Search results for: density estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5099

Search results for: density estimation

929 Design and Development of High Strength Aluminium Alloy from Recycled 7xxx-Series Material Using Bayesian Optimisation

Authors: Alireza Vahid, Santu Rana, Sunil Gupta, Pratibha Vellanki, Svetha Venkatesh, Thomas Dorin

Abstract:

Aluminum is the preferred material for lightweight applications and its alloys are constantly improving. The high strength 7xxx alloys have been extensively used for structural components in aerospace and automobile industries for the past 50 years. In the next decade, a great number of airplanes will be retired, providing an obvious source of valuable used metals and great demand for cost-effective methods to re-use these alloys. The design of proper aerospace alloys is primarily based on optimizing strength and ductility, both of which can be improved by controlling the additional alloying elements as well as heat treatment conditions. In this project, we explore the design of high-performance alloys with 7xxx as a base material. These designed alloys have to be optimized and improved to compare with modern 7xxx-series alloys and to remain competitive for aircraft manufacturing. Aerospace alloys are extremely complex with multiple alloying elements and numerous processing steps making optimization often intensive and costly. In the present study, we used Bayesian optimization algorithm, a well-known adaptive design strategy, to optimize this multi-variable system. An Al alloy was proposed and the relevant heat treatment schedules were optimized, using the tensile yield strength as the output to maximize. The designed alloy has a maximum yield strength and ultimate tensile strength of more than 730 and 760 MPa, respectively, and is thus comparable to the modern high strength 7xxx-series alloys. The microstructure of this alloy is characterized by electron microscopy, indicating that the increased strength of the alloy is due to the presence of a high number density of refined precipitates.

Keywords: aluminum alloys, Bayesian optimization, heat treatment, tensile properties

Procedia PDF Downloads 92
928 Evaluating the Feasibility of Chemical Dermal Exposure Assessment Model

Authors: P. S. Hsi, Y. F. Wang, Y. F. Ho, P. C. Hung

Abstract:

The aim of the present study was to explore the dermal exposure assessment model of chemicals that have been developed abroad and to evaluate the feasibility of chemical dermal exposure assessment model for manufacturing industry in Taiwan. We conducted and analyzed six semi-quantitative risk management tools, including UK - Control of substances hazardous to health ( COSHH ) Europe – Risk assessment of occupational dermal exposure ( RISKOFDERM ), Netherlands - Dose related effect assessment model ( DREAM ), Netherlands – Stoffenmanager ( STOFFEN ), Nicaragua-Dermal exposure ranking method ( DERM ) and USA / Canada - Public Health Engineering Department ( PHED ). Five types of manufacturing industry were selected to evaluate. The Monte Carlo simulation was used to analyze the sensitivity of each factor, and the correlation between the assessment results of each semi-quantitative model and the exposure factors used in the model was analyzed to understand the important evaluation indicators of the dermal exposure assessment model. To assess the effectiveness of the semi-quantitative assessment models, this study also conduct quantitative dermal exposure results using prediction model and verify the correlation via Pearson's test. Results show that COSHH was unable to determine the strength of its decision factor because the results evaluated at all industries belong to the same risk level. In the DERM model, it can be found that the transmission process, the exposed area, and the clothing protection factor are all positively correlated. In the STOFFEN model, the fugitive, operation, near-field concentrations, the far-field concentration, and the operating time and frequency have a positive correlation. There is a positive correlation between skin exposure, work relative time, and working environment in the DREAM model. In the RISKOFDERM model, the actual exposure situation and exposure time have a positive correlation. We also found high correlation with the DERM and RISKOFDERM models, with coefficient coefficients of 0.92 and 0.93 (p<0.05), respectively. The STOFFEN and DREAM models have poor correlation, the coefficients are 0.24 and 0.29 (p>0.05), respectively. According to the results, both the DERM and RISKOFDERM models are suitable for performance in these selected manufacturing industries. However, considering the small sample size evaluated in this study, more categories of industries should be evaluated to reduce its uncertainty and enhance its applicability in the future.

Keywords: dermal exposure, risk management, quantitative estimation, feasibility evaluation

Procedia PDF Downloads 141
927 A Discrete Event Simulation Model For Airport Runway Operations Optimization (Case Study)

Authors: Awad Khireldin, Colin Law

Abstract:

Runways are the major infrastructure of airports around the world. Efficient operations of runways are key to ensure that airports are running smoothly with minimal delays. There are many factors that affect the efficiency of runway operations, such as the aircraft wake separation, runways system configuration, the fleet mix, and the runways separation distance. This paper aims to address how to maximize runway operations using a Discrete Event Simulation model. A case study of Cairo International Airport (CIA) is developed to maximize the utilizing of three parallel runways using a simulation model. Different scenarios have been designed where every runway could be assigned for arrival, departure, or mixed operations. A benchmarking study was also included to compare the actual to the proposed results to spot the potential improvements. The simulation model shows that there is a significant difference in utilization and delays between the actual and the proposed ones, there are several recommendations that can be provided to airport management, in the short and long term, to increase the efficiency and to reduce the delays. By including the recommendation with different operations scenarios, such as upgrading the airport slot Coordination from Level 1 to Level 2 in the short term. In the long run, discuss the possibilities to increase the International Air Transport association (IATA) slot coordination to Level 3 as more flights are expected to be handled by the airport. Technological advancements such as radar in the approach full airside simulation model could improve the airport performance where the airport is recommended to review the standard operations procedures with the appropriate authorities. Also, the airport can adopt a future operational plan to accommodate the forecasted additional traffic density in case of adding a fourth terminal building to increase the airport capacity.

Keywords: airport performance, runway, discrete event simulation, capacity, airside

Procedia PDF Downloads 78
926 Femoral Neck Anteversion and Neck-Shaft Angles: Determination and Their Clinical Implications in Fetuses of Different Gestational Ages

Authors: Vrinda Hari Ankolekar, Anne D. Souza, Mamatha Hosapatna

Abstract:

Introduction: Precise anatomical assessment of femoral neck anteversion (FNA) and the neck shaft angles (NSA) would be essential in diagnosing the pathological conditions involving hip joint and its ligaments. FNA of greater than 20 degrees is considered excessive femoral anteversion, whereas a torsion angle of fewer than 10 degrees is considered femoral retroversion. Excessive femoral torsion is not uncommon and has been associated with certain neurologic and orthopedic conditions. The enlargement and maturation of the hip joint increases at the 20th week of gestation and the NSA ranges from 135- 140◦ at birth. Material and methods: 48 femurs were tagged according to the GA and two photographs for each femur were taken using Nikon digital camera. Each femur was kept on a horizontal hard desk and end on an image of the upper end was taken for the estimation of FNA and a photograph in a perpendicular plane was taken to calculate the NSA. The images were transferred to the computer and were stored in TIFF format. Microsoft Paint software was used to mark the points and Image J software was used to calculate the angles digitally. 1. Calculation of FNA: The midpoint of the femoral head and the neck were marked and a line was drawn joining these two points. The angle made by this line with the horizontal plane was measured as FNA. 2. Calculation of NSA: The midpoint of the femoral head and the neck were marked and a line was drawn joining these two points. A vertical line was drawn passing through the tip of the greater trochanter to the inter-condylar notch. The angle formed by these lines was calculated as NSA. Results: The paired t-test for the inter-observer variability showed no significant difference between the values of two observers. (FNA: t=-1.06 and p=0.31; NSA: t=-0.09 and p=0.9). The FNA ranged from 17.08º to 33.97 º on right and 17.32 º to 45.08 º on left. The NSA ranged from 139.33 º to 124.91 º on right and 143.98 º to 123.8 º on left. Unpaired t-test was applied to compare the mean angles between the second and third trimesters which did not show any statistical significance. This shows that the FNA and NSA of femur did not vary significantly during the third trimester. The FNA and NSA were correlated with the GA using Pearson’s correlation. FNA appeared to increase with the GA (r=0.5) but the increase was not statistically significant. A decrease in the NSA was also noted with the GA (r=-0.3) which was also statistically not significant. Conclusion: The present study evaluates the FNA and NSA of the femur in fetuses and correlates their development with the GA during second and third trimesters. The FNA and NSA did not vary significantly during the third trimester.

Keywords: anteversion, coxa antetorsa, femoral torsion, femur neck shaft angle

Procedia PDF Downloads 283
925 Broadband Ultrasonic and Rheological Characterization of Liquids Using Longitudinal Waves

Authors: M. Abderrahmane Mograne, Didier Laux, Jean-Yves Ferrandis

Abstract:

Rheological characterizations of complex liquids like polymer solutions present an important scientific interest for a lot of researchers in many fields as biology, food industry, chemistry. In order to establish master curves (elastic moduli vs frequency) which can give information about microstructure, classical rheometers or viscometers (such as Couette systems) are used. For broadband characterization of the sample, temperature is modified in a very large range leading to equivalent frequency modifications applying the Time Temperature Superposition principle. For many liquids undergoing phase transitions, this approach is not applicable. That is the reason, why the development of broadband spectroscopic methods around room temperature becomes a major concern. In literature many solutions have been proposed but, to our knowledge, there is no experimental bench giving the whole rheological characterization for frequencies about a few Hz (Hertz) to many MHz (Mega Hertz). Consequently, our goal is to investigate in a nondestructive way in very broadband frequency (A few Hz – Hundreds of MHz) rheological properties using longitudinal ultrasonic waves (L waves), a unique experimental bench and a specific container for the liquid: a test tube. More specifically, we aim to estimate the three viscosities (longitudinal, shear and bulk) and the complex elastic moduli (M*, G* and K*) respectively longitudinal, shear and bulk moduli. We have decided to use only L waves conditioned in two ways: bulk L wave in the liquid or guided L waves in the tube test walls. In this paper, we will present first results for very low frequencies using the ultrasonic tracking of a falling ball in the test tube. This will lead to the estimation of shear viscosity from a few mPa.s to a few Pa.s (Pascal second). Corrections due to the small dimensions of the tube will be applied and discussed regarding the size of the falling ball. Then the use of bulk L wave’s propagation in the liquid and the development of a specific signal processing in order to assess longitudinal velocity and attenuation will conduct to the longitudinal viscosity evaluation in the MHz frequency range. At last, the first results concerning the propagation, the generation and the processing of guided compressional waves in the test tube walls will be discussed. All these approaches and results will be compared to standard methods available and already validated in our lab.

Keywords: nondestructive measurement for liquid, piezoelectric transducer, ultrasonic longitudinal waves, viscosities

Procedia PDF Downloads 240
924 Water Droplet Impact on Vibrating Rigid Superhydrophobic Surfaces

Authors: Jingcheng Ma, Patricia B. Weisensee, Young H. Shin, Yujin Chang, Junjiao Tian, William P. King, Nenad Miljkovic

Abstract:

Water droplet impact on surfaces is a ubiquitous phenomenon in both nature and industry. The transfer of mass, momentum and energy can be influenced by the time of contact between droplet and surface. In order to reduce the contact time, we study the influence of substrate motion prior to impact on the dynamics of droplet recoil. Using optical high speed imaging, we investigated the impact dynamics of macroscopic water droplets (~ 2mm) on rigid nanostructured superhydrophobic surfaces vibrating at 60 – 300 Hz and amplitudes of 0 – 3 mm. In addition, we studied the influence of the phase of the substrate at the moment of impact on total contact time. We demonstrate that substrate vibration can alter droplet dynamics, and decrease total contact time by as much as 50% compared to impact on stationary rigid superhydrophobic surfaces. Impact analysis revealed that the vibration frequency mainly affected the maximum contact time, while the amplitude of vibration had little direct effect on the contact time. Through mathematical modeling, we show that the oscillation amplitude influences the possibility density function of droplet impact at a given phase, and thus indirectly influences the average contact time. We also observed more vigorous droplet splashing and breakup during impact at larger amplitudes. Through semi-empirical mathematical modeling, we describe the relationship between contact time and vibration frequency, phase, and amplitude of the substrate. We also show that the maximum acceleration during the impact process is better suited as a threshold parameter for the onset of splashing than a Weber-number criterion. This study not only provides new insights into droplet impact physics on vibrating surfaces, but develops guidelines for the rational design of surfaces to achieve controllable droplet wetting in applications utilizing vibration.

Keywords: contact time, impact dynamics, oscillation, pear-shape droplet

Procedia PDF Downloads 434
923 Development of Essential Oil-Loaded Gelatin Hydrogels for Use as Antibacterial Wound Dressing

Authors: Piyachat Chuysinuan, Nitirat Chimnoi, Arthit Makarasen, Nanthawan Reuk-Ngam, Pitt Supaphol, Supanna Techasakul

Abstract:

In this work, biomaterial wound dressings was developed based on gelatin containing herbal substances (essential oil), a substance from the plant Eupatorium adenophorum Spreng (Crofton weed) that used as traditional wound healers. Gelatin hydrogel was prepared from a 10 wt-% gelatin solution. The oil in water (o/w) emulsion Eupatorium adenophorum of essential oil were prepared and used Pluronic F68 as a surfactant. The 10, 20, and 30 % v/v emulsion were mixed with gelatin solution and cast into film. These hydrogels were tested for their gel fraction, swelling and weight loss behavior. With an increase in the emulsion concentration the emulsion-loaded in hydrogels, the gel fraction were decreased due to the crosslink density, while the swelling and weight loss behavior were increased with an increasing in the emulsion content. The potential to use the emulsion-containing gelatin hydrogels as wound dressing was assessed on investigation the release characteristics of the as-loaded hydrogels. The E. adenophorum essential oil was first identified the chemical composition by using GC-MS analysis. The principal components of the oil were p-cymene (16.23%), bornyl acetate (11.84%), and amorpha-4, 7(11)-diene (10.51%). The hydrogel wound dressing containing essential oil was then characterized for their antibacterial activity against Gram-positive and Gram-negative in order to elucidate their potential for use as antibacterial wound dressings by using agar disk diffusion methods. The result showed that E. adenophorum essential oil and the emulsion-loaded gelatin hydrogel inhibited the growth of the test pathogens, Staphylococcus aureus and Staphylococcus epidermidis and increased with increasing the initial amount of essential oil in the hydrogels which confirmed their application as antibacterial wound dressings. Furthermore, the potential use of these wound dressings was further assessed in terms of the indirect cytotoxicity, in vitro attachment and proliferation of dermal human fibroblasts cultured in the hydrogel wound dressings.

