed and standardized formula. At this phase, 800 samples were taken from the population of students, teachers, advocates, administrative officers, and common persons. The finding shows that real psyche has two external rings (ER). These ER are itself generator of two independent psyches (manifested and manipulated). Prima-facie, it was proved that micro differences in FFLs have potential to predict the state of art of the human psyche. The potential of psyches was determined by the saving and distribution of mental energy. It was also mathematically proved.

Keywords: face architecture, psyche, potential, face functional ratio, external rings

Procedia PDF Downloads 481
2442 Localized Meshfree Methods for Solving 3D-Helmholtz Equation

Authors: Reza Mollapourasl, Majid Haghi

Abstract:

In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem.

Keywords: radial basis functions, Hermite finite difference, Helmholtz equation, stability

Procedia PDF Downloads 67
2441 Parametric Study for Obtaining the Structural Response of Segmental Tunnels in Soft Soil by Using No-Linear Numerical Models

Authors: Arturo Galván, Jatziri Y. Moreno-Martínez, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado

Abstract:

In recent years, one of the methods most used for the construction of tunnels in soft soil is the shield-driven tunneling. The advantage of this construction technique is that it allows excavating the tunnel while at the same time a primary lining is placed, which consists of precast segments. There are joints between segments, also called longitudinal joints, and joints between rings (called as circumferential joints). This is the reason because of this type of constructions cannot be considered as a continuous structure. The effect of these joints influences in the rigidity of the segmental lining and therefore in its structural response. A parametric study was performed to take into account the effect of different parameters in the structural response of typical segmental tunnels built in soft soil by using non-linear numerical models based on Finite Element Method by means of the software package ANSYS v. 11.0. In the first part of this study, two types of numerical models were performed. In the first one, the segments were modeled by using beam elements based on Timoshenko beam theory whilst the segment joints were modeled by using inelastic rotational springs considering the constitutive moment-rotation relation proposed by Gladwell. In this way, the mechanical behavior of longitudinal joints was simulated. On the other hand for simulating the mechanical behavior of circumferential joints elastic springs were considered. As well as, the stability given by the soil was modeled by means of elastic-linear springs. In the second type of models, the segments were modeled by means of three-dimensional solid elements and the joints with contact elements. In these models, the zone of the joints is modeled as a discontinuous (increasing the computational effort) therefore a discrete model is obtained. With these contact elements the mechanical behavior of joints is simulated considering that when the joint is closed, there is transmission of compressive and shear stresses but not of tensile stresses and when the joint is opened, there is no transmission of stresses. This type of models can detect changes in the geometry because of the relative movement of the elements that form the joints. A comparison between the numerical results with two types of models was carried out. In this way, the hypothesis considered in the simplified models were validated. In addition, the numerical models were calibrated with (Lab-based) experimental results obtained from the literature of a typical tunnel built in Europe. In the second part of this work, a parametric study was performed by using the simplified models due to less used computational effort compared to complex models. In the parametric study, the effect of material properties, the geometry of the tunnel, the arrangement of the longitudinal joints and the coupling of the rings were studied. Finally, it was concluded that the mechanical behavior of segment and ring joints and the arrangement of the segment joints affect the global behavior of the lining. As well as, the effect of the coupling between rings modifies the structural capacity of the lining.

Keywords: numerical models, parametric study, segmental tunnels, structural response

Procedia PDF Downloads 206
2440 Fractional Euler Method and Finite Difference Formula Using Conformable Fractional Derivative

Authors: Ramzi B. Albadarneh

Abstract:

In this paper, we use the new definition of fractional derivative called conformable fractional derivative to derive some finite difference formulas and its error terms which are used to solve fractional differential equations and fractional partial differential equations, also to derive fractional Euler method and its error terms which can be applied to solve fractional differential equations. To provide the contribution of our work some applications on finite difference formulas and Euler Method are given.

Keywords: conformable fractional derivative, finite difference formula, fractional derivative, finite difference formula

Procedia PDF Downloads 410
2439 Finite Volume Method in Loop Network in Hydraulic Transient

Authors: Hossain Samani, Mohammad Ehteram

Abstract:

In this paper, we consider finite volume method (FVM) in water hammer. We will simulate these techniques on a looped network with complex boundary conditions. After comparing methods, we see the FVM method as the best method. We compare the results of FVM with experimental data. Finite volume using staggered grid is applied for solving water hammer equations.

