Search results for: cross-linked enzyme aggregates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1256

Search results for: cross-linked enzyme aggregates

1166 Eresa, Hospital General Universitario de Elche

Authors: Ashish Kumar Singh, Mehak Gulati, Neelam Verma

Abstract:

Arginine majorly acts as a substrate for the enzyme nitric oxide synthase (NOS) for the production of nitric oxide, a strong vasodilator. Current study demonstrated a novel amperometric approach for estimation of arginine using nitric oxide synthase. The enzyme was co-immobilized in carbon paste electrode with NADP+, FAD and BH4 as cofactors. The detection principle of the biosensor is enzyme NOS catalyzes the conversion of arginine into nitric oxide. The developed biosensor could able to detect up to 10-9M of arginine. The oxidation peak of NO was observed at 0.65V. The developed arginine biosensor was used to monitor arginine content in fruit juices.

Keywords: arginine, biosensor, carbon paste elctrode, nitric oxide

Procedia PDF Downloads 390
1165 Experimental Investigation of the Effect of Glass Granulated Blast Furnace Slag on Pavement Quality Concrete Pavement Made of Recycled Asphalt Pavement Material

Authors: Imran Altaf Wasil, Dinesh Ganvir

Abstract:

Due to a scarcity of virgin aggregates, the use of reclaimed asphalt pavement (RAP) as a substitute for natural aggregates has gained popularity. Despite the fact that RAP is recycled in asphalt pavement, there is still excess RAP, and its use in concrete pavements has expanded in recent years. According to a survey, 98 percent of India's pavements are flexible. As a result, the maintenance and reconstruction of such pavements generate RAP, which can be reused in concrete pavements as well as surface course, base course, and sub-base of flexible pavements. Various studies on the properties of reclaimed asphalt pavement and its optimal requirements for usage in concrete has been conducted throughout the years. In this study a total of four different mixes were prepared by partially replacing natural aggregates by RAP in different proportions. It was found that with the increase in the replacement level of Natural aggregates by RAP the mechanical and durability properties got reduced. In order to increase the mechanical strength of mixes 40% Glass Granulated Blast Furnace Slag (GGBS) was used and it was found that with replacement of cement by 40% of GGBS, there was an enhancement in the mechanical and durability properties of RAP inclusive PQC mixes. The reason behind the improvement in the properties is due to the processing technique used in order to remove the contaminant layers present in the coarse RAP aggregates. The replacement level of Natural aggregate with RAP was done in proportions of 20%, 40% and 60% along with the partial replacement of cement by 40% GGBS. It was found that all the mixes surpassed the design target value of 40 MPa in compression and 4.5 MPa in flexure making it much more economical and feasible.

Keywords: reclaimed asphalt pavement, pavement quality concrete, glass granulated blast furnace slag, mechanical and durability properties

Procedia PDF Downloads 83
1164 Using Construction Wastes and Recyclable Materials in Sustainable Concrete Manufacture

Authors: Mohamed T. El-Hawary, Carsten Koenke, Amr M. El-Nemr, Nagy F. Hanna

Abstract:

Sustainable construction materials using solid construction wastes are of great environmental and economic significance. Construction wastes, demolishing wastes, and wastes coming out from the preparation of traditional materials could be used in sustainable concrete manufacture, which is the main scope of this paper. Ceramics, clay bricks, marble, recycled concrete, and many other materials should be tested and validated for use in the manufacture of green concrete. Introducing waste materials in concrete helps in reducing the required landfills, leaving more space for land investments, and decrease the environmental impact of the concrete buildings industry in both stages -construction and demolition-. In this paper, marble aggregate is used as a replacement for the natural aggregate in sustainable green concrete production. The results showed that marble aggregates can be used as a full replacement for the natural aggregates in eco-friendly green concrete.

Keywords: coarse aggregate replacement, economical designs, green concrete, marble aggregates, sustainability, waste management

Procedia PDF Downloads 113
1163 Applied Mathematical Approach on “Baut” Special High Performance Metal Aggregate by Formulation and Equations

Authors: J. R. Bhalla, Gautam, Gurcharan Singh, Sanjeev Naval

Abstract:

Mathematics is everywhere behind the every things on the earth as well as in the universe. Predynastic Egyptians of the 5th millennium BC pictorially represented geometric designs. Now a day’s we can made and apply an equation on a complex geometry through applied mathematics. Here we work and focus on to create a formula which apply in the field of civil engineering in new concrete technology. In this paper our target is to make a formula which is applied on “BAUT” Metal Aggregate. In this paper our approach is to make formulation and equation on special “BAUT” Metal Aggregate by Applied Mathematical Study Case 1. BASIC PHYSICAL FORMULATION 2. ADVANCE EQUATION which shows the mechanical performance of special metal aggregates for concrete technology. In case 1. Basic physical formulation shows the surface area and volume manually and in case 2. Advance equation shows the mechanical performance has been discussed, the metal aggregates which had outstandingly qualities to resist shear, tension and compression forces. In this paper coarse metal aggregates is 20 mm which used for making high performance concrete (H.P.C).

Keywords: applied mathematical study case, special metal aggregates, concrete technology, basic physical formulation, advance equation

Procedia PDF Downloads 339
1162 Investigation into the Suitability of Aggregates for Use in Superpave Design Method

Authors: Ahmad Idris, Armaya`u Suleiman Labo, Ado Yusuf Abdulfatah, Murtala Umar

Abstract:

Super pave is the short form of Superior Performing Asphalt Pavement and represents a basis for specifying component materials, asphalt mixture design and analysis, and pavement performance prediction. This new technology is the result of long research projects conducted by the strategic Highway Research program (SHRP) of the Federal Highway Administration. This research was aimed at examining the suitability of Aggregates found in Kano for used in super pave design method. Aggregates samples were collected from different sources in Kano Nigeria and their Engineering properties, as they relate to the SUPERPAVE design requirements were determined. The average result of Coarse Aggregate Angularity in Kano was found to be 87% and 86% of one fractured face and two or more fractured faces respectively with a standard of 80% and 85% respectively. Fine Aggregate Angularity average result was found to be 47% with a requirement of 45% minimum. A flat and elongated particle which was found to be 10% has a maximum criterion of 10%. Sand equivalent was found to be 51% with the criteria of 45% minimum. Strength tests were also carried out, and the results reflect the requirements of the standards. The tests include Impact value test, Aggregate crushing value and Aggregate Abrasion tests and the results are 27.5%, 26.7% and 13% respectively with a maximum criteria of 30%. Specific gravity was also carried out and the result was found to have an average value of 2.52 with a criterion of 2.6 to 2.9 and Water absorption was found to be 1.41% with maximum criteria of 0.6%. From the study, the result of the tests indicated that the aggregates properties have met the requirements of Super pave design method based on the specifications of ASTMD 5821, ASTM D 4791, AASHTO T176, AASHTO T33 and BS815.

Keywords: aggregates, construction, road design, super pave

Procedia PDF Downloads 214
1161 The Effect of a Muscarinic Antagonist on the Lipase Activity

Authors: Zohreh Bayat, Dariush Minai-Tehrani

Abstract:

Lipases constitute one of the most important groups of industrial enzymes that catalyze the hydrolysis of triacylglycerol to glycerol and fatty acids. Muscarinic antagonist relieves smooth muscle spasm of the gastrointestinal tract and effect on the cardiovascular system. In this research, the effect of a muscarinic antagonist on the lipase activity of Pseudomonas aeruginosa was studied. Lineweaver–Burk plot showed that the drug inhibited the enzyme by competitive inhibition. The IC50 value (60 uM) and Ki (30 uM) of the drug revealed the drug bound to the enzyme with high affinity. Determination of enzyme activity in various pH and temperature showed that the maximum activity of lipase was at pH 8 and 60°C both in presence and absence of the drug.

Keywords: bacteria, inhibition, kinetics, lipase

Procedia PDF Downloads 423
1160 Assessment of Diagnostic Enzymes as Indices of Heavy Metal Pollution in Tilapia Fish

Authors: Justina I. R. Udotong, Essien U. Essien

Abstract:

Diagnostic enzymes like aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) were determined as indices of heavy metal pollution in Tilapia guinensis. Three different sets of fishes treated with lead (Pb), iron (Fe) and copper (Cu) were used for the study while a fourth group with no heavy metal served as a control. Fishes in each of the groups were exposed to 2.65 mg/l of Pb, 0.85 mg/l of Fe and 0.35 mg/l of Cu in aerated aquaria for 96 hours. Tissue fractionation of the liver tissues was carried out and the three diagnostic enzymes (AST, ALT, and ALP) were estimated. Serum levels of the same diagnostic enzymes were also measured. The mean values of the serum enzyme activity for ALP in each experimental group were 19.5±1.62, 29.67±2.17 and 1.15±0.27 IU/L for Pb, Fe and Cu groups compared with 9.99±1.34 IU/L enzyme activity in the control. This result showed that Pb and Fe caused increased release of the enzyme into the blood circulation indicating increased tissue damage while Cu caused a reduction in the serum level as compared with the level in the control group. The mean values of enzyme activity obtained in the liver were 102.14±6.12, 140.17±2.06 and 168.23±3.52 IU/L for Pb, Fe and Cu groups, respectively compared to 91.20±9.42 IU/L enzyme activity for the control group. The serum and liver AST and ALT activities obtained in Pb, Fe, Cu and control groups are reported. It was generally noted that the presence of the heavy metal caused liver tissues damage and consequent increased level of the diagnostic enzymes in the serum.

Keywords: diagnostic enzymes, enzyme activity, heavy metals, tissues investigations

Procedia PDF Downloads 267
1159 Improvement of Recycled Aggregate Concrete Properties by Controlling the Water Flow in the Interfacial Transition Zone

Authors: M. Eckert, M. Oliveira, A. Bettencourt Ribeiro

Abstract:

The intensive use of natural aggregate, near the towns, associated to the increase of the global population, leads to its depletion and increases the transport distances. The uncontrolled deposition of construction and demolition waste in landfills and city outskirts, causes pollution and take up space for noblest purposes. The main problem of recycled aggregate lies in its high water absorption, what is due to the porosity of the materials which constitute this type of aggregate. When the aggregates are dry, water flows from the inside to the engaging cement paste matrix, and when they are saturated an inverse process occurs. This water flow breaks the aggregate-cement paste bonds and the greater water concentration, in the inter-facial transition zone, degrades the concrete properties in its fresh and hardened state. Based on the water absorption over time, it was optimized an staged mixing method, to regulate the said flow and manufacture recycled aggregate concrete with levels of work-ability, strength and shrinkage equivalent to those of conventional concrete.The physical, mechanical and geometrical properties of the aggregates where related to the properties of concrete in its fresh and hardened state. Three types of commercial recycled aggregates and two types of natural aggregates where evaluated. Six compositions with different percentages of recycled coarse aggregate where tested.

Keywords: recycled aggregate, water absorption, interfacial transition zone, compressive-strength, shrinkage

Procedia PDF Downloads 425
1158 Effect of Ultrasound and Enzyme on the Extraction of Eurycoma longifolia (Tongkat Ali)

Authors: He Yuhai, Ahmad Ziad Bin Sulaiman

Abstract:

Tongkat Ali, or Eurycoma longifolia, is a traditional Malay and Orang Asli herb used as aphrodisiac, general tonic, anti-Malaria, and anti-Pyretic. It has been recognized as a cashcrop by Malaysia due to its high value for the pharmaceutical use. In Tongkat Ali, eurycomanone, a quassinoid is usually chosen as a marker phytochemical as it is the most abundant phytochemical. In this research, ultrasound and enzyme were used to enhance the extraction of Eurycomanone from Tongkat Ali. Ultrasonic assisted extraction (USE) enhances extraction by facilitating the swelling and hydration of the plant material, enlarging the plant pores, breaking the plant cell, reducing the plant particle size and creating cavitation bubbles that enhance mass transfer in both the washing and diffusion phase of extraction. Enzyme hydrolyses the cell wall of the plant, loosening the structure of the cell wall, releasing more phytochemicals from the plant cell, enhancing the productivity of the extraction. Possible effects of ultrasound on the activity of the enzyme during the hydrolysis of the cell wall is under the investigation by this research. The extracts was analysed by high performance liquid chromatography for the yields of Eurycomanone. In this whole process, the conventional water extraction was used as a control of comparing the performance of the ultrasound and enzyme assisted extraction.

Keywords: ultrasound, enzymatic, extraction, Eurycoma longifolia

Procedia PDF Downloads 393
1157 Enzyme Immobilization: A Strategy to Overcome Enzyme Limitations and Expand Their Applications

Authors: Charline Monnier, Rudolf Andrys, Irene Castellino, Lucie Zemanova

Abstract:

Due to their inherent sustainability and compatibility with green chemistry principles, enzymes are attracting increasing attention for various applications like bioremediation or biocatalysis. These natural catalysts boast remarkable substrate specificity and operate under mild biological conditions. However, their intrinsic limitations, such as instability at high temperatures or in organic solvents, impede their wider applicability. Enzyme immobilization on supportive matrices emerges as a promising strategy to address these challenges. This approach not only facilitates enzyme reusability but also offers the potential to modulate their stability, activity, and selectivity. The present study investigates the immobilization and application of two distinct groups of hydrolases on supportive matrices: PETases, naturally capable of PolyEthylene Terephthalate (PET) degradation, and cholinesterases (ChEs), key enzymes in neurotransmitter regulation. All tested enzymes will be immobilized on porous and non-porous particles using both covalent and non-covalent methods. Additionally, the stability of PETases and cholinesterases will be explored, followed by exposure to denaturing conditions to assess their resilience under harsh conditions. Furthermore, due to the exceptional catalytic efficiency and selectivity, their biocatalytic efficiency will be tested using xenobiotic substrates, aiming to establish them as replacements for conventional chemical catalysts in environmentally friendly processes. By exploiting the power of enzyme immobilization, this research strives to unlock the full potential of these biocatalysts for sustainable and efficient technological advancements.

Keywords: biocatalysis, bioremediation, enzyme efficiency, enzyme immobilization, green chemistry

Procedia PDