Search results for: electronic waste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4247

Search results for: electronic waste

77 Influence of the Use of Fruits Byproducts on the Lipid Profile of Hermetia illucens, Tenebrio molitor and Zophoba morio Larvae

Authors: Rebeca P Ramos-Bueno, Maria Jose Gonzalez-Fernandez, Rosa M. Moreno-Zamora, Antonia Barros Heras, Yolanda Serrano Alonso, Carolina Sanchez Barranco

Abstract:

Insects are a new source of fatty acids (FA), so they are considered a sustainable and environmentally friendly alternative for both animal feed and the human diet, and furthermore, their harvesting/rearing require a low-tech and low capital investment. For that reason, lipids obtained by insect breeding open interesting possibilities with alimentary and industrial purposes, i.e., the production of biodiesel. Particularly, certain insect species, especially during the larval stage, contain high proportions of fat which is highly dependent on their feed and stage of development. Among them, Hermetia illucens larvae can be bred on food wastes to produce fat- and protein-rich raw materials for food by-product management. So, insects can act as excellent bioconverters of organic waste to nutrient-rich materials. In this regard, the aim of the study was to evaluate the effects of fruit byproducts on the FA compositions of Tenebrio molitor, Zophoba morio, and H. illucens larvae. Firstly, oil was extracted with the green solvent ethyl acetate, and FA methyl ester was obtained and analyzed by GC to show the FA profile. In addition, the triacylglycerol (TAG) profile was obtained by HPLC. Dehydrated watermelon, tomato, and papaya by-products, as well as wheat-based control feed, were assayed. High FA content was reached by Z. morio larvae fed with all fruits; however, no differences were shown in lipid profile with any change. It is worth highlighting that both Z. morio and H. illucens could be selected as the best candidates for biodiesel production due to their high content of saturated FA. On the other hand, T. molitor larvae showed a higher content of monounsaturated FA than control larvae, whereas the n-6 polyunsaturated FA content decreased in larvae fed with fruits. This result indicates that the improvement of the FA profile of Tenebrio can depend on both the type of feeding and the intended use. The lipid profile of H. illucens larvae fed with papaya and tomato showed a slight increase in the content of α-linoleic acid (ALA, 18:3n3). This FA is the precursor of docosahexaenoic acid (DHA, 22:6n3), which plays an important role as a component of structural lipids in cell membranes as well as in the synthesis of eicosanoids, protecting and resolving. Also, it was evaluated the TAG profile of Z. morio larvae due to their highest oil content. The results showed a high oleic acid (OA, 18:1n9) content, which displays modulatory effects in a wide range of physiological functions, having anti-inflammatory and anti-atherogenic properties. In conclusion, this study clearly shows that Z. morio and H. illucens larvae constitute an alternative source of OA- and ALA-rich oils, respectively, which can be devoted for food use, as well as for using in the food and pharmaceutical industries, with agronomic implications. Finally, although the profile of Z. morio was not improved with fruit feeding, this kind of feeding could be used due to its low environmental impact.

Keywords: fatty acids, fruit byproducts, Hermetia illucens, Zophoba morio, Tenebrio molitor, insect rearing

Procedia PDF Downloads 110
76 The Procedural Sedation Checklist Manifesto, Emergency Department, Jersey General Hospital

Authors: Jerome Dalphinis, Vishal Patel

Abstract:

The Bailiwick of Jersey is an island British crown dependency situated off the coast of France. Jersey General Hospital’s emergency department sees approximately 40,000 patients a year. It’s outside the NHS, with secondary care being free at the point of care. Sedation is a continuum which extends from a normal conscious level to being fully unresponsive. Procedural sedation produces a minimally depressed level of consciousness in which the patient retains the ability to maintain an airway, and they respond appropriately to physical stimulation. The goals of it are to improve patient comfort and tolerance of the procedure and alleviate associated anxiety. Indications can be stratified by acuity, emergency (cardioversion for life-threatening dysrhythmia), and urgency (joint reduction). In the emergency department, this is most often achieved using a combination of opioids and benzodiazepines. Some departments also use ketamine to produce dissociative sedation, a cataleptic state of profound analgesia and amnesia. The response to pharmacological agents is highly individual, and the drugs used occasionally have unpredictable pharmacokinetics and pharmacodynamics, which can always result in progression between levels of sedation irrespective of the intention. Therefore, practitioners must be able to ‘rescue’ patients from deeper sedation. These practitioners need to be senior clinicians with advanced airway skills (AAS) training. It can lead to adverse effects such as dangerous hypoxia and unintended loss of consciousness if incorrectly undertaken; studies by the National Confidential Enquiry into Patient Outcome and Death (NCEPOD) have reported avoidable deaths. The Royal College of Emergency Medicine, UK (RCEM) released an updated ‘Safe Sedation of Adults in the Emergency Department’ guidance in 2017 detailing a series of standards for staff competencies, and the required environment and equipment, which are required for each target sedation depth. The emergency department in Jersey undertook audit research in 2018 to assess their current practice. It showed gaps in clinical competency, the need for uniform care, and improved documentation. This spurred the development of a checklist incorporating the above RCEM standards, including contraindication for procedural sedation and difficult airway assessment. This was approved following discussion with the relevant heads of departments and the patient safety directorates. Following this, a second audit research was carried out in 2019 with 17 completed checklists (11 relocation of joints, 6 cardioversions). Data was obtained from looking at the controlled resuscitation drugs book containing documented use of ketamine, alfentanil, and fentanyl. TrakCare, which is the patient electronic record system, was then referenced to obtain further information. The results showed dramatic improvement compared to 2018, and they have been subdivided into six categories; pre-procedure assessment recording of significant medical history and ASA grade (2 fold increase), informed consent (100% documentation), pre-oxygenation (88%), staff (90% were AAS practitioners) and monitoring (92% use of non-invasive blood pressure, pulse oximetry, capnography, and cardiac rhythm monitoring) during procedure, and discharge instructions including the documented return of normal vitals and consciousness (82%). This procedural sedation checklist is a safe intervention that identifies pertinent information about the patient and provides a standardised checklist for the delivery of gold standard of care.

Keywords: advanced airway skills, checklist, procedural sedation, resuscitation

Procedia PDF Downloads 89
75 Effects of Temperature and Mechanical Abrasion on Microplastics

Authors: N. Singh, G. K. Darbha

Abstract:

Since the last decade, a wave of research has begun to study the prevalence and impact of ever-increasing plastic pollution in the environment. The wide application and ubiquitous distribution of plastic have become a global concern due to its persistent nature. The disposal of plastics has emerged as one of the major challenges for waste management landfills. Microplastics (MPs) have found its existence in almost every environment, from the high altitude mountain lake to the deep sea sediments, polar icebergs, coral reefs, estuaries, beaches, and river, etc. Microplastics are fragments of plastics with size less than 5 mm. Microplastics can be classified as primary microplastics and secondary microplastics. Primary microplastics includes purposefully introduced microplastics into the end products for consumers (microbeads used in facial cleansers, personal care product, etc.), pellets (used in manufacturing industries) or fibres (from textile industries) which finally enters into the environment. Secondary microplastics are formed by disintegration of larger fragments under the exposure of sunlight, mechanical abrasive forces by rain, waves, wind and/or water. A number of factors affect the quantity of microplastic present in freshwater environments. In addition to physical forces, human population density proximal to the water body, proximity to urban centres, water residence time, and size of the water body also affects plastic properties. With time, other complex processes in nature such as physical, chemical and biological break down plastics by interfering with its structural integrity. Several studies demonstrate that microplastics found in wastewater sludge being used as manure for agricultural fields, thus having the tendency to alter the soil environment condition influencing the microbial population as well. Inadequate data are available on the fate and transport of microplastics under varying environmental conditions that are required to supplement important information for further research. In addition, microplastics have the tendency to absorb heavy metals and hydrophobic organic contaminants such as PAHs and PCBs from its surroundings and thus acting as carriers for these contaminants in the environment system. In this study, three kinds of microplastics (polyethylene, polypropylene and expanded polystyrene) of different densities were chosen. Plastic samples were placed in sand with different aqueous media (distilled water, surface water, groundwater and marine water). It was incubated at varying temperatures (25, 35 and 40 °C) and agitation levels (rpm). The results show that the number of plastic fragments enhanced with increase in temperature and agitation speed. Moreover, the rate of disintegration of expanded polystyrene is high compared to other plastics. These results demonstrate that temperature, salinity, and mechanical abrasion plays a major role in degradation of plastics. Since weathered microplastics are more harmful as compared to the virgin microplastics, long-term studies involving other environmental factors are needed to have a better understanding of degradation of plastics.

Keywords: environmental contamination, fragmentation, microplastics, temperature, weathering

Procedia PDF Downloads 130
74 Groundwater Contamination and Fluorosis: A Comprehensive Analysis

Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay

Abstract:

Groundwater contamination with fluoride has emerged as a global concern affecting millions of people, leading to the widespread occurrence of fluorosis. It affects bones and teeth, leading to dental and skeletal fluorosis. This study presents a comprehensive analysis of the relationship between groundwater contamination and fluorosis. It delves into the causes of fluoride contamination in groundwater, its spatial distribution, and adverse health impacts of fluorosis on affected communities. Fluoride contamination in groundwater can be attributed to both natural and anthropogenic sources. Geogenic sources involve the dissolution of fluoride-rich minerals present in the aquifer materials. On the other hand, anthropogenic activities such as industrial discharges, agricultural practices, and improper disposal of fluoride-containing waste contribute to the contamination of groundwater. The spatial distribution of fluoride contamination varies widely across different regions and geological formations. High fluoride levels are commonly observed in areas with fluorine-rich geological deposits. Additionally, agricultural and industrial centres often exhibit elevated fluoride concentrations due to anthropogenic contributions. Excessive fluoride ingestion during tooth development leads to dental fluorosis, characterized by enamel defects, discoloration, and dental caries. The severity of dental fluorosis varies based on fluoride exposure levels during tooth development. Long-term consumption of fluoride-contaminated water causes skeletal fluorosis, resulting in bone and joint pain, decreased joint mobility, and skeletal deformities. In severe cases, skeletal fluorosis can lead to disability and reduced quality of life. Various defluoridation techniques such as activated alumina, bone char, and reverse osmosis have been employed to reduce fluoride concentrations in drinking water. These methods effectively remove fluoride, but their implementation requires careful consideration of cost, maintenance, and sustainability. Diversifying water sources, such as rainwater harvesting and surface water supply, can reduce the reliance on fluoride-contaminated groundwater, especially in regions with high fluoride concentrations. Groundwater contamination with fluoride remains a significant public health challenge, leading to the widespread occurrence of fluorosis globally. This scientific report emphasizes the importance of understanding the relationship between groundwater contamination and fluorosis. Implementing effective mitigation strategies and preventive measures is crucial to combat fluorosis and ensure sustainable access to safe drinking water for communities worldwide. Collaborative efforts between government agencies, local communities, and scientific researchers are essential to address this issue and safeguard the health of vulnerable populations. Additionally, the report explores various mitigation strategies and preventive measures to address the issue and offers recommendations for sustainable management of groundwater resources to combat fluorosis effectively.

Keywords: fluorosis, fluoride contamination, groundwater contamination, groundwater resources

Procedia PDF Downloads 61
73 Environmental Management Accounting Practices and Policies within the Higher Education Sector: An Exploratory Study of the University of KwaZulu Natal

Authors: Kiran Baldavoo, Mishelle Doorasamy

Abstract:

Universities have a role to play in the preservation of the environment, and the study attempted to evaluate the environmental management accounting (EMA) processes at UKZN. UKZN, a South African university, generates the same direct and indirect environmental impacts as the higher education sector worldwide. This is significant within the context of the South African environment which is constantly plagued by having to effectively manage the already scarce resources of water and energy, evident through the imposition of water and energy restrictions over the recent years. The study’s aim is to increase awareness of having a structured approach to environmental management in order to achieve the strategic environmental goals of the university. The research studied the experiences of key managers within UKZN, with the purpose of exploring the potential factors which influence the decision to adopt and apply EMA within the higher education sector. The study comprised two objectives, namely understanding the current state of accounting practices for managing major environmental costs and identifying factors influencing EMA adoption within the university. The study adopted a case study approach, comprising semi-structured interviews of key personnel involved in Management Accounting, Environmental Management, and Academic Schools within the university. Content analysis was performed on the transcribed interview data. A Theoretical Framework derived from literature was adopted to guide data collection and focus the study. Contingency and Institutional theory was the resultant basis of the derived framework. The findings of the first objective revealed that there was a distinct lack of EMA utilization within the university. There was no distinct policy on EMA, resulting in minimal environmental cost information being brought to the attention of senior management. The university embraced the principles of environmental sustainability; however, efforts to improve internal environmental accountability primarily from an accounting perspective was absent. The findings of the second objective revealed that five key barriers contributed to the lack of EMA utilization within the university. The barriers being attitudinal, informational, institutional, technological, and lack of incentives (financial). The results and findings of this study supported the use and application of EMA within the higher education sector. Participants concurred that EMA was underutilized and if implemented, would realize significant benefits for both the university and environment. Environmental management accounting is being widely acknowledged as a key management tool that can facilitate improved financial and environmental performance via the concept of enhanced environmental accountability. Historically research has been concentrated primarily on the manufacturing industry, due to it generating the greatest proportion of environmental impacts. Service industries are also an integral component of environmental management as they contribute significant environmental impacts, both direct and indirect. Educational institutions such as universities form part of the service sector and directly impact on the environment through the consumption of paper, energy, and water and solid waste generated, with the associated demands.

Keywords: environmental management accounting, environmental impacts, higher education, Southern Africa

Procedia PDF Downloads 92
72 Multi-Criteria Decision Making Network Optimization for Green Supply Chains

Authors: Bandar A. Alkhayyal

Abstract:

Modern supply chains are typically linear, transforming virgin raw materials into products for end consumers, who then discard them after use to landfills or incinerators. Nowadays, there are major efforts underway to create a circular economy to reduce non-renewable resource use and waste. One important aspect of these efforts is the development of Green Supply Chain (GSC) systems which enables a reverse flow of used products from consumers back to manufacturers, where they can be refurbished or remanufactured, to both economic and environmental benefit. This paper develops novel multi-objective optimization models to inform GSC system design at multiple levels: (1) strategic planning of facility location and transportation logistics; (2) tactical planning of optimal pricing; and (3) policy planning to account for potential valuation of GSC emissions. First, physical linear programming was applied to evaluate GSC facility placement by determining the quantities of end-of-life products for transport from candidate collection centers to remanufacturing facilities while satisfying cost and capacity criteria. Second, disassembly and remanufacturing processes have received little attention in industrial engineering and process cost modeling literature. The increasing scale of remanufacturing operations, worth nearly $50 billion annually in the United States alone, have made GSC pricing an important subject of research. A non-linear physical programming model for optimization of pricing policy for remanufactured products that maximizes total profit and minimizes product recovery costs were examined and solved. Finally, a deterministic equilibrium model was used to determine the effects of internalizing a cost of GSC greenhouse gas (GHG) emissions into optimization models. Changes in optimal facility use, transportation logistics, and pricing/profit margins were all investigated against a variable cost of carbon, using case study system created based on actual data from sites in the Boston area. As carbon costs increase, the optimal GSC system undergoes several distinct shifts in topology as it seeks new cost-minimal configurations. A comprehensive study of quantitative evaluation and performance of the model has been done using orthogonal arrays. Results were compared to top-down estimates from economic input-output life cycle assessment (EIO-LCA) models, to contrast remanufacturing GHG emission quantities with those from original equipment manufacturing operations. Introducing a carbon cost of $40/t CO2e increases modeled remanufacturing costs by 2.7% but also increases original equipment costs by 2.3%. The assembled work advances the theoretical modeling of optimal GSC systems and presents a rare case study of remanufactured appliances.

Keywords: circular economy, extended producer responsibility, greenhouse gas emissions, industrial ecology, low carbon logistics, green supply chains

Procedia PDF Downloads 134
71 Transforming Challenges of Urban and Peri-Urban Agriculture into Opportunities for Urban Food Security in India

Authors: G. Kiran Kumar, K. Padmaja

Abstract:

The rise of urban and peri-urban agriculture (UPA) is an important urban phenomenon that needs to be well understood before we pronounce a verdict whether it is beneficial or not. The challenge of supply of safe and nutritious food is faced by urban inhabitants. The definition of urban and peri-urban varies from city to city depending on the local policies framed with a view to bring regulated urban habitations as part of governance. Expansion of cities and the blurring of boundaries between urban and rural areas make it difficult to define peri-urban agriculture. The problem is further exacerbated by the fact that definition adopted in one region may not fit in the other. On the other hand the proportion of urban population is on the rise vis-à-vis rural. The rise of UPA does not promise that the food requirements of cities can be entirely met from this practice, since availability of enormous amounts of spaces on rooftops and vacant plots is impossible for raising crops. However, UPA reduces impact of price volatility, particularly for vegetables, which relatively have a longer shelf life. UPA improves access to fresh, nutritious and safe food for the urban poor. UPA provides employment to food handlers and traders in the supply chain. UPA can pose environmental and health risks from inappropriate agricultural practices; increased competition for land, water and energy; alter the ecological landscape and make it vulnerable to increased pollution. The present work is based on case studies in peri-urban agriculture in Hyderabad, India and relies on secondary data. This paper tries to analyze the need for more intensive production technologies without affecting the environment. An optimal solution in terms of urban-rural linkages has to be devised. There is a need to develop a spatial vision and integrate UPA in urban planning in a harmonious manner. Zoning of peri-urban areas for agriculture, milk and poultry production is an essential step to preserve the traditional nurturing character of these areas. Urban local bodies in conjunction with Departments of Agriculture and Horticulture can provide uplift to existing UPA models, without which the UPA can develop into a haphazard phenomenon and add to the increasing list of urban challenges. Land to be diverted for peri-urban agriculture may render the concept of urban and peri-urban forestry ineffective. This paper suggests that UPA may be practiced for high value vegetables which can be cultivated under protected conditions and are better resilient to climate change. UPA can provide models for climate resilient agriculture in urban areas which can be replicated in rural areas. Production of organic farm produce is another option for promote UPA owing to the proximity to informed consumers and access to markets within close range. Waste lands in peri-urban areas can be allotted to unemployed rural youth with the support of Urban Local Bodies (ULBs) and used for UPA. This can serve the purposes of putting wastelands to food production, enhancing employment opportunities and enhancing access to fresh produce for urban consumers.

Keywords: environment, food security, urban and peri-urban agriculture, zoning

Procedia PDF Downloads 291
70 A Prospective Neurosurgical Registry Evaluating the Clinical Care of Traumatic Brain Injury Patients Presenting to Mulago National Referral Hospital in Uganda

Authors: Benjamin J. Kuo, Silvia D. Vaca, Joao Ricardo Nickenig Vissoci, Catherine A. Staton, Linda Xu, Michael Muhumuza, Hussein Ssenyonjo, John Mukasa, Joel Kiryabwire, Lydia Nanjula, Christine Muhumuza, Henry E. Rice, Gerald A. Grant, Michael M. Haglund

Abstract:

Background: Traumatic Brain Injury (TBI) is disproportionally concentrated in low- and middle-income countries (LMICs), with the odds of dying from TBI in Uganda more than 4 times higher than in high income countries (HICs). The disparities in the injury incidence and outcome between LMICs and resource-rich settings have led to increased health outcomes research for TBIs and their associated risk factors in LMICs. While there have been increasing TBI studies in LMICs over the last decade, there is still a need for more robust prospective registries. In Uganda, a trauma registry implemented in 2004 at the Mulago National Referral Hospital (MNRH) showed that RTI is the major contributor (60%) of overall mortality in the casualty department. While the prior registry provides information on injury incidence and burden, it’s limited in scope and doesn’t follow patients longitudinally throughout their hospital stay nor does it focus specifically on TBIs. And although these retrospective analyses are helpful for benchmarking TBI outcomes, they make it hard to identify specific quality improvement initiatives. The relationship among epidemiology, patient risk factors, clinical care, and TBI outcomes are still relatively unknown at MNRH. Objective: The objectives of this study are to describe the processes of care and determine risk factors predictive of poor outcomes for TBI patients presenting to a single tertiary hospital in Uganda. Methods: Prospective data were collected for 563 TBI patients presenting to a tertiary hospital in Kampala from 1 June – 30 November 2016. Research Electronic Data Capture (REDCap) was used to systematically collect variables spanning 8 categories. Univariate and multivariate analysis were conducted to determine significant predictors of mortality. Results: 563 TBI patients were enrolled from 1 June – 30 November 2016. 102 patients (18%) received surgery, 29 patients (5.1%) intended for surgery failed to receive it, and 251 patients (45%) received non-operative management. Overall mortality was 9.6%, which ranged from 4.7% for mild and moderate TBI to 55% for severe TBI patients with GCS 3-5. Within each TBI severity category, mortality differed by management pathway. Variables predictive of mortality were TBI severity, more than one intracranial bleed, failure to receive surgery, high dependency unit admission, ventilator support outside of surgery, and hospital arrival delayed by more than 4 hours. Conclusions: The overall mortality rate of 9.6% in Uganda for TBI is high, and likely underestimates the true TBI mortality. Furthermore, the wide-ranging mortality (3-82%), high ICU fatality, and negative impact of care delays suggest shortcomings with the current triaging practices. Lack of surgical intervention when needed was highly predictive of mortality in TBI patients. Further research into the determinants of surgical interventions, quality of step-up care, and prolonged care delays are needed to better understand the complex interplay of variables that affect patient outcome. These insights guide the development of future interventions and resource allocation to improve patient outcomes.

Keywords: care continuum, global neurosurgery, Kampala Uganda, LMIC, Mulago, prospective registry, traumatic brain injury

Procedia PDF Downloads 203
69 Case Study on Innovative Aquatic-Based Bioeconomy for Chlorella sorokiniana

Authors: Iryna Atamaniuk, Hannah Boysen, Nils Wieczorek, Natalia Politaeva, Iuliia Bazarnova, Kerstin Kuchta

Abstract:

Over the last decade due to climate change and a strategy of natural resources preservation, the interest for the aquatic biomass has dramatically increased. Along with mitigation of the environmental pressure and connection of waste streams (including CO2 and heat emissions), microalgae bioeconomy can supply food, feed, as well as the pharmaceutical and power industry with number of value-added products. Furthermore, in comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, thus addressing issues associated with negative social and the environmental impacts. This paper presents the state-of-the art technology for microalgae bioeconomy from cultivation process to production of valuable components and by-streams. Microalgae Chlorella sorokiniana were cultivated in the pilot-scale innovation concept in Hamburg (Germany) using different systems such as race way pond (5000 L) and flat panel reactors (8 x 180 L). In order to achieve the optimum growth conditions along with suitable cellular composition for the further extraction of the value-added components, process parameters such as light intensity, temperature and pH are continuously being monitored. On the other hand, metabolic needs in nutrients were provided by addition of micro- and macro-nutrients into a medium to ensure autotrophic growth conditions of microalgae. The cultivation was further followed by downstream process and extraction of lipids, proteins and saccharides. Lipids extraction is conducted in repeated-batch semi-automatic mode using hot extraction method according to Randall. As solvents hexane and ethanol are used at different ratio of 9:1 and 1:9, respectively. Depending on cell disruption method along with solvents ratio, the total lipids content showed significant variations between 8.1% and 13.9 %. The highest percentage of extracted biomass was reached with a sample pretreated with microwave digestion using 90% of hexane and 10% of ethanol as solvents. Proteins content in microalgae was determined by two different methods, namely: Total Kejadahl Nitrogen (TKN), which further was converted to protein content, as well as Bradford method using Brilliant Blue G-250 dye. Obtained results, showed a good correlation between both methods with protein content being in the range of 39.8–47.1%. Characterization of neutral and acid saccharides from microalgae was conducted by phenol-sulfuric acid method at two wavelengths of 480 nm and 490 nm. The average concentration of neutral and acid saccharides under the optimal cultivation conditions was 19.5% and 26.1%, respectively. Subsequently, biomass residues are used as substrate for anaerobic digestion on the laboratory-scale. The methane concentration, which was measured on the daily bases, showed some variations for different samples after extraction steps but was in the range between 48% and 55%. CO2 which is formed during the fermentation process and after the combustion in the Combined Heat and Power unit can potentially be used within the cultivation process as a carbon source for the photoautotrophic synthesis of biomass.

Keywords: bioeconomy, lipids, microalgae, proteins, saccharides

Procedia PDF Downloads 221
68 Experimental Proof of Concept for Piezoelectric Flow Harvesting for In-Pipe Metering Systems

Authors: Sherif Keddis, Rafik Mitry, Norbert Schwesinger

Abstract:

Intelligent networking of devices has rapidly been gaining importance over the past years and with recent advances in the fields of microcontrollers, integrated circuits and wireless communication, low power applications have emerged, enabling this trend even more. Connected devices provide a much larger database thus enabling highly intelligent and accurate systems. Ensuring safe drinking water is one of the fields that require constant monitoring and can benefit from an increased accuracy. Monitoring is mainly achieved either through complex measures, such as collecting samples from the points of use, or through metering systems typically distant to the points of use which deliver less accurate assessments of the quality of water. Constant metering near the points of use is complicated due to their inaccessibility; e.g. buried water pipes, locked spaces, which makes system maintenance extremely difficult and often unviable. The research presented here attempts to overcome this challenge by providing these systems with enough energy through a flow harvester inside the pipe thus eliminating the maintenance requirements in terms of battery replacements or containment of leakage resulting from wiring such systems. The proposed flow harvester exploits the piezoelectric properties of polyvinylidene difluoride (PVDF) films to convert turbulence induced oscillations into electrical energy. It is intended to be used in standard water pipes with diameters between 0.5 and 1 inch. The working principle of the harvester uses a ring shaped bluff body inside the pipe to induce pressure fluctuations. Additionally the bluff body houses electronic components such as storage, circuitry and RF-unit. Placing the piezoelectric films downstream of that bluff body causes their oscillation which generates electrical charge. The PVDF-film is placed as a multilayered wrap fixed to the pipe wall leaving the top part to oscillate freely inside the flow. The warp, which allows for a larger active, consists of two layers of 30µm thick and 12mm wide PVDF layered alternately with two centered 6µm thick and 8mm wide aluminum foil electrodes. The length of the layers depends on the number of windings and is part of the investigation. Sealing the harvester against liquid penetration is achieved by wrapping it in a ring-shaped LDPE-film and welding the open ends. The fabrication of the PVDF-wraps is done by hand. After validating the working principle using a wind tunnel, experiments have been conducted in water, placing the harvester inside a 1 inch pipe at water velocities of 0.74m/s. To find a suitable placement of the wrap inside the pipe, two forms of fixation were compared regarding their power output. Further investigations regarding the number of windings required for efficient transduction were made. Best results were achieved using a wrap with 3 windings of the active layers which delivers a constant power output of 0.53µW at a 2.3MΩ load and an effective voltage of 1.1V. Considering the extremely low power requirements of sensor applications, these initial results are promising. For further investigations and optimization, machine designs are currently being developed to automate the fabrication and decrease tolerance of the prototypes.

Keywords: maintenance-free sensors, measurements at point of use, piezoelectric flow harvesting, universal micro generator, wireless metering systems

Procedia PDF Downloads 161
67 Nanoparticle Supported, Magnetically Separable Metalloporphyrin as an Efficient Retrievable Heterogeneous Nanocatalyst in Oxidation Reactions

Authors: Anahita Mortazavi Manesh, Mojtaba Bagherzadeh

Abstract:

Metalloporphyrins are well known to mimic the activity of monooxygenase enzymes. In this regard, metalloporphyrin complexes have been largely employed as valuable biomimetic catalysts, owing to the critical roles they play in oxygen transfer processes in catalytic oxidation reactions. Investigating in this area is based on different strategies to design selective, stable and high turnover catalytic systems. Immobilization of expensive metalloporphyrin catalysts onto supports appears to be a good way to improve their stability, selectivity and the catalytic performance because of the support environment and other advantages with respect to recovery, reuse. In other words, supporting metalloporphyrins provides a physical separation of active sites, thus minimizing catalyst self-destruction and dimerization of unhindered metalloporphyrins. Furthermore, heterogeneous catalytic oxidations have become an important target since their process are used in industry, helping to minimize the problems of industrial waste treatment. Hence, the immobilization of these biomimetic catalysts is much desired. An attractive approach is the preparation of the heterogeneous catalyst involves immobilization of complexes on silica coated magnetic nano-particles. Fe3O4@SiO2 magnetic nanoparticles have been studied extensively due to their superparamagnetism property, large surface area to volume ratio and easy functionalization. Using heterogenized homogeneous catalysts is an attractive option to facile separation of catalyst, simplified product work-up and continuity of catalytic system. Homogeneous catalysts immobilized on magnetic nanoparticles (MNPs) surface occupy a unique position due to combining the advantages of both homogeneous and heterogeneous catalysts. In addition, superparamagnetic nature of MNPs enable very simple separation of the immobilized catalysts from the reaction mixture using an external magnet. In the present work, an efficient heterogeneous catalyst was prepared by immobilizing manganese porphyrin on functionalized magnetic nanoparticles through the amino propyl linkage. The prepared catalyst was characterized by elemental analysis, FT-IR spectroscopy, X-ray powder diffraction, atomic absorption spectroscopy, UV-Vis spectroscopy, and scanning electron microscopy. Application of immobilized metalloporphyrin in the oxidation of various organic substrates was explored using Gas chromatographic (GC) analyses. The results showed that the supported Mn-porphyrin catalyst (Fe3O4@SiO2-NH2@MnPor) is an efficient and reusable catalyst in oxidation reactions. Our catalytic system exhibits high catalytic activity in terms of turnover number (TON) and reaction conditions. Leaching and recycling experiments revealed that nanocatalyst can be recovered several times without loss of activity and magnetic properties. The most important advantage of this heterogenized catalytic system is the simplicity of the catalyst separation in which the catalyst can be separated from the reaction mixture by applying a magnet. Furthermore, the separation and reuse of the magnetic Fe3O4 nanoparticles were very effective and economical.

Keywords: Fe3O4 nanoparticle, immobilized metalloporphyrin, magnetically separable nanocatalyst, oxidation reactions

Procedia PDF Downloads 270
66 Treatment Process of Sludge from Leachate with an Activated Sludge System and Extended Aeration System

Authors: A. Chávez, A. Rodríguez, F. Pinzón

Abstract:

Society is concerned about measures of environmental, economic and social impacts generated in the solid waste disposal. These places of confinement, also known as landfills, are locations where problems of pollution and damage to human health are reduced. They are technically designed and operated, using engineering principles, storing the residue in a small area, compact it to reduce volume and covering them with soil layers. Problems preventing liquid (leachate) and gases produced by the decomposition of organic matter. Despite planning and site selection for disposal, monitoring and control of selected processes, remains the dilemma of the leachate as extreme concentration of pollutants, devastating soil, flora and fauna; aggressive processes requiring priority attention. A biological technology is the activated sludge system, used for tributaries with high pollutant loads. Since transforms biodegradable dissolved and particulate matter into CO2, H2O and sludge; transform suspended and no Settleable solids; change nutrients as nitrogen and phosphorous; and degrades heavy metals. The microorganisms that remove organic matter in the processes are in generally facultative heterotrophic bacteria, forming heterogeneous populations. Is possible to find unicellular fungi, algae, protozoa and rotifers, that process the organic carbon source and oxygen, as well as the nitrogen and phosphorus because are vital for cell synthesis. The mixture of the substrate, in this case sludge leachate, molasses and wastewater is maintained ventilated by mechanical aeration diffusers. Considering as the biological processes work to remove dissolved material (< 45 microns), generating biomass, easily obtained by decantation processes. The design consists of an artificial support and aeration pumps, favoring develop microorganisms (denitrifying) using oxygen (O) with nitrate, resulting in nitrogen (N) in the gas phase. Thus, avoiding negative effects of the presence of ammonia or phosphorus. Overall the activated sludge system includes about 8 hours of hydraulic retention time, which does not prevent the demand for nitrification, which occurs on average in a value of MLSS 3,000 mg/L. The extended aeration works with times greater than 24 hours detention; with ratio of organic load/biomass inventory under 0.1; and average stay time (sludge age) more than 8 days. This project developed a pilot system with sludge leachate from Doña Juana landfill - RSDJ –, located in Bogota, Colombia, where they will be subjected to a process of activated sludge and extended aeration through a sequential Bach reactor - SBR, to be dump in hydric sources, avoiding ecological collapse. The system worked with a dwell time of 8 days, 30 L capacity, mainly by removing values of BOD and COD above 90%, with initial data of 1720 mg/L and 6500 mg/L respectively. Motivating the deliberate nitrification is expected to be possible commercial use diffused aeration systems for sludge leachate from landfills.

Keywords: sludge, landfill, leachate, SBR

Procedia PDF Downloads 243
65 Smart Services for Easy and Retrofittable Machine Data Collection

Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum

Abstract:

This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.

Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 38
64 Sustainable Marine Tourism: Opinion and Segmentation of Italian Generation Z

Authors: M. Bredice, M. B. Forleo, L. Quici

Abstract:

Coastal tourism is currently facing huge challenges on how to balance environmental problems and tourist activities. Recent literature shows a growing interest in the issue of sustainable tourism from a so-called civilized tourists’ perspective by investigating opinions, perceptions, and behaviors. This study investigates the opinions of youth on what makes them responsible tourists and the ability of coastal marine areas to support tourism in future scenarios. A sample of 778 Italians attending the last year of high school was interviewed. Descriptive statistics, tests, and cluster analyses are applied to highlight the distribution of opinions among youth, detect significant differences based on demographic characteristics, and make segmentation of the different profiles based on students’ opinions and behaviors. Preliminary results show that students are largely convinced (62%) that by 2050 the quality of coastal environments could limit seaside tourism, while 10% of them believe that the problem can be solved simply by changing the tourist destination. Besides the cost of the holiday, the most relevant aspect respondents consider when choosing a marine destination is the presence of tourist attractions followed by the quality of the marine-coastal environment, the specificity of the local gastronomy and cultural traditions, and finally, the activities offered to guests such as sports and events. The reduction of waste and lower air emissions are considered the most important environmental areas in which marine-coastal tourism activities can contribute to preserving the quality of seas and coasts. Areas in which, as a tourist, they believe possible to give a personal contribution were (responses “very much” and “somewhat”); do not throw litter in the sea and on the beach (84%), do not buy single-use plastic products (66%), do not use soap or shampoo when showering in beaches (53%), do not have bonfires (47%), do not damage dunes (46%), and do not remove natural materials (e.g., sand, shells) from the beach (46%). About 6% of the sample stated that they were not interested in contributing to the aforementioned activities, while another 7% replied that they could not contribute at all. Finally, 80% of the sample has never participated in voluntary environmental initiatives or citizen science projects; moreover, about 64% of the students have never participated in events organized by environmental associations in marine or coastal areas. Regarding the test analysis -based on Kruskal-Wallis and Mann and Whitney tests - gender, region, and studying area of students reveals significance in terms of variables expressing knowledge and interest in sustainability topics and sustainable tourism behaviors. The classification of the education field is significant for a great number of variables, among which those related to several sustainable behaviors that respondents declare to be able to contribute as tourists. The ongoing cluster analysis will reveal different profiles in the sample and relevant variables. Based on preliminary results, implications are envisaged in the fields of education, policy, and business strategies for sustainable scenarios. Under these perspectives, the study has the potential to contribute to the conference debate about marine and coastal sustainable development and management.

Keywords: cluster analysis, education, knowledge, young people

Procedia PDF Downloads 49
63 Eco-City Planning and Urban Design in Lagos, Nigeria: Recent Innovations, Trends, Concerns, Challenges, and Solutions

Authors: Dahunsi Michael Oluseyi

Abstract:

This paper aims to extensively examine eco-city planning and urban design in Lagos, Nigeria. It will delve into the city's developments, challenges, and potential solutions to offer insights for sustainable urban growth within the rapidly expanding urban landscape. The research will scrutinize recent innovations, emerging trends, and practical remedies to promote ecological sustainability within an urban framework. It will encompass a more in-depth review of current literature, case studies, and qualitative analyses, thereby augmenting the depth and breadth of the research. The objectives are to assess the current eco-city planning initiatives and urban design trends in Lagos, Nigeria, considering the city's unique characteristics and challenges. To identify and analyze the challenges encountered during the implementation of eco-friendly urban developments in Lagos, to explore and evaluate the innovative and practical solutions that are implemented to promote sustainability within the city, to provide comprehensive insights and actionable recommendations for policymakers, urban planners, and other stakeholders involved in sustainable urban development in Lagos, the rapid urbanization of Lagos has brought forth a myriad of challenges, including a burgeoning population, inadequate infrastructure, waste management issues, and environmental pollution. Eco-city planning has emerged as a promising approach to addressing these obstacles, striving to create urban spaces that are more habitable, resource-efficient, and environmentally friendly. This research holds substantial importance in exploring the application of eco-city planning principles within a megacity like Lagos. Analyzing recent innovations, trends, concerns, challenges, and solutions provides invaluable insights for policymakers, urban planners, and stakeholders dedicated to fostering sustainable urban development. The methodologies employed in this research are structured to embrace a multifaceted and intricate approach, aiming to facilitate a comprehensive understanding of the complexities inherent in eco-city planning and urban design in Lagos, Nigeria. This methodological framework is designed to encompass various diverse strategies and analytical tools to effectively capture the multidimensional aspects of sustainable urban development. It involves an in-depth analysis of academic publications, governmental reports, and urban planning documents to highlight global eco-city planning trends and gather Lagos-specific insights through a detailed exploration of eco-friendly initiatives and projects in Lagos to evaluate successes, challenges, and strategies for addressing environmental concerns by engaging key stakeholders, including urban planners, policymakers, environmental experts, and residents, to collect firsthand perspectives, concerns, and insights. Also, a thorough analysis will be carried out on data collected from literature reviews, case studies, interviews, and surveys used to extract prevalent patterns, challenges, and innovative solutions from diverse sources. This study aims to contribute to the discourse on sustainable urban development by offering a comprehensive analysis of eco-city planning in Lagos and providing practical recommendations for a more sustainable urban future.

Keywords: eco-friendly, innovation, sustainability, stakeholders

Procedia PDF Downloads 29
62 An Odyssey to Sustainability: The Urban Archipelago of India

Authors: B. Sudhakara Reddy

Abstract:

This study provides a snapshot of the sustainability of selected Indian cities by employing 70 indicators in four dimensions to develop an overall city sustainability index. In recent years, the concept of ‘urban sustainability’ has become prominent due to its complexity. Urban areas propel growth and at the same time poses a lot of ecological, social and infrastructural problems and risks. In case of developing countries, the high population density of and the continuous in-migration run the highest risk in natural and man-made disasters. These issues combined with the inability of policy makers in providing basic services makes the cities unsustainable. To assess whether any given policy is moving towards or against urban sustainability it is necessary to consider the relationships among its various dimensions. Hence, in recent years, while preparing the sustainability index, an integral approach involving indicators of different dimensions such as ‘economic’, ‘environmental’ and 'social' is being used. It is also important for urban planners, social analysts and other related institutions to identify and understand the relationships in this complex system. The objective of the paper is to develop a city performance index (CPI) to measure and evaluate the urban regions in terms of sustainable performances. The objectives include: i) Objective assessment of a city’s performance, ii) setting achievable goals iii) prioritise relevant indicators for improvement, iv) learning from leaders, iv) assessment of the effectiveness of programmes that results in achieving high indicator values, v) Strengthening of stakeholder participation. Using the benchmark approach, a conceptual framework is developed for evaluating 25 Indian cities. We develop City Sustainability index (CSI) in order to rank cities according to their level of sustainability. The CSI is composed of four dimensions: Economic, Environment, Social, and Institutional. Each dimension is further composed of multiple indicators: (1) Economic that considers growth, access to electricity, and telephone availability; (2) environmental that includes waste water treatment, carbon emissions, (3) social that includes, equity, infant mortality, and 4) institutional that includes, voting share of population, urban regeneration policies. The CSI, consisting of four dimensions disaggregate into 12 categories and ultimately into 70 indicators. The data are obtained from public and non-governmental organizations, and also from city officials and experts. By ranking a sample of diverse cities on a set of specific dimensions the study can serve as a baseline of current conditions and a marker for referencing future results. The benchmarks and indices presented in the study provide a unique resource for the government and the city authorities to learn about the positive and negative attributes of a city and prepare plans for a sustainable urban development. As a result of our conceptual framework, the set of criteria we suggest is somewhat different to any already in the literature. The scope of our analysis is intended to be broad. Although illustrated with specific examples, it should be apparent that the principles identified are relevant to any monitoring that is used to inform decisions involving decision variables. These indicators are policy-relevant and, hence they are useful tool for decision-makers and researchers.

Keywords: benchmark, city, indicator, performance, sustainability

Procedia PDF Downloads 244
61 Effect of Printing Process on Mechanical Properties and Porosity of 3D Printed Concrete Strips

Authors: Wei Chen

Abstract:

3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations.Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.This paper aims to improve the tensile strength, tensile ductility, and bending toughness of a recently developed ‘one-part’ geopolymer for 3D concrete printing (3DCP) applications, in order to address the insufficient tensile strength and brittle fracture characteristics of geopolymer materials in 3D printing scenarios where materials are subjected to tensile stress. The effects of steel fiber content, and aspect ratio, on mechanical properties, were systematically discussed, including compressive strength, flexure strength, splitting tensile strength, uniaxial tensile strength, bending toughness, and the anisotropy of 3DP-OPGFRC, respectively. The fiber distribution in the printed samples was obtained through x-ray computed tomography (X-CT) testing. In addition, the underlying mechanisms were discussed to provide a deep understanding of the role steel fiber played in the reinforcement. The experimental results showed that the flexural strength increased by 282% to 26.1MP, and the compressive strength also reached 104.5Mpa. A high tensile ductility, appreciable bending toughness, and strain-hardening behavior can be achieved with steel fiber incorporation. In addition, it has an advantage over the OPC-based steel fiber-reinforced 3D printing materials given in the existing literature (flexural strength 15 Mpa); It is also superior to the tensile strength (<6Mpa) of current geopolymer fiber reinforcements used for 3D printing. It is anticipated that the development of this 3D printable steel fiber reinforced ‘one-part’ geopolymer will be used to meet high tensile strength requirements for printing scenarios.

Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology

Procedia PDF Downloads 44
60 Operation System for Aluminium-Air Cell: A Strategy to Harvest the Energy from Secondary Aluminium

Authors: Binbin Chen, Dennis Y. C. Leung

Abstract:

Aluminium (Al) -air cell holds a high volumetric capacity density of 8.05 Ah cm-3, benefit from the trivalence of Al ions. Additional benefits of Al-air cell are low price and environmental friendliness. Furthermore, the Al energy conversion process is characterized of 100% recyclability in theory. Along with a large base of raw material reserve, Al attracts considerable attentions as a promising material to be integrated within the global energy system. However, despite the early successful applications in military services, several problems exist that prevent the Al-air cells from widely civilian use. The most serious issue is the parasitic corrosion of Al when contacts with electrolyte. To overcome this problem, super-pure Al alloyed with various traces of metal elements are used to increase the corrosion resistance. Nevertheless, high-purity Al alloys are costly and require high energy consumption during production process. An alternative approach is to add inexpensive inhibitors directly into the electrolyte. However, such additives would increase the internal ohmic resistance and hamper the cell performance. So far these methods have not provided satisfactory solutions for the problem within Al-air cells. For the operation of alkaline Al-air cell, there are still other minor problems. One of them is the formation of aluminium hydroxide in the electrolyte. This process decreases ionic conductivity of electrolyte. Another one is the carbonation process within the gas diffusion layer of cathode, blocking the porosity of gas diffusion. Both these would hinder the performance of cells. The present work optimizes the above problems by building an Al-air cell operation system, consisting of four components. A top electrolyte tank containing fresh electrolyte is located at a high level, so that it can drive the electrolyte flow by gravity force. A mechanical rechargeable Al-air cell is fabricated with low-cost materials including low grade Al, carbon paper, and PMMA plates. An electrolyte waste tank with elaborate channel is designed to separate the hydrogen generated from the corrosion, which would be collected by gas collection device. In the first section of the research work, we investigated the performance of the mechanical rechargeable Al-air cell with a constant flow rate of electrolyte, to ensure the repeatability experiments. Then the whole system was assembled together and the feasibility of operating was demonstrated. During experiment, pure hydrogen is collected by collection device, which holds potential for various applications. By collecting this by-product, high utilization efficiency of aluminum is achieved. Considering both electricity and hydrogen generated, an overall utilization efficiency of around 90 % or even higher under different working voltages are achieved. Fluidic electrolyte could remove aluminum hydroxide precipitate and solve the electrolyte deterioration problem. This operation system provides a low-cost strategy for harvesting energy from the abundant secondary Al. The system could also be applied into other metal-air cells and is suitable for emergency power supply, power plant and other applications. The low cost feature implies great potential for commercialization. Further optimization, such as scaling up and optimization of fabrication, will help to refine the technology into practical market offerings.

Keywords: aluminium-air cell, high efficiency, hydrogen, mechanical recharge

Procedia PDF Downloads 250
59 An Argument for Agile, Lean, and Hybrid Project Management in Museum Conservation Practice: A Qualitative Evaluation of the Morris Collection Conservation Project at the Sainsbury Centre for Visual Arts

Authors: Maria Ledinskaya

Abstract:

This paper is part case study and part literature review. It seeks to introduce Agile, Lean, and Hybrid project management concepts from business, software development, and manufacturing fields to museum conservation by looking at their practical application on a recent conservation project at the Sainsbury Centre for Visual Arts. The author outlines the advantages of leaner and more agile conservation practices in today’s faster, less certain, and more budget-conscious museum climate where traditional project structures are no longer as relevant or effective. The Morris Collection Conservation Project was carried out in 2019-2021 in Norwich, UK, and concerned the remedial conservation of around 150 Abstract Constructivist artworks bequeathed to the Sainsbury Centre by private collectors Michael and Joyce Morris. It was a medium-sized conservation project of moderate complexity, planned and delivered in an environment with multiple known unknowns – unresearched collection, unknown conditions and materials, unconfirmed budget. The project was later impacted by the COVID-19 pandemic, introducing indeterminate lockdowns, budget cuts, staff changes, and the need to accommodate social distancing and remote communications. The author, then a staff conservator at the Sainsbury Centre who acted as project manager on the Morris Project, presents an incremental, iterative, and value-based approach to managing a conservation project in an uncertain environment. The paper examines the project from the point of view of Traditional, Agile, Lean, and Hybrid project management. The author argues that most academic writing on project management in conservation has focussed on a Traditional plan-driven approach – also known as Waterfall project management – which has significant drawbacks in today’s museum environment due to its over-reliance on prediction-based planning and its low tolerance to change. In the last 20 years, alternative Agile, Lean and Hybrid approaches to project management have been widely adopted in software development, manufacturing, and other industries, although their recognition in the museum sector has been slow. Using examples from the Morris Project, the author introduces key principles and tools of Agile, Lean, and Hybrid project management and presents a series of arguments on the effectiveness of these alternative methodologies in museum conservation, including the ethical and practical challenges to their implementation. These project management approaches are discussed in the context of consequentialist, relativist, and utilitarian developments in contemporary conservation ethics. Although not intentionally planned as such, the Morris Project had a number of Agile and Lean features which were instrumental to its successful delivery. These key features are identified as distributed decision-making, a co-located cross-disciplinary team, servant leadership, focus on value-added work, flexible planning done in shorter sprint cycles, light documentation, and emphasis on reducing procedural, financial, and logistical waste. Overall, the author’s findings point in favour of a hybrid model, which combines traditional and alternative project processes and tools to suit the specific needs of the project.

Keywords: agile project management, conservation, hybrid project management, lean project management, waterfall project management

Procedia PDF Downloads 38
58 On-Farm Biopurification Systems: Fungal Bioaugmentation of Biomixtures For Carbofuran Removal

Authors: Carlos E. Rodríguez-Rodríguez, Karla Ruiz-Hidalgo, Kattia Madrigal-Zúñiga, Juan Salvador Chin-Pampillo, Mario Masís-Mora, Elizabeth Carazo-Rojas

Abstract:

One of the main causes of contamination linked to agricultural activities is the spillage and disposal of pesticides, especially during the loading, mixing or cleaning of agricultural spraying equipment. One improvement in the handling of pesticides is the use of biopurification systems (BPS), simple and cheap degradation devices where the pesticides are biologically degraded at accelerated rates. The biologically active core of BPS is the biomixture, which is constituted by soil pre-exposed to the target pesticide, a lignocellulosic substrate to promote the activity of ligninolitic fungi and a humic component (peat or compost), mixed at a volumetric proportion of 50:25:25. Considering the known ability of lignocellulosic fungi to degrade a wide range of organic pollutants, and the high amount of lignocellulosic waste used in biomixture preparation, the bioaugmentation of biomixtures with these fungi represents an interesting approach for improving biomixtures. The present work aimed at evaluating the effect of the bioaugmentation of rice husk based biomixtures with the fungus Trametes versicolor in the removal of the insectice/nematicide carbofuran (CFN) and to optimize the composition of the biomixture to obtain the best performance in terms of CFN removal and mineralization, reduction in formation of transformation products and decrease in residual toxicity of the matrix. The evaluation of several lignocellulosic residues (rice husk, wood chips, coconut fiber, sugarcane bagasse or newspaper print) revealed the best colonization by T. versicolor in rice husk. Pre-colonized rice husk was then used in the bioaugmentation of biomixtures also containing soil pre-exposed to CFN and either peat (GTS biomixture) or compost (GCS biomixture). After spiking with 10 mg/kg CBF, the efficiency of the biomixture was evaluated through a multi-component approach that included: monitoring of CBF removal and production of CBF transformation products, mineralization of radioisotopically labeled carbofuran (14C-CBF) and changes in the toxicity of the matrix after the treatment (Daphnia magna acute immobilization test). Estimated half-lives of CBF in the biomixtures were 3.4 d and 8.1 d in GTS and GCS, respectively. The transformation products 3-hydroxycarbofuran and 3-ketocarbofuran were detected at the moment of CFN application, however their concentration continuously disappeared. Mineralization of 14C-CFN was also faster in GTS than GCS. The toxicological evaluation showed a complete toxicity removal in the biomixtures after 48 d of treatment. The composition of the GCS biomixture was optimized using a central composite design and response surface methodology. The design variables were the volumetric content of fungally pre-colonized rice husk and the volumetric ratio compost/soil. According to the response models, maximization of CFN removal and mineralization rate, and minimization in the accumulation of transformation products were obtained with an optimized biomixture of composition 30:43:27 (pre-colonized rice husk:compost:soil), which differs from the 50:25:25 composition commonly employed in BPS. Results suggest that fungal bioaugmentation may enhance the performance of biomixtures in CFN removal. Optimization reveals the importance of assessing new biomixture formulations in order to maximize their performance.

Keywords: bioaugmentation, biopurification systems, degradation, fungi, pesticides, toxicity

Procedia PDF Downloads 285
57 Contact Zones and Fashion Hubs: From Circular Economy to Circular Neighbourhoods

Authors: Tiziana Ferrero-Regis, Marissa Lindquist

Abstract:

Circular Economy (CE) is increasingly seen as the reorganisation of production and consumption, and cities are acknowledged as the sources of many ecological and social problems; at the same time, they can be re-imagined through an ecologically and socially resilient future. The concept of the CE has received pointed critiques for its techno-deterministic orientation, focus on science and transformation by the policy. At the heart of our local re-imagining of the CE into circularity through contact zones there is the acknowledgment of collective, spontaneous and shared imaginations of alternative and sustainable futures through the creation of networks of community initiatives that are transformative, creating opportunities that simultaneously make cities rich and enrich humans. This paper presents a mapping project of the fashion and textile ecosystem in Brisbane, Queensland, Australia. Brisbane is currently the most aspirational city in Australia, as its population growth rate is the highest in the country. Yet, Brisbane is considered the least “fashion city” in the country. In contrast, the project revealed a greatly enhanced picture of distinct fashion and textile clusters across greater Brisbane and the adjacency of key services that may act to consolidate CE community contact zones. Clusters to the north of Brisbane and several locales to the south are zones of a greater mix between public/social amenities, walkable zones and local transport networks with educational precincts, community hubs, concentration of small enterprises, designers, artisans and waste recovery centers that will help to establish knowledge of key infrastructure networks that will support enmeshing these zones together. The paper presents two case studies of independent designers who work on new and re-designed clothing through recovering pre-consumer textiles and that operate from within creative precincts. The first case is designer Nelson Molloy, who recently returned to the inner city suburb of West End with their Chasing Zero Design project. The area was known in the 1980s and 1990s for its alternative lifestyle with creative independent production, thrifty clothing shops, alternative fashion and a socialist agenda. After 30 years of progressive gentrification of the suburb, which has dislocated many of the artists, designers and artisans, West End is seeing the return and amplification of clusters of artisans, artists, designers and architects. The other case study is Practice Studio, located in a new zone of creative growth, Bowen Hills, north of the CBD. Practice Studio combines retail with a workroom, offers repair and remaking services, becoming a point of reference for young and emerging Australian designers and artists. The paper demonstrates the spatial politics of the CE and the way in which new cultural capital is produced thanks to cultural specificities and resources. It argues for the recognition of contact zones that are created by local actors, communities and knowledge networks, whose grass-roots agency is fundamental for the co-production of CE’s systems of local governance.

Keywords: contact zones, circular citities, fashion and textiles, circular neighbourhoods, australia

Procedia PDF Downloads 68
56 Membrane Technologies for Obtaining Bioactive Fractions from Blood Main Protein: An Exploratory Study for Industrial Application

Authors: Fatima Arrutia, Francisco Amador Riera

Abstract:

The meat industry generates large volumes of blood as a result of meat processing. Several industrial procedures have been implemented in order to treat this by-product, but are focused on the production of low-value products, and in many cases, blood is simply discarded as waste. Besides, in addition to economic interests, there is an environmental concern due to bloodborne pathogens and other chemical contaminants found in blood. Consequently, there is a dire need to find extensive uses for blood that can be both applicable to industrial scale and able to yield high value-added products. Blood has been recognized as an important source of protein. The main blood serum protein in mammals is serum albumin. One of the top trends in food market is functional foods. Among them, bioactive peptides can be obtained from protein sources by microbiological fermentation or enzymatic and chemical hydrolysis. Bioactive peptides are short amino acid sequences that can have a positive impact on health when administered. The main drawback for bioactive peptide production is the high cost of the isolation, purification and characterization techniques (such as chromatography and mass spectrometry) that make unaffordable the scale-up. On the other hand, membrane technologies are very suitable to apply to the industry because they offer a very easy scale-up and are low-cost technologies, compared to other traditional separation methods. In this work, the possibility of obtaining bioactive peptide fractions from serum albumin by means of a simple procedure of only 2 steps (hydrolysis and membrane filtration) was evaluated, as an exploratory study for possible industrial application. The methodology used in this work was, firstly, a tryptic hydrolysis of serum albumin in order to release the peptides from the protein. The protein was previously subjected to a thermal treatment in order to enhance the enzyme cleavage and thus the peptide yield. Then, the obtained hydrolysate was filtered through a nanofiltration/ultrafiltration flat rig at three different pH values with two different membrane materials, so as to compare membrane performance. The corresponding permeates were analyzed by liquid chromatography-tandem mass spectrometry technology in order to obtain the peptide sequences present in each permeate. Finally, different concentrations of every permeate were evaluated for their in vitro antihypertensive and antioxidant activities though ACE-inhibition and DPPH radical scavenging tests. The hydrolysis process with the previous thermal treatment allowed achieving a degree of hydrolysis of the 49.66% of the maximum possible. It was found that peptides were best transmitted to the permeate stream at pH values that corresponded to their isoelectric points. Best selectivity between peptide groups was achieved at basic pH values. Differences in peptide content were found between membranes and also between pH values for the same membrane. The antioxidant activity of all permeates was high compared with the control only for the highest dose. However, antihypertensive activity was best for intermediate concentrations, rather than higher or lower doses. Therefore, although differences between them, all permeates were promising regarding antihypertensive and antioxidant properties.

Keywords: bioactive peptides, bovine serum albumin, hydrolysis, membrane filtration

Procedia PDF Downloads 167
55 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines

Authors: Kamyar Tolouei, Ehsan Moosavi

Abstract:

In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.

Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization

Procedia PDF Downloads 67
54 From Biowaste to Biobased Products: Life Cycle Assessment of VALUEWASTE Solution

Authors: Andrés Lara Guillén, José M. Soriano Disla, Gemma Castejón Martínez, David Fernández-Gutiérrez

Abstract:

The worldwide population is exponentially increasing, which causes a rising demand for food, energy and non-renewable resources. These demands must be attended to from a circular economy point of view. Under this approach, the obtention of strategic products from biowaste is crucial for the society to keep the current lifestyle reducing the environmental and social issues linked to the lineal economy. This is the main objective of the VALUEWASTE project. VALUEWASTE is about valorizing urban biowaste into proteins for food and feed and biofertilizers, closing the loop of this waste stream. In order to achieve this objective, the project validates three value chains, which begin with the anaerobic digestion of the biowaste. From the anaerobic digestion, three by-products are obtained: i) methane that is used by microorganisms, which will be transformed into microbial proteins; ii) digestate that is used by black soldier fly, producing insect proteins; and iii) a nutrient-rich effluent, which will be transformed into biofertilizers. VALUEWASTE is an innovative solution, which combines different technologies to valorize entirely the biowaste. However, it is also required to demonstrate that the solution is greener than other traditional technologies (baseline systems). On one hand, the proteins from microorganisms and insects will be compared with other reference protein production systems (gluten, whey and soybean). On the other hand, the biofertilizers will be compared to the production of mineral fertilizers (ammonium sulphate and synthetic struvite). Therefore, the aim of this study is to provide that biowaste valorization can reduce the environmental impacts linked to both traditional proteins manufacturing processes and mineral fertilizers, not only at a pilot-scale but also at an industrial one. In the present study, both baseline system and VALUEWASTE solution are evaluated through the Environmental Life Cycle Assessment (E-LCA). The E-LCA is based on the standards ISO 14040 and 14044. The Environmental Footprint methodology was the one used in this study to evaluate the environmental impacts. The results for the baseline cases show that the food proteins coming from whey have the highest environmental impact on ecosystems compared to the other proteins sources: 7.5 and 15.9 folds higher than soybean and gluten, respectively. Comparing feed soybean and gluten, soybean has an environmental impact on human health 195.1 folds higher. In the case of biofertilizers, synthetic struvite has higher impacts than ammonium sulfate: 15.3 (ecosystems) and 11.8 (human health) fold, respectively. The results shown in the present study will be used as a reference to demonstrate the better environmental performance of the bio-based products obtained through the VALUEWASTE solution. Other originalities that the E-LCA performed in the VALUEWASTE project provides are the diverse direct implications on investment and policies. On one hand, better environmental performance will serve to remove the barriers linked to these kinds of technologies, boosting the investment that is backed by the E-LCA. On the other hand, it will be a germ to design new policies fostering these types of solutions to achieve two of the key targets of the European Community: being self-sustainable and carbon neutral.

Keywords: anaerobic digestion, biofertilizers, circular economy, nutrients recovery

Procedia PDF Downloads 67
53 The Late Bronze Age Archeometallurgy of Copper in Mountainous Colchis (Lechkhumi), Georgia

Authors: Nino Sulava, Brian Gilmour, Nana Rezesidze, Tamar Beridze, Rusudan Chagelishvili

Abstract:

Studies of ancient metallurgy are a subject of worldwide current interest. Georgia with its famous early metalworking traditions is one of the central parts of in the Caucasus region. The aim of the present study is to introduce the results of archaeometallurgical investigations being undertaken in the mountain region of Colchis, Lechkhumi (the Tsageri Municipality of western Georgia) and establish their place in the existing archaeological context. Lechkhumi (one of the historic provinces of Georgia known from Georgian, Greek, Byzantine and Armenian written sources as Lechkhumi/Skvimnia/Takveri) is the part of the Colchian mountain area. It is one of the important but little known centres of prehistoric metallurgy in the Caucasian region and of Colchian Bronze Age culture. Reconnaissance archaeological expeditions (2011-2015) revealed significant prehistoric metallurgical sites in Lechkhumi. Sites located in the vicinity of Dogurashi Village (Tsageri Municipality) have become the target area for archaeological excavations. During archaeological excavations conducted in 2016-2018 two archaeometallurgical sites – Dogurashi I and Dogurashi II were investigated. As a result of an interdisciplinary (archaeological, geological and geophysical) survey, it has been established that at both prehistoric Dogurashi mountain sites, it was copper that was being smelted and the ore sources are likely to be of local origin. Radiocarbon dating results confirm they were operating between about the 13th and 9th century BC. More recently another similar site has been identified in this area (Dogurashi III), and this is about to undergo detailed investigation. Other prehistoric metallurgical sites are being located and investigated in the Lechkhumi region as well as chance archaeological finds (often in hoards) – copper ingots, metallurgical production debris, slag, fragments of crucibles, tuyeres (air delivery pipes), furnace wall fragments and other related waste debris. Other chance finds being investigated are the many copper, bronze and (some) iron artefacts that have been found over many years. These include copper ingots, copper, bronze and iron artefacts such as tools, jewelry, and decorative items. These show the important but little known or understood the role of Lechkhumi in the late Bronze Age culture of Colchis. It would seem that mining and metallurgical manufacture form part of the local agricultural yearly lifecycle. Colchian ceramics have been found and also evidence for artefact production, small stone mould fragments and encrusted material from the casting of a fylfot (swastika) form of Colchian bronze buckle found in the vicinities of the early settlements of Tskheta and Dekhviri. Excavation and investigation of previously unknown archaeometallurgical sites in Lechkhumi will contribute significantly to the knowledge and understanding of prehistoric Colchian metallurgy in western Georgia (Adjara, Guria, Samegrelo, and Svaneti) and will reveal the importance of this region in the study of ancient metallurgy in Georgia and the Caucasus. Acknowledgment: This work has been supported by the Shota Rustaveli National Science Foundation (grant FR # 217128).

Keywords: archaeometallurgy, Colchis, copper, Lechkhumi

Procedia PDF Downloads 110
52 The Use of Rule-Based Cellular Automata to Track and Forecast the Dispersal of Classical Biocontrol Agents at Scale, with an Application to the Fopius arisanus Fruit Fly Parasitoid

Authors: Agboka Komi Mensah, John Odindi, Elfatih M. Abdel-Rahman, Onisimo Mutanga, Henri Ez Tonnang

Abstract:

Ecosystems are networks of organisms and populations that form a community of various species interacting within their habitats. Such habitats are defined by abiotic and biotic conditions that establish the initial limits to a population's growth, development, and reproduction. The habitat’s conditions explain the context in which species interact to access resources such as food, water, space, shelter, and mates, allowing for feeding, dispersal, and reproduction. Dispersal is an essential life-history strategy that affects gene flow, resource competition, population dynamics, and species distributions. Despite the importance of dispersal in population dynamics and survival, understanding the mechanism underpinning the dispersal of organisms remains challenging. For instance, when an organism moves into an ecosystem for survival and resource competition, its progression is highly influenced by extrinsic factors such as its physiological state, climatic variables and ability to evade predation. Therefore, greater spatial detail is necessary to understand organism dispersal dynamics. Understanding organisms dispersal can be addressed using empirical and mechanistic modelling approaches, with the adopted approach depending on the study's purpose Cellular automata (CA) is an example of these approaches that have been successfully used in biological studies to analyze the dispersal of living organisms. Cellular automata can be briefly described as occupied cells by an individual that evolves based on proper decisions based on a set of neighbours' rules. However, in the ambit of modelling individual organisms dispersal at the landscape scale, we lack user friendly tools that do not require expertise in mathematical models and computing ability; such as a visual analytics framework for tracking and forecasting the dispersal behaviour of organisms. The term "visual analytics" (VA) describes a semiautomated approach to electronic data processing that is guided by users who can interact with data via an interface. Essentially, VA converts large amounts of quantitative or qualitative data into graphical formats that can be customized based on the operator's needs. Additionally, this approach can be used to enhance the ability of users from various backgrounds to understand data, communicate results, and disseminate information across a wide range of disciplines. To support effective analysis of the dispersal of organisms at the landscape scale, we therefore designed Pydisp which is a free visual data analytics tool for spatiotemporal dispersal modeling built in Python. Its user interface allows users to perform a quick and interactive spatiotemporal analysis of species dispersal using bioecological and climatic data. Pydisp enables reuse and upgrade through the use of simple principles such as Fuzzy cellular automata algorithms. The potential of dispersal modeling is demonstrated in a case study by predicting the dispersal of Fopius arisanus (Sonan), endoparasitoids to control Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Kenya. The results obtained from our example clearly illustrate the parasitoid's dispersal process at the landscape level and confirm that dynamic processes in an agroecosystem are better understood when designed using mechanistic modelling approaches. Furthermore, as demonstrated in the example, the built software is highly effective in portraying the dispersal of organisms despite the unavailability of detailed data on the species dispersal mechanisms.

Keywords: cellular automata, fuzzy logic, landscape, spatiotemporal

Procedia PDF Downloads 48
51 Fibroblast Compatibility of Core-Shell Coaxially Electrospun Hybrid Poly(ε-Caprolactone)/Chitosan Scaffolds

Authors: Hilal Turkoglu Sasmazel, Ozan Ozkan, Seda Surucu

Abstract:

Tissue engineering is the field of treating defects caused by injuries, trauma or acute/chronic diseases by using artificial scaffolds that mimic the extracellular matrix (ECM), the natural biological support for the tissues and cells within the body. The main aspects of a successful artificial scaffold are (i) large surface area in order to provide multiple anchorage points for cells to attach, (ii) suitable porosity in order to achieve 3 dimensional growth of the cells within the scaffold as well as proper transport of nutrition, biosignals and waste and (iii) physical, chemical and biological compatibility of the material in order to obtain viability throughout the healing process. By hybrid scaffolds where two or more different materials were combined with advanced fabrication techniques into complex structures, it is possible to combine the advantages of individual materials into one single structure while eliminating the disadvantages of each. Adding this to the complex structure provided by advanced fabrication techniques enables obtaining the desired aspects of a successful artificial tissue scaffold. In this study, fibroblast compatibility of poly(ε-caprolactone) (PCL)/chitosan core-shell electrospun hybrid scaffolds with proper mechanical, chemical and physical properties successfully developed in our previous study was investigated. Standard 7-day cell culture was carried out with L929 fibroblast cell line. The viability of the cells cultured with the scaffolds was monitored with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay for every 48 h starting with 24 h after the initial seeding. In this assay, blank commercial tissue culture polystyrene (TCPS) Petri dishes, single electrospun PCL and single electrospun chitosan mats were used as control in order to compare and contrast the performance of the hybrid scaffolds. The adhesion, proliferation, spread and growth of the cells on/within the scaffolds were observed visually on the 3rd and the 7th days of the culture period with confocal laser scanning microscopy (CSLM) and scanning electron microscopy (SEM). The viability assay showed that the hybrid scaffolds caused no toxicity for fibroblast cells and provided a steady increase in cell viability, effectively doubling the cell density for every 48 h for the course of 7 days, as compared to TCPS, single electrospun PCL or chitosan mats. The cell viability on the hybrid scaffold was ~2 fold better compared to TCPS because of its 3D ECM-like structure compared to 2D flat surface of commercially cell compatible TCPS, and the performance was ~2 fold and ~10 fold better compared to single PCL and single chitosan mats, respectively, even though both fabricated similarly with electrospinning as non-woven fibrous structures, because single PCL and chitosan mats were either too hydrophobic or too hydrophilic to maintain cell attachment points. The viability results were verified with visual images obtained with CSLM and SEM, in which cells found to achieve characteristic spindle-like fibroblast shape and spread on the surface as well within the pores successfully at high densities.

Keywords: chitosan, core-shell, fibroblast, electrospinning, PCL

Procedia PDF Downloads 136
50 Mangroves in the Douala Area, Cameroon: The Challenges of Open Access Resources for Forest Governance

Authors: Bissonnette Jean-François, Dossa Fabrice

Abstract:

The project focuses on analyzing the spatial and temporal evolution of mangrove forest ecosystems near the city of Douala, Cameroon, in response to increasing human and environmental pressures. The selected study area, located in the Wouri River estuary, has a unique combination of economic importance, and ecological prominence. The study included valuable insights by conducting semi-structured interviews with resource operators and local officials. The thorough analysis of socio-economic data, farmer surveys, and satellite-derived information was carried out utilizing quantitative approaches in Excel and SPSS. Simultaneously, qualitative data was subjected to rigorous classification and correlation with other sources. The use of ArcGIS and CorelDraw facilitated the visual representation of the gradual changes seen in various land cover classifications. The research reveals complex processes that characterize mangrove ecosystems on Manoka and Cape Cameroon Islands. The lack of regulations in urbanization and the continuous growth of infrastructure have led to a significant increase in land conversion, causing negative impacts on natural landscapes and forests. The repeated instances of flooding and coastal erosion have further shaped landscape alterations, fostering the proliferation of water and mudflat areas. The unregulated use of mangrove resources is a significant factor in the degradation of these ecosystems. Activities including the use of wood for smoking and fishing, together with the coastal pollution resulting from the absence of waste collection, have had a significant influence. In addition, forest operators contribute to the degradation of vegetation, hence exacerbating the harmful impact of invasive species on the ecosystem. Strategic interventions are necessary to guarantee the sustainable management of these ecosystems. The proposals include advocating for sustainable wood exploitation techniques, using appropriate techniques, along with regeneration, and enforcing rules to prevent wood overexploitation. By implementing these measures, the ecological balance can be preserved, safeguarding the long-term viability of these precious ecosystems. On a conceptual level, this paper uses the framework developed by Elinor Ostrom and her colleagues to investigate the consequences of open access resources, where local actors have not been able to enforce measures to prevent overexploitation of mangrove wood resources. Governmental authorities have demonstrated limited capacity to enforce sustainable management of wood resources and have not been able to establish effective relationships with local fishing communities and with communities involved in the purchase of wood. As a result, wood resources in the mangrove areas remain largely accessible, while authorities do not monitor wood volumes extracted nor methods of exploitation. There have only been limited and punctual attempts at forest restoration with no significant consequence on mangrove forests dynamics.

Keywords: Mangroves, forest management, governance, open access resources, Cameroon

Procedia PDF Downloads 21
49 Clinical Course and Prognosis of Cutaneous Manifestations of COVID-19: A Systematic Review of Reported Cases

Authors: Hilary Modir, Kyle Dutton, Michelle Swab, Shabnam Asghari

Abstract:

Since its emergence, the cutaneous manifestations of COVID-19 have been documented in the literature. However, the majority are case reports with significant limitations in appraisal quality, thus leaving the role of dermatological manifestations of COVID-19 erroneously underexplored. The primary aim of this review was to systematically examine clinical patterns of dermatological manifestations as reported in the literature. This study was designed as a systematic review of case reports. The inclusion criteria consisted of all published reports and articles regarding COVID-19 in English, from September 1st, 2019, until June 22nd, 2020. The population consisted of confirmed cases of COVID-19 with associated cutaneous signs and symptoms. Exclusion criteria included research in planning stages, protocols, book reviews, news articles, review studies, and policy analyses. With the collaboration of a librarian, a search strategy was created consisting of a mixture of keyword terms and controlled vocabulary. Electronic databases searched were MEDLINE via PubMed, EMBASE, CINAHL, Web of Science, LILACS, PsycINFO, WHO Global Literature on Coronavirus Disease, Cochrane Library, Campbell Collaboration, Prospero, WHO International Clinical Trials Registry Platform, Australian and New Zealand Clinical Trials Registry, U.S. Institutes of Health Ongoing Trials Register, AAD Registry, OSF preprints, SSRN, MedRxiV and BioRxiV. The study selection featured an initial pre-screening of titles and abstracts by one independent reviewer. Results were verified by re-examining a random sample of 1% of excluded articles. Eligible studies progressed for full-text review by two calibrated independent reviewers. Covidence was used to store and extract data, such as citation information and findings pertaining to COVID-19 and cutaneous signs and symptoms. Data analysis and summarization methodology reflect the framework proposed by PRISMA and recommendations set out by Cochrane and Joanna Brigg’s Institute for conducting systematic reviews. The Oxford Centre for Evidence-Based Medicine’s level of evidence was used to appraise the quality of individual studies. The literature search revealed a total of 1221 articles. After the abstract and full-text screening, only 95 studies met the eligibility criteria, proceeding to data extraction. Studies were divided into 58% case reports and 42% series. A total of 833 manifestations were reported in 723 confirmed COVID-19 cases. The most frequent lesions were 23% maculopapular, 15% urticarial and 13% pseudo-chilblains, with 46% of lesions reporting pruritus, 16% erythema, 14% pain, 12% burning sensation, and 4% edema. The most common lesion locations were 20% trunk, 19.5% lower limbs, and 17.7% upper limbs. The time to resolution of lesions was between one and twenty-one days. In conclusion, over half of the reported cutaneous presentations in COVID-19 positive patients were maculopapular, urticarial and pseudo-chilblains, with the majority of lesions distributed to the extremities and trunk. As this review’s sample size only contained COVID-19 confirmed cases with skin presentations, it becomes difficult to deduce the direct relationship between skin findings and COVID-19. However, it can be correlated that acute onset of skin lesions, such as chilblains-like, may be associated with or may warrant consideration of COVID-19 as part of the differential diagnosis.

Keywords: COVID-19, cutaneous manifestations, cutaneous signs, general dermatology, medical dermatology, Sars-Cov-2, skin and infectious disease, skin findings, skin manifestations

Procedia PDF Downloads 156
48 Addressing Primary Care Clinician Burnout in a Value Based Care Setting During the COVID-19 Pandemic

Authors: Robert E. Kenney, Efrain Antunez, Samuel Nodal, Ameer Malik, Richard B. Aguilar

Abstract:

Physician burnout has gained much attention during the COVID pandemic. After-hours workload, HCC coding, HEDIS metrics, and clinical documentation negatively impact career satisfaction. These and other influences have increased the rate of physicians leaving the workforce. In addition, roughly 1% of the entire physician workforce will be retiring earlier than expected based on pre-pandemic trends. The two Medical Specialties with the highest rates of burnout are Family Medicine and Primary Care. With a predicted shortage of primary care physicians looming, the need to address physician burnout is crucial. Commonly reported issues leading to clinician burnout are clerical documentation requirements, increased time working on Electronic Health Records (EHR) after hours, and a decrease in work-life balance. Clinicians experiencing burnout with physical and emotional exhaustion are at an increased likelihood of providing lower quality and less efficient patient care. This may include a lack of suitable clinical documentation, medication reconciliation, clinical assessment, and treatment plans. While the annual baseline turnover rates of physicians hover around 6-7%, the COVID pandemic profoundly disrupted the delivery of healthcare. A report found that 43% of physicians switched jobs during the initial two years of the COVID pandemic (2020 and 2021), tripling the expected average annual rate to 21.5 %/yr. During this same time, an average of 4% and 1.5% of physicians retired or left the workforce for a non-clinical career, respectively. The report notes that 35.2% made career changes for a better work-life balance and another 35% reported the reason as being unhappy with their administration’s response to the pandemic. A physician-led primary care-focused health organization, Cano Health (CH), based out of Florida, sought to preemptively address this problem by implementing several supportive measures. Working with >120 clinics and >280 PCPs from Miami to Tampa and Orlando, managing nearly 120,000 Medicare Advantage lives, CH implemented a number of changes to assist with the clinician’s workload. Supportive services such as after hour and home visits by APRNs, in-clinic care managers, and patient educators were implemented. In 2021, assistive Artificial Intelligence Software (AIS) was integrated into the EHR platform. This AIS converts free text within PDF files into a usable (copy-paste) format facilitating documentation. The software also systematically and chronologically organizes clinical data, including labs, medical records, consultations, diagnostic images, medications, etc., into an easy-to-use organ system or chronic disease state format. This reduced the excess time and documentation burden required to meet payor and CMS guidelines. A clinician Documentation Support team was employed to improve the billing/coding performance. The effects of these newly designed workflow interventions were measured via analysis of clinician turnover from CH’s hiring and termination reporting software. CH’s annualized average clinician turnover rate in 2020 and 2021 were 17.7% and 12.6%, respectively. This represents a 30% relative reduction in turnover rate compared to the reported national average of 21.5%. Retirement rates during both years were 0.1%, demonstrating a relative reduction of >95% compared to the national average (4%). This model successfully promoted the retention of clinicians in a Value-Based Care setting.

Keywords: clinician burnout, COVID-19, value-based care, burnout, clinician retirement

Procedia PDF Downloads 56