Keywords: hydraulic transient, water hammer, interpolation, non-liner interpolation

Procedia PDF Downloads 325
2438 Passive Attenuation with Multiple Resonator Rings for Musical Instruments Equalization

Authors: Lorenzo Bonoldi, Gianluca Memoli, Abdelhalim Azbaid El Ouahabi

Abstract:

In this paper, a series of ring-shaped attenuators utilizing Helmholtz and quarter wavelength resonators in variable, fixed, and combined configurations have been manufactured using a 3D printer. We illustrate possible uses by incorporating such devices into musical instruments (e.g. in acoustic guitar sound holes) and audio speakers with a view to controlling such devices tonal emissions without electronic equalization systems. Numerical investigations into the transmission loss values of these ring-shaped attenuators using finite element method simulations (COMSOL Multiphysics) have been presented in the frequency range of 100– 1000 Hz. We compare such results for each attenuator model with experimental measurements using different driving sources such as white noise, a maximum-length sequence (MLS), square and sine sweep pulses, and point scans in the frequency domain. Finally, we present a preliminary discussion on the comparison of numerical and experimental results.

Keywords: equaliser, metamaterials, musical, instruments

Procedia PDF Downloads 138
2437 A Finite Element/Finite Volume Method for Dam-Break Flows over Deformable Beds

Authors: Alia Alghosoun, Ashraf Osman, Mohammed Seaid

Abstract:

A coupled two-layer finite volume/finite element method was proposed for solving dam-break flow problem over deformable beds. The governing equations consist of the well-balanced two-layer shallow water equations for the water flow and a linear elastic model for the bed deformations. Deformations in the topography can be caused by a brutal localized force or simply by a class of sliding displacements on the bathymetry. This deformation in the bed is a source of perturbations, on the water surface generating water waves which propagate with different amplitudes and frequencies. Coupling conditions at the interface are also investigated in the current study and two mesh procedure is proposed for the transfer of information through the interface. In the present work a new procedure is implemented at the soil-water interface using the finite element and two-layer finite volume meshes with a conservative distribution of the forces at their intersections. The finite element method employs quadratic elements in an unstructured triangular mesh and the finite volume method uses the Rusanove to reconstruct the numerical fluxes. The numerical coupled method is highly efficient, accurate, well balanced, and it can handle complex geometries as well as rapidly varying flows. Numerical results are presented for several test examples of dam-break flows over deformable beds. Mesh convergence study is performed for both methods, the overall model provides new insight into the problems at minimal computational cost.

Keywords: dam-break flows, deformable beds, finite element method, finite volume method, hybrid techniques, linear elasticity, shallow water equations

Procedia PDF Downloads 145
2436 3D Finite Element Analysis of Yoke Hybrid Electromagnet

Authors: Hasan Fatih Ertuğrul, Beytullah Okur, Huseyin Üvet, Kadir Erkan

Abstract:

The objective of this paper is to analyze a 4-pole hybrid magnetic levitation system by using 3D finite element and analytical methods. The magnetostatic analysis of the system is carried out by using ANSYS MAXWELL-3D package. An analytical model is derived by magnetic equivalent circuit (MEC) method. The purpose of magnetostatic analysis is to determine the characteristics of attractive force and rotational torques by the change of air gap clearances, inclination angles and current excitations. The comparison between 3D finite element analysis and analytical results are presented at the rest of the paper.

Keywords: yoke hybrid electromagnet, 3D finite element analysis, magnetic levitation system, magnetostatic analysis

Procedia PDF Downloads 687
2435 A Hyperexponential Approximation to Finite-Time and Infinite-Time Ruin Probabilities of Compound Poisson Processes

Authors: Amir T. Payandeh Najafabadi

Abstract:

This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process by approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finite-time) ruin probability as a solvable ordinary differential equation (or a partial differential equation). Application of our findings has been given through a simulation study.

Keywords: ruin probability, compound poisson processes, mixture exponential (hyperexponential) distribution, heavy-tailed distributions

Procedia PDF Downloads 311
2434 Maintenance Alternatives Related to Costs of Wind Turbines Using Finite State Markov Model

Authors: Boukelkoul Lahcen

Abstract:

The cumulative costs for O&M may represent as much as 65%-90% of the turbine's investment cost. Nowadays the cost effectiveness concept becomes a decision-making and technology evaluation metric. The cost of energy metric accounts for the effect replacement cost and unscheduled maintenance cost parameters. One key of the proposed approach is the idea of maintaining the WTs which can be captured via use of a finite state Markov chain. Such a model can be embedded within a probabilistic operation and maintenance simulation reflecting the action to be done. In this paper, an approach of estimating the cost of O&M is presented. The finite state Markov model is used for decision problems with number of determined periods (life cycle) to predict the cost according to various options of maintenance.

Keywords: cost, finite state, Markov model, operation and maintenance

Procedia PDF Downloads 500
2433 Elastohydrodynamic Lubrication Study Using Discontinuous Finite Volume Method

Authors: Prawal Sinha, Peeyush Singh, Pravir Dutt

Abstract:

Problems in elastohydrodynamic lubrication have attracted a lot of attention in the last few decades. Solving a two-dimensional problem has always been a big challenge. In this paper, a new discontinuous finite volume method (DVM) for two-dimensional point contact Elastohydrodynamic Lubrication (EHL) problem has been developed and analyzed. A complete algorithm has been presented for solving such a problem. The method presented is robust and easily parallelized in MPI architecture. GMRES technique is implemented to solve the matrix obtained after the formulation. A new approach is followed in which discontinuous piecewise polynomials are used for the trail functions. It is natural to assume that the advantages of using discontinuous functions in finite element methods should also apply to finite volume methods. The nature of the discontinuity of the trail function is such that the elements in the corresponding dual partition have the smallest support as compared with the Classical finite volume methods. Film thickness calculation is done using singular quadrature approach. Results obtained have been presented graphically and discussed. This method is well suited for solving EHL point contact problem and can probably be used as commercial software.

Keywords: elastohydrodynamic, lubrication, discontinuous finite volume method, GMRES technique

Procedia PDF Downloads 233
2432 Bio-Furan Based Poly (β-Thioether Ester) Synthesized via Thiol-Michael Addition Polymerization with Tunable Structure and Properties

Authors: Daihui Zhang, Marie J. Dumont

Abstract:

A derivative of 5-hydroxymethylfurfural (HMF) was synthesized for the thiol-Michael addition reaction. The efficiency of the catalysts (base and nucleophiles) and side reactions during the thiol-Michael addition were investigated. Dimethylphenylphosphine efficiently initiated the thiol-Michael addition polymerization for synthesizing a series of bio-based furan polymers with different structure and properties. The benzene rings or hydroxyl groups present in the polymer chains increased the glass transition temperature (Tg) of poly (β-thioether ester). Additionally, copolymers with various compositions were obtained via adding different ratio of 1,6-hexanedithiols to 1,4-benzenedithiols. 1H NMR analysis revealed that experimental ratios of two dithiols monomers matched well with theoretical ratios. The occurrence of a reversible Diels-Alder reaction between furan rings and maleimide groups allowed poly (β-thioether ester) to be dynamically crosslinked. These polymers offer the potentials to produce materials from biomass that have both practical mechanical properties and reprocessing ability.

Keywords: copolymers, Diels-Alder reaction, hydroxymethylfurfural, Thiol-Michael addition

Procedia PDF Downloads 302
2431 Special Properties of the Zeros of the Analytic Representations of Finite Quantum Systems

Authors: Muna Tabuni

Abstract:

The paper contains an investigation on the special properties of the zeros of the analytic representations of finite quantum systems. These zeros and their paths completely define the finite quantum system. The present paper studies the construction of the analytic representation from its zeros. The analytic functions of finite quantum systems are introduced. The zeros of the analytic theta functions and their paths have been studied. The analytic function f(z) have exactly d zeros. The analytic function has been constructed from its zeros.

Keywords: construction, analytic, representation, zeros

Procedia PDF Downloads 182
2430 Finite Element Approximation of the Heat Equation under Axisymmetry Assumption

Authors: Raphael Zanella

Abstract:

This works deals with the finite element approximation of axisymmetric problems. The weak formulation of the heat equation under the axisymmetry assumption is established for continuous finite elements. The weak formulation is implemented in a C++ solver with implicit march-in-time. The code is verified by space and time convergence tests using a manufactured solution. The solving of an example problem with an axisymmetric formulation is compared to that with a full-3D formulation. Both formulations lead to the same result, but the code based on the axisymmetric formulation is much faster due to the lower number of degrees of freedom. This confirms the correctness of our approach and the interest in using an axisymmetric formulation when it is possible.

Keywords: axisymmetric problem, continuous finite elements, heat equation, weak formulation

Procedia PDF Downloads 161
2429 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography

Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz

Abstract:

Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.

Keywords: ring recognition, edge detection, X-ray computed tomography, dendrochronology

Procedia PDF Downloads 185