Keywords: hydrogel, antibacterial wound dressing, Eupatorium adenophorum essential oil, gelatin

Procedia PDF Downloads 315
922 Biochar and Food Security in Central Uganda

Authors: Nataliya Apanovich, Mark Wright

Abstract:

Uganda is among the poorest but fastest growing populations in the world. Its annual population growth of 3% puts additional stress through land fragmentation, agricultural intensification, and deforestation on already highly weathered tropical (Ferralsol) soils. All of these factors lead to decreased agricultural yields and consequently diminished food security. The central region of Uganda, Buganda Kingdom, is especially vulnerable in terms of food security as its high population density coupled with mismanagement of natural resources led to gradual loss of its soil and even changes in microclimate. These changes are negatively affecting livelihoods of smallholder farmers who comprise 80% of all population in Uganda. This research focuses on biochar for soil remediation in Masaka District, Uganda. If produced on a small scale from locally sourced materials, biochar can increase the quality of soil in a cost and time effective manner. To assess biochar potential, 151 smallholder farmers were interviewed on the types of crops grown, agricultural residues produced and their use, as well as on attitudes towards biochar use and its production on a small scale. The interviews were conducted in 7 sub-counties, 32 parishes, and 92 villages. The total farmland covered by the study was 606.2 kilometers. Additional information on the state of agricultural development and environmental degradation in the district was solicited from four local government officials via informal interviews. This project has been conducted in collaboration with the international agricultural research institution, Makerere University in Kampala, Uganda. The results of this research can have implications on the way farmers perceive the value of their agricultural residues and what they decide to do with them. The underlying objective is to help smallholders in degraded soils increase their agricultural yields through the use of biochar without diverting the already established uses of agricultural residues to a new soil management practice.

Keywords: agricultural residues, biochar, central Uganda, food security, soil erosion, soil remediation

Procedia PDF Downloads 253
921 Recent Progress in the Uncooled Mid-Infrared Lead Selenide Polycrystalline Photodetector

Authors: Hao Yang, Lei Chen, Ting Mei, Jianbang Zheng

Abstract:

Currently, the uncooled PbSe photodetectors in the mid-infrared range (2-5μm) with sensitization technology extract more photoelectric response than traditional ones, and enable the room temperature (300K) photo-detection with high detectivity, which have attracted wide attentions in many fields. This technology generally contains the film fabrication with vapor phase deposition (VPD) and a sensitizing process with doping of oxygen and iodine. Many works presented in the recent years almost provide and high temperature activation method with oxygen/iodine vapor diffusion, which reveals that oxygen or iodine plays an important role in the sensitization of PbSe material. In this paper, we provide our latest experimental results and discussions in the stoichiometry of oxygen and iodine and its influence on the polycrystalline structure and photo-response. The experimental results revealed that crystal orientation was transformed from (200) to (420) by sensitization, and the responsivity of 5.42 A/W was gained by the optimal stoichiometry of oxygen and iodine with molecular density of I2 of ~1.51×1012 mm-3 and oxygen pressure of ~1Mpa. We verified that I2 plays a role in transporting oxygen into the lattice of crystal, which is actually not its major role. It is revealed that samples sensitized with iodine transform atomic proportion of Pb from 34.5% to 25.0% compared with samples without iodine from XPS data, which result in the proportion of about 1:1 between Pb and Se atoms by sublimation of PbI2 during sensitization process, and Pb/Se atomic proportion is controlled by I/O atomic proportion in the polycrystalline grains, which is very an important factor for improving responsivity of uncooled PbSe photodetector. Moreover, a novel sensitization and dopant activation method is proposed using oxygen ion implantation with low ion energy of < 500eV and beam current of ~120μA/cm2. These results may be helpful to understanding the sensitization mechanism of polycrystalline lead salt materials.

Keywords: polycrystalline PbSe, sensitization, transport, stoichiometry

Procedia PDF Downloads 315
920 Formulation and Characterization of NaCS-PDMDAAC Capsules with Immobilized Chlorella vulgaris for Phycoremediation of Palm Oil Mill Effluent

Authors: Quin Emparan, Razif Harun, Dayang R. A. Biak, Rozita Omar, Michael K. Danquah

Abstract:

Cultivation of immobilized microalgae cells is on the rise for biotechnological applications. In this study, cultivation of Chlorella vulgaris was carried out in the form of suspended free-cell and immobilized cells system. NaCS-PDMDAAC capsules were used to immobilize C. vulgaris. Initially, the synthesized NaCS with C. vulgaris culture were prepared at various concentration of 5- 20% (w/v) using a 6% hardening solution (PDMDAAC) to investigate the capsules' gel stability and suitability for microalgae cells growth. Then, the capsules produced from 15% NaCS with C. vulgaris culture were furthered investigated using 5%, 10%, and 15% (w/v) of PDMDAAC solution. The capsules' gel stability was evaluated through dissolution time and loss of uniform spherical shape of capsules, while suitability for microalgae cells growth was evaluated through the optical density of microalgae. In this study, the 15% NaCS-10% PDMDAAC capsules were found to be the most suitable to sustain the capsules' gel stability and microalgae cells growth in MLA. For that reason, the C. vulgaris immobilized in the 15% NaCS-10% PDMDAAC capsules were further characterized using physicochemical analysis in terms of morphological, carbon (C), hydrogen (H) and nitrogen (N), Fourier transform-infrared (FT-IR), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), zeta potential and Brunauer-Emmet-Teller (BET) analyses. The results revealed that the presence of sulfonates in the synthesized NaCS and NaCS-PDMDAAC capsules without and with C. vulgaris proves that cellulose alcohol group was successfully bonded by sulfo group. Besides that, immobilized microalgae cells have a smaller cell size of 6.29 ± 1.09 µm and zeta potential of -11.93 ± 0.91 mV than suspended free-cells microalgae culture. It can be summarized that immobilization of C. vulgaris in the 15% NaCS-10% PDMDAAC capsules are relevant as a bioremediator for wastewater treatment purposes due to its suitable size of pore and capsules as well as structural and compositional properties.

Keywords: biological capsules, immobilized cultivation, microalgae, physico-chemical analysis

Procedia PDF Downloads 135
919 Comparison of Agree Method and Shortest Path Method for Determining the Flow Direction in Basin Morphometric Analysis: Case Study of Lower Tapi Basin, Western India

Authors: Jaypalsinh Parmar, Pintu Nakrani, Bhaumik Shah

Abstract:

Digital Elevation Model (DEM) is elevation data of the virtual grid on the ground. DEM can be used in application in GIS such as hydrological modelling, flood forecasting, morphometrical analysis and surveying etc.. For morphometrical analysis the stream flow network plays a very important role. DEM lacks accuracy and cannot match field data as it should for accurate results of morphometrical analysis. The present study focuses on comparing the Agree method and the conventional Shortest path method for finding out morphometric parameters in the flat region of the Lower Tapi Basin which is located in the western India. For the present study, open source SRTM (Shuttle Radar Topography Mission with 1 arc resolution) and toposheets issued by Survey of India (SOI) were used to determine the morphometric linear aspect such as stream order, number of stream, stream length, bifurcation ratio, mean stream length, mean bifurcation ratio, stream length ratio, length of overland flow, constant of channel maintenance and aerial aspect such as drainage density, stream frequency, drainage texture, form factor, circularity ratio, elongation ratio, shape factor and relief aspect such as relief ratio, gradient ratio and basin relief for 53 catchments of Lower Tapi Basin. Stream network was digitized from the available toposheets. Agree DEM was created by using the SRTM and stream network from the toposheets. The results obtained were used to demonstrate a comparison between the two methods in the flat areas.

Keywords: agree method, morphometric analysis, lower Tapi basin, shortest path method

Procedia PDF Downloads 209
918 Evaluation of IMERG Performance at Estimating the Rainfall Properties through Convective and Stratiform Rain Events in a Semi-Arid Region of Mexico

Authors: Eric Muñoz de la Torre, Julián González Trinidad, Efrén González Ramírez

Abstract:

Rain varies greatly in its duration, intensity, and spatial coverage, it is important to have sub-daily rainfall data for various applications, including risk prevention. However, the ground measurements are limited by the low and irregular density of rain gauges. An alternative to this problem are the Satellite Precipitation Products (SPPs) that use passive microwave and infrared sensors to estimate rainfall, as IMERG, however, these SPPs have to be validated before their application. The aim of this study is to evaluate the performance of the IMERG: Integrated Multi-satellitE Retrievals for Global Precipitation Measurament final run V06B SPP in a semi-arid region of Mexico, using 4 automatic rain gauges (pluviographs) sub-daily data of October 2019 and June to September 2021, using the Minimum inter-event Time (MIT) criterion to separate unique rain events with a dry period of 10 hrs. for the purpose of evaluating the rainfall properties (depth, duration and intensity). Point to pixel analysis, continuous, categorical, and volumetric statistical metrics were used. Results show that IMERG is capable to estimate the rainfall depth with a slight overestimation but is unable to identify the real duration and intensity of the rain events, showing large overestimations and underestimations, respectively. The study zone presented 80 to 85 % of convective rain events, the rest were stratiform rain events, classified by the depth magnitude variation of IMERG pixels and pluviographs. IMERG showed poorer performance at detecting the first ones but had a good performance at estimating stratiform rain events that are originated by Cold Fronts.

Keywords: IMERG, rainfall, rain gauge, remote sensing, statistical evaluation

Procedia PDF Downloads 36
917 Globally Convergent Sequential Linear Programming for Multi-Material Topology Optimization Using Ordered Solid Isotropic Material with Penalization Interpolation

Authors: Darwin Castillo Huamaní, Francisco A. M. Gomes

Abstract:

The aim of the multi-material topology optimization (MTO) is to obtain the optimal topology of structures composed by many materials, according to a given set of constraints and cost criteria. In this work, we seek the optimal distribution of materials in a domain, such that the flexibility of the structure is minimized, under certain boundary conditions and the intervention of external forces. In the case we have only one material, each point of the discretized domain is represented by two values from a function, where the value of the function is 1 if the element belongs to the structure or 0 if the element is empty. A common way to avoid the high computational cost of solving integer variable optimization problems is to adopt the Solid Isotropic Material with Penalization (SIMP) method. This method relies on the continuous interpolation function, power function, where the base variable represents a pseudo density at each point of domain. For proper exponent values, the SIMP method reduces intermediate densities, since values other than 0 or 1 usually does not have a physical meaning for the problem. Several extension of the SIMP method were proposed for the multi-material case. The one that we explore here is the ordered SIMP method, that has the advantage of not being based on the addition of variables to represent material selection, so the computational cost is independent of the number of materials considered. Although the number of variables is not increased by this algorithm, the optimization subproblems that are generated at each iteration cannot be solved by methods that rely on second derivatives, due to the cost of calculating the second derivatives. To overcome this, we apply a globally convergent version of the sequential linear programming method, which solves a linear approximation sequence of optimization problems.

Keywords: globally convergence, multi-material design ordered simp, sequential linear programming, topology optimization

Procedia PDF Downloads 279
916 A One-Dimensional Model for Contraction in Burn Wounds: A Sensitivity Analysis and a Feasibility Study

Authors: Ginger Egberts, Fred Vermolen, Paul van Zuijlen

Abstract:

One of the common complications in post-burn scars is contractions. Depending on the extent of contraction and the wound dimensions, the contracture can cause a limited range-of-motion of joints. A one-dimensional morphoelastic continuum hypothesis-based model describing post-burn scar contractions is considered. The beauty of the one-dimensional model is the speed; hence it quickly yields new results and, therefore, insight. This model describes the movement of the skin and the development of the strain present. Besides these mechanical components, the model also contains chemical components that play a major role in the wound healing process. These components are fibroblasts, myofibroblasts, the so-called signaling molecules, and collagen. The dermal layer is modeled as an isotropic morphoelastic solid, and pulling forces are generated by myofibroblasts. The solution to the model equations is approximated by the finite-element method using linear basis functions. One of the major challenges in biomechanical modeling is the estimation of parameter values. Therefore, this study provides a comprehensive description of skin mechanical parameter values and a sensitivity analysis. Further, since skin mechanical properties change with aging, it is important that the model is feasible for predicting the development of contraction in burn patients of different ages, and hence this study provides a feasibility study. The variability in the solutions is caused by varying the values for some parameters simultaneously over the domain of computation, for which the results of the sensitivity analysis are used. The sensitivity analysis shows that the most sensitive parameters are the equilibrium concentration of collagen, the apoptosis rate of fibroblasts and myofibroblasts, and the secretion rate of signaling molecules. This suggests that most of the variability in the evolution of contraction in burns in patients of different ages might be caused mostly by the decreasing equilibrium of collagen concentration. As expected, the feasibility study shows this model can be used to show distinct extents of contractions in burns in patients of different ages. Nevertheless, contraction formation in children differs from contraction formation in adults because of the growth. This factor has not been incorporated in the model yet, and therefore the feasibility results for children differ from what is seen in the clinic.

Keywords: biomechanics, burns, feasibility, fibroblasts, morphoelasticity, sensitivity analysis, skin mechanics, wound contraction

Procedia PDF Downloads 123
915 Estimating Water Balance at Beterou Watershed, Benin Using Soil and Water Assessment Tool (SWAT) Model

Authors: Ella Sèdé Maforikan

Abstract:

Sustained water management requires quantitative information and the knowledge of spatiotemporal dynamics of hydrological system within the basin. This can be achieved through the research. Several studies have investigated both surface water and groundwater in Beterou catchment. However, there are few published papers on the application of the SWAT modeling in Beterou catchment. The objective of this study was to evaluate the performance of SWAT to simulate the water balance within the watershed. The inputs data consist of digital elevation model, land use maps, soil map, climatic data and discharge records. The model was calibrated and validated using the Sequential Uncertainty Fitting (SUFI2) approach. The calibrated started from 1989 to 2006 with four years warming up period (1985-1988); and validation was from 2007 to 2020. The goodness of the model was assessed using five indices, i.e., Nash–Sutcliffe efficiency (NSE), the ratio of the root means square error to the standard deviation of measured data (RSR), percent bias (PBIAS), the coefficient of determination (R²), and Kling Gupta efficiency (KGE). Results showed that SWAT model successfully simulated river flow in Beterou catchment with NSE = 0.79, R2 = 0.80 and KGE= 0.83 for the calibration process against validation process that provides NSE = 0.78, R2 = 0.78 and KGE= 0.85 using site-based streamflow data. The relative error (PBIAS) ranges from -12.2% to 3.1%. The parameters runoff curve number (CN2), Moist Bulk Density (SOL_BD), Base Flow Alpha Factor (ALPHA_BF), and the available water capacity of the soil layer (SOL_AWC) were the most sensitive parameter. The study provides further research with uncertainty analysis and recommendations for model improvement and provision of an efficient means to improve rainfall and discharges measurement data.

Keywords: watershed, water balance, SWAT modeling, Beterou

Procedia PDF Downloads 29
914 A Comparative Study on Fish Raised with Feed Formulated with Various Organic Wastes and Commercial Feed

Authors: Charles Chijioke Dike, Hugh Clifford Chima Maduka, Chinwe A. Isibor

Abstract:

Fish is among the products consumed at a very high rate. In most countries of the world, fish are used as part of the daily meal. The high cost of commercial fish feeds in Africa has made it necessary the development of an alternative source of fish feed processing from organic waste. The objective of this research is to investigate the efficacy of fish feeds processed from various animal wastes in order to know whether those feeds shall be alternatives to commercial feeds. This work shall be carried out at the Research Laboratory Unit of the Department of Human Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Nnamdi Azikiwe University (NAU), Nnewi Campus, Anambra State. The fingerlings to be used shall be gotten from the Agricultural Department of NAU, Awka, Anambra State, and allowed to acclimatize for 14 d. Animal and food wastes shall be gotten from Nnewi. The fish shall be grouped into 1-13 (Chicken manure only, cow dung only, pig manure only, chicken manure + yeast, cow dung + yeast, pig manure + yeast, chicken manure + other wastes + yeast, cow dung + other wastes + yeast, and pig manure + other wastes + yeast. Feed assessment shall be carried out by determining bulk density, feed water absorption, feed hardness, feed oil absorption, and feed water stability. The nutritional analysis shall be carried out on the feeds processed. The risk assessment shall be done on the fish by determining methylmercury (MeHg), polycyclic aromatic hydrocarbons (PAHs), and dichloro-diphenyl-trichloroethane (DDT) in the fish. The results from this study shall be analyzed statistically using SPSS statistical software, version 25. The hypothesis is that fish feeds processed from animal wastes are efficient in raising catfish. The outcome of this study shall provide the basis for the formulation of fish feeds from organic wastes.

Keywords: assessment, feeds, health risk, wastes

Procedia PDF Downloads 69
913 Human Rabies Survivors in India: Epidemiological, Immunological and Virological Studies

Authors: Madhusudana S. N., Reeta Mani, Ashwini S. Satishchandra P., Netravati, Udhani V., Fiaz A., Karande S.

Abstract:

Rabies is an acute encephalitis which is considered 100% fatal despite occasional reports of survivors. However, in recent times more cases of human rabies survivors are being reported. In the last 5 years, there are six laboratories confirmed human rabies survivors in India alone. All cases were children below 15 years and all contracted the disease by dog bites. All of them also had received the full or partial course of rabies vaccination and 4 out of 6 had also received rabies immunoglobulin. All cases were treated in intensive care units in hospitals at Bangalore, Mumbai, Chandigarh, Lucknow and Goa. We report here the results of immunological and virological studies conducted at our laboratory on these patients. The clinical samples that were obtained from these patients were Serum, CSF, nuchal skin biopsy and saliva. Serum and CSF samples were subjected to standard RFFIT for estimation of rabies neutralizing antibodies. Skin biopsy, CSF and saliva were processed by TaqMan real-time PCR for detection of viral RNA. CSF, saliva and skin homogenates were also processed for virus isolation by inoculation of suckling mice. The PBMCs isolated from fresh blood was subjected to ELISPOT assay to determine the type of immune response (Th1/Th2). Both CSF and serum were also investigated for selected cytokines by Luminex assay. The level of antibodies to virus G protein and N protein were determined by ELISA. All survivors had very high titers of RVNA in serum and CSF 100 fold higher than non-survivors and vaccine controls. A five-fold rise in titer could be demonstrated in 4 out of 6 patients. All survivors had a significant increase in antibodies to G protein in both CSF and serum when compared to non-survivors. There was a profound and robust Th1 response in all survivors indicating that interferon gamma could play an important factor in virus clearance. We could isolate viral RNA in only one patient four years after he had developed symptoms. The partial N gene sequencing revealed 99% homology to species I strain prevalent in India. Levels of selected cytokines in CSF and serum did not reveal any difference between survivors and non-survivors. To conclude, survival from rabies is mediated by virus-specific immune responses of the host and clearance of rabies virus from CNS may involve the participation of both Th2 and Th1 immune responses.

Keywords: rabies, rabies treatment, rabies survivors, immune reponse in rabies encephalitis

Procedia PDF Downloads 296
912 Towards a Doughnut Economy: The Role of Institutional Failure

Authors: Ghada El-Husseiny, Dina Yousri, Christian Richter

Abstract:

Social services are often characterized by market failures, which justifies government intervention in the provision of these services. It is widely acknowledged that government intervention breeds corruption since resources are being transferred from one party to another. However, what is still being extensively studied is the magnitude of the negative impact of corruption on publicly provided services and development outcomes. Corruption has the power to hinder development and cripple our march towards the Sustainable Development Goals. Corruption diminishes the efficiency and effectiveness of public health and education spending and directly impacts the outcomes of these sectors. This paper empirically examines the impact of Institutional Failure on public sector services provision, with the sole purpose of studying the impact of corruption on SDG3 and 4; Good health and wellbeing and Quality education, respectively. The paper explores the effect of corruption on these goals from various perspectives and extends the analysis by examining if the impact of corruption on these goals differed when it accounted for the current corruption state. Using Pooled OLS(Ordinary Least Square) and Fixed effects panel estimation on 22 corrupt and 22 clean countries between 2000 and 2017. Results show that corruption in both corrupt and clean countries has a more severe impact on Health than the Education sector. In almost all specifications, corruption has an insignificant effect on School Enrollment rates but a significant effect on Infant Mortality rates. Results further indicate that, on average, a 1 point increase in the CPI(Consumer Price Index) can increase health expenditures by 0.116% in corrupt and clean countries. However, the fixed effects model indicates that the way Health and Education expenditures are determined in clean and corrupt countries are completely country-specific, in which corruption plays a minimal role. Moreover, the findings show that School Enrollment rates and Infant Mortality rates depend, to a large extent, on public spending. The most astounding results-driven is that corrupt countries, on average, have more effective and efficient healthcare expenditures. While some insights are provided as to why these results prevail, they should be further researched. All in all, corruption impedes development outcomes, and any Anti-corrupt policies taken will bring forth immense improvements and speed up the march towards sustainability.

Keywords: corruption, education, health, public spending, sustainable development

Procedia PDF Downloads 140
911 Assessing the Accessibility to Primary Percutaneous Coronary Intervention

Authors: Tzu-Jung Tseng, Pei-Hsuen Han, Tsung-Hsueh Lu

Abstract:

Background: Ensuring patients with ST-elevation myocardial infarction (STEMI) access to hospitals that could perform percutaneous coronary intervention (PCI) in time is an important concern of healthcare managers. One commonly used the method to assess the coverage of population access to PCI hospital is the use GIS-estimated linear distance (crow's fly distance) between the district centroid and the nearest PCI hospital. If the distance is within a given distance (such as 20 km), the entire population of that district is considered to have appropriate access to PCI. The premise of using district centroid to estimate the coverage of population resident in that district is that the people live in the district are evenly distributed. In reality, the population density is not evenly distributed within the administrative district, especially in rural districts. Fortunately, the Taiwan government released basic statistical area (on average 450 population within the area) recently, which provide us an opportunity to estimate the coverage of population access to PCI services more accurate. Objectives: We aimed in this study to compare the population covered by a give PCI hospital according to traditional administrative district versus basic statistical area. We further examined if the differences between two geographic units used would be larger in a rural area than in urban area. Method: We selected two hospitals in Tainan City for this analysis. Hospital A is in urban area, hospital B is in rural area. The population in each traditional administrative district and basic statistical area are obtained from Taiwan National Geographic Information System, Ministry of Internal Affairs. Results: Estimated population live within 20 km of hospital A and B was 1,515,846 and 323,472 according to traditional administrative district and was 1,506,325 and 428,556 according to basic statistical area. Conclusion: In urban area, the estimated access population to PCI services was similar between two geographic units. However, in rural areas, the access population would be overestimated.

Keywords: accessibility, basic statistical area, modifiable areal unit problem (MAUP), percutaneous coronary intervention (PCI)

Procedia PDF Downloads 430
910 Strategies for a Sustainable Neighbourhood in a Smart City: A Case of Pattoor, Thiruvananthapuram

Authors: Vijaya Nhaloor, Suja Kumari Leela, Jose Devadasan

Abstract:

Planning of neighbourhood development strategies in Tier 2 Indian city is highly significant when it has also been selected as a Smart city by the Ministry of Urban Development in India. Smart city mission of India proposes the development of infrastructure in a city in an inclusive way. Thiruvananthapuram, the capital city of Kerala state, India, has been selected as the city to conduct the research. The master plan for the city of Thiruvananthapuram envisions it as a Compact city and proposes densification as a tool for development. Densification may adversely affect the quality of life after a tipping point. This may lead to urban decay which in turn directly or indirectly affects the surrounding neighbourhoods also, thus spreading blight areas in the city. The author thinks that density in urban planning is not a well detailed subject in India, with respect to its varied links on infrastructure, quality of life, transportation, scope of vertical planning, affordability etc. Neighbourhoods are vital tissues of an urban area, and their development directly affects the development of the region. The methodology would involve skimming of proactive neighbourhood planning principles compatible with the Smart city mission in India. United Nations proposes sustainability as a way of planning development of a neighbourhood. After defining various terminologies involved, a framework shall be developed to analyse an existing neighbourhood and prepare planning guidelines in a sustainable manner. The framework shall comply with international and national policy guidelines. The research shall explore and identify a neighbourhood with the potential to meet the housing demand from the investment regions nearby and analyse its potential and weakness as per this framework. Later, a set of indicators shall be enlisted to guide the development of the neighbourhood, leading to recommendations that shall serve as a replicable model for the other neighbourhoods in the Smart city.

Keywords: key indicators, neighbourhood planning, sustainability, smart city

Procedia PDF Downloads 117
909 Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor

Authors: Edison E. Haro, Akindele G. Odeshi, Jerzy A. Szpunar

Abstract:

Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.

Keywords: hybrid bio-composites, organic nano-fillers, dynamic shocking loading, ballistic impacts, energy absorption

Procedia PDF Downloads 89
908 Development of Market Penetration for High Energy Efficiency Technologies in Alberta’s Residential Sector

Authors: Saeidreza Radpour, Md. Alam Mondal, Amit Kumar

Abstract:

Market penetration of high energy efficiency technologies has key impacts on energy consumption and GHG mitigation. Also, it will be useful to manage the policies formulated by public or private organizations to achieve energy or environmental targets. Energy intensity in residential sector of Alberta was 148.8 GJ per household in 2012 which is 39% more than the average of Canada 106.6 GJ, it was the highest amount among the provinces on per household energy consumption. Energy intensity by appliances of Alberta was 15.3 GJ per household in 2012 which is 14% higher than average value of other provinces and territories in energy demand intensity by appliances in Canada. In this research, a framework has been developed to analyze the market penetration and market share of high energy efficiency technologies in residential sector. The overall methodology was based on development of data-intensive models’ estimation of the market penetration of the appliances in the residential sector over a time period. The developed models were a function of a number of macroeconomic and technical parameters. Developed mathematical equations were developed based on twenty-two years of historical data (1990-2011). The models were analyzed through a series of statistical tests. The market shares of high efficiency appliances were estimated based on the related variables such as capital and operating costs, discount rate, appliance’s life time, annual interest rate, incentives and maximum achievable efficiency in the period of 2015 to 2050. Results show that the market penetration of refrigerators is higher than that of other appliances. The stocks of refrigerators per household are anticipated to increase from 1.28 in 2012 to 1.314 and 1.328 in 2030 and 2050, respectively. Modelling results show that the market penetration rate of stand-alone freezers will decrease between 2012 and 2050. Freezer stock per household will decline from 0.634 in 2012 to 0.556 and 0.515 in 2030 and 2050, respectively. The stock of dishwashers per household is expected to increase from 0.761 in 2012 to 0.865 and 0.960 in 2030 and 2050, respectively. The increase in the market penetration rate of clothes washers and clothes dryers is nearly parallel. The stock of clothes washers and clothes dryers per household is expected to rise from 0.893 and 0.979 in 2012 to 0.960 and 1.0 in 2050, respectively. This proposed presentation will include detailed discussion on the modelling methodology and results.

Keywords: appliances efficiency improvement, energy star, market penetration, residential sector

Procedia PDF Downloads 258
907 Time Estimation of Return to Sports Based on Classification of Health Levels of Anterior Cruciate Ligament Using a Convolutional Neural Network after Reconstruction Surgery

Authors: Zeinab Jafari A., Ali Sharifnezhad B., Mohammad Razi C., Mohammad Haghpanahi D., Arash Maghsoudi

Abstract:

Background and Objective: Sports-related rupture of the anterior cruciate ligament (ACL) and following injuries have been associated with various disorders, such as long-lasting changes in muscle activation patterns in athletes, which might last after ACL reconstruction (ACLR). The rupture of the ACL might result in abnormal patterns of movement execution, extending the treatment period and delaying athletes’ return to sports (RTS). As ACL injury is especially prevalent among athletes, the lengthy treatment process and athletes’ absence from sports are of great concern to athletes and coaches. Thus, estimating safe time of RTS is of crucial importance. Therefore, using a deep neural network (DNN) to classify the health levels of ACL in injured athletes, this study aimed to estimate the safe time for athletes to return to competitions. Methods: Ten athletes with ACLR and fourteen healthy controls participated in this study. Three health levels of ACL were defined: healthy, six-month post-ACLR surgery and nine-month post-ACLR surgery. Athletes with ACLR were tested six and nine months after the ACLR surgery. During the course of this study, surface electromyography (sEMG) signals were recorded from five knee muscles, namely Rectus Femoris (RF), Vastus Lateralis (VL), Vastus Medialis (VM), Biceps Femoris (BF), Semitendinosus (ST), during single-leg drop landing (SLDL) and forward hopping (SLFH) tasks. The Pseudo-Wigner-Ville distribution (PWVD) was used to produce three-dimensional (3-D) images of the energy distribution patterns of sEMG signals. Then, these 3-D images were converted to two-dimensional (2-D) images implementing the heat mapping technique, which were then fed to a deep convolutional neural network (DCNN). Results: In this study, we estimated the safe time of RTS by designing a DCNN classifier with an accuracy of 90 %, which could classify ACL into three health levels. Discussion: The findings of this study demonstrate the potential of the DCNN classification technique using sEMG signals in estimating RTS time, which will assist in evaluating the recovery process of ACLR in athletes.

Keywords: anterior cruciate ligament reconstruction, return to sports, surface electromyography, deep convolutional neural network

Procedia PDF Downloads 47
906 Potentiodynamic Polarization Behavior of Surface Mechanical Attrition Treated AA7075

Authors: Vaibhav Pandey, K. Chattopadhyay, N. C. Santhi Srinivas, Vakil Singh

Abstract:

Aluminium alloy 7075 consist of different intermetallic precipitate particles MgZn2, CuAl2, which result in heterogeneity of micro structure and influence the corrosion properties of the alloy. Artificial ageing was found to enhance the strength properties, but highly susceptible to stress-corrosion cracking. Various conventional surface modification techniques are developed for improving corrosion properties of aluminum alloys. This led to development of novel surface mechanical attrition treatment (SMAT) technique the so called ultrasonic shot peening which gives nano-grain structure at surface. In the present investigation the influence of surface mechanical attrition treatment on corrosion behavior of aluminum alloy 7075 was studied in 3.5wt% NaCl solution. Two different size of 1 mm and 3 mm steel balls are used as peening media and SMAT was carried out for different time intervals 5, 15 and 30 minutes. Surface nano-grains/nano-crystallization was observed after SMAT. The formation of nano-grain structure was observed for larger size balls with time of treatment and consequent increase in micro strain. As-SMATed sample with 1 mm balls exhibits better corrosion resistance as compared to that of un-SMATed sample. The enhancement in corrosion resistance may be due to formation of surface nano-grain structure which reduced the electron release rate. In contrast the samples treated with 3 mm balls showed very poor corrosion resistance. A decrease in corrosion resistance was observed with increase in the time of peening. The decrease in corrosion resistance in the shotpeened samples with larger diameter balls may due to increase in microstrain and defect density.

Keywords: aluminum alloy 7075, corrosion, SMAT, ultrasonic shot peening, surface nano-grains

Procedia PDF Downloads 412
905 Soil Bioremediation Monitoring Systems Powered by Microbial Fuel Cells

Authors: András Fülöp, Lejla Heilmann, Zsolt Szabó, Ákos Koós

Abstract:

Microbial fuel cells (MFCs) present a sustainable biotechnological solution to future energy demands. The aim of this study was to construct soil based, single cell, membrane-less MFC systems, operated without treatment to continuously power on-site monitoring and control systems during the soil bioremediation processes. Our Pseudomonas aeruginosa 541 isolate is an ideal choice for MFCs, because it is able to produce pyocyanin which behaves as electron-shuttle molecule, furthermore, it also has a significant antimicrobial effect. We tested several materials and structural configurations to obtain long term high power output. Comparing different configurations, a proton exchange membrane-less, 0.6 m long with 0.05 m diameter MFC tubes offered the best long-term performances. The long-term electricity production were tested from starch, yeast extract (YE), carboxymethyl cellulose (CMC) with humic acid (HA) as a mediator. In all cases, 3 kΩ external load have been used. The two best-operated systems were the Pseudomonas aeruginosa 541 containing MFCs with 1 % carboxymethyl cellulose and the MFCs with 1% yeast extract in the anode area and 35% hydrogel in the cathode chamber. The first had 3.3 ± 0.033 mW/m2 and the second had 4.1 ± 0.065 mW/m2 power density values. These systems have operated for 230 days without any treatment. The addition of 0.2 % HA and 1 % YE referred to the volume of the anode area resulted in 1.4 ± 0.035 mW/m2 power densities. The mixture of 1% starch with 0.2 % HA gave 1.82 ± 0.031 mW/m2. Using CMC as retard carbon source takes effect in the long-term bacterial survivor, thus enable the expression of the long term power output. The application of hydrogels in the cathode chamber significantly increased the performance of the MFC units due to their good water retention capacity.

Keywords: microbial fuel cell, bioremediation, Pseudomonas aeruginosa, biotechnological solution

Procedia PDF Downloads 264
904 High Altitude Glacier Surface Mapping in Dhauliganga Basin of Himalayan Environment Using Remote Sensing Technique

Authors: Aayushi Pandey, Manoj Kumar Pandey, Ashutosh Tiwari, Kireet Kumar

Abstract:

Glaciers play an important role in climate change and are sensitive phenomena of global climate change scenario. Glaciers in Himalayas are unique as they are predominantly valley type and are located in tropical, high altitude regions. These glaciers are often covered with debris which greatly affects ablation rate of glaciers and work as a sensitive indicator of glacier health. The aim of this study is to map high altitude Glacier surface with a focus on glacial lake and debris estimation using different techniques in Nagling glacier of dhauliganga basin in Himalayan region. Different Image Classification techniques i.e. thresholding on different band ratios and supervised classification using maximum likelihood classifier (MLC) have been used on high resolution sentinel 2A level 1c satellite imagery of 14 October 2017.Here Near Infrared (NIR)/Shortwave Infrared (SWIR) ratio image was used to extract the glaciated classes (Snow, Ice, Ice Mixed Debris) from other non-glaciated terrain classes. SWIR/BLUE Ratio Image was used to map valley rock and Debris while Green/NIR ratio image was found most suitable for mapping Glacial Lake. Accuracy assessment was performed using high resolution (3 meters) Planetscope Imagery using 60 stratified random points. The overall accuracy of MLC was 85 % while the accuracy of Band Ratios was 96.66 %. According to Band Ratio technique total areal extent of glaciated classes (Snow, Ice ,IMD) in Nagling glacier was 10.70 km2 nearly 38.07% of study area comprising of 30.87 % Snow covered area, 3.93% Ice and 3.27 % IMD covered area. Non-glaciated classes (vegetation, glacial lake, debris and valley rock) covered 61.93 % of the total area out of which valley rock is dominant with 33.83% coverage followed by debris covering 27.7 % of the area in nagling glacier. Glacial lake and Debris were accurately mapped using Band ratio technique Hence, Band Ratio approach appears to be useful for the mapping of debris covered glacier in Himalayan Region.

Keywords: band ratio, Dhauliganga basin, glacier mapping, Himalayan region, maximum likelihood classifier (MLC), Sentinel-2 satellite image

Procedia PDF Downloads 202
903 Effect of Microstructure and Texture of Magnesium Alloy Due to Addition of Pb

Authors: Yebeen Ji, Jimin Yun, Kwonhoo Kim

Abstract:

Magnesium alloys were limited for industrial applications due to having a limited slip system and high plastic anisotropy. It has been known that specific textures were formed during processing (rolling, etc.), and These textures cause poor formability. To solve these problems, many researchers have studied controlling texture by adding rare-earth elements. However, the high cost limits their use; therefore, alternatives are needed to replace them. Although Pb addition doesn’t directly improve magnesium properties, it has been known to suppress the diffusion of other alloying elements and reduce grain boundary energy. These characteristics are similar to the additions of rare-earth elements, and a similar texture behavior is expected as well. However, there is insufficient research on this. Therefore, this study investigates the behavior of texture and microstructure development after adding Pb to magnesium. This study compared and analyzed AZ61 alloy and Mg-15wt%Pb alloy to determine the effect of adding solute elements. The alloy was hot rolled and annealed to form a single phase and initial texture. Afterward, the specimen was set to contraction and elongate parallel to the rolling surface and the rolling direction and then subjected to high-temperature plane strain compression under the conditions of 723K and 0.05/s. Microstructural analysis and texture measurements were performed by SEM-EBSD. The peak stress in the true strain-stress curve after compression was higher in AZ61, but the shape of the flow curve was similar for both alloys. For both alloys, continuous dynamic recrystallization was confirmed to occur during the compression process. The basal texture developed parallel to the compressed surface, and the pole density was lower in the Mg-15wt%Pb alloy. It is confirmed that this change in behavior is because the orientation distribution of recrystallized grains has a more random orientation compared to the parent grains when Pb is added.

Keywords: Mg, texture, Pb, DRX

Procedia PDF Downloads 24
902 Optimal Pricing Based on Real Estate Demand Data

Authors: Vanessa Kummer, Maik Meusel

Abstract:

Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.

Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning

Procedia PDF Downloads 259
901 A Comparative Study of Sampling-Based Uncertainty Propagation with First Order Error Analysis and Percentile-Based Optimization

Authors: M. Gulam Kibria, Shourav Ahmed, Kais Zaman

Abstract:

In system analysis, the information on the uncertain input variables cause uncertainty in the system responses. Different probabilistic approaches for uncertainty representation and propagation in such cases exist in the literature. Different uncertainty representation approaches result in different outputs. Some of the approaches might result in a better estimation of system response than the other approaches. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) has posed challenges about uncertainty quantification. Subproblem A, the uncertainty characterization subproblem, of the challenge posed is addressed in this study. In this subproblem, the challenge is to gather knowledge about unknown model inputs which have inherent aleatory and epistemic uncertainties in them with responses (output) of the given computational model. We use two different methodologies to approach the problem. In the first methodology we use sampling-based uncertainty propagation with first order error analysis. In the other approach we place emphasis on the use of Percentile-Based Optimization (PBO). The NASA Langley MUQC’s subproblem A is developed in such a way that both aleatory and epistemic uncertainties need to be managed. The challenge problem classifies each uncertain parameter as belonging to one the following three types: (i) An aleatory uncertainty modeled as a random variable. It has a fixed functional form and known coefficients. This uncertainty cannot be reduced. (ii) An epistemic uncertainty modeled as a fixed but poorly known physical quantity that lies within a given interval. This uncertainty is reducible. (iii) A parameter might be aleatory but sufficient data might not be available to adequately model it as a single random variable. For example, the parameters of a normal variable, e.g., the mean and standard deviation, might not be precisely known but could be assumed to lie within some intervals. It results in a distributional p-box having the physical parameter with an aleatory uncertainty, but the parameters prescribing its mathematical model are subjected to epistemic uncertainties. Each of the parameters of the random variable is an unknown element of a known interval. This uncertainty is reducible. From the study, it is observed that due to practical limitations or computational expense, the sampling is not exhaustive in sampling-based methodology. That is why the sampling-based methodology has high probability of underestimating the output bounds. Therefore, an optimization-based strategy to convert uncertainty described by interval data into a probabilistic framework is necessary. This is achieved in this study by using PBO.

Keywords: aleatory uncertainty, epistemic uncertainty, first order error analysis, uncertainty quantification, percentile-based optimization

Procedia PDF Downloads 208
900 Effect of Silica Fume at Cellular Sprayed Concrete

Authors: Kyong-Ku Yun, Seung-Yeon Han, Kyeo-Re Lee

Abstract:

Silica fume which is a super-fine byproduct of ferrosilicon or silicon metal has a filling effect on micro-air voids or a transition zone in a hardened cement paste by appropriate mixing, placement, and curing. It, also, has a Pozzolan reaction which enhances the interior density of the hydrated cement paste through a formation of calcium silicate hydroxide. When substituting cement with silica fume, it improves water tightness and durability by filling effect and Pozzolan reaction. However, it needs high range water reducer or super-plasticizer to distribute silica fume into a concrete because of its finesses and high specific surface area. In order to distribute into concrete evenly, cement manufacturers make a pre-blended cement of silica fume and provide to a market. However, a special mixing procedures and another transportation charge another cost and this result in a high price of pre-blended cement of silica fume. The purpose of this dissertation was to investigate the dispersion of silica fume by air slurry and its effect on the mechanical properties of at ready-mixed concrete. The results are as follows: A dispersion effect of silica fume was measured from an analysis of standard deviation for compressive strength test results. It showed that the standard deviation decreased as the air bubble content increased, which means that the dispersion became better as the air bubble content increased. The test result of rapid chloride permeability test showed that permeability resistance increased as the percentages of silica fume increased, but the permeability resistance decreased as the quantity of mixing air bubble increased. The image analysis showed that a spacing factor decreased and a specific surface area increased as the quantity of mixing air bubble increased.

Keywords: cellular sprayed concrete, silica fume, deviation, permeability

Procedia PDF Downloads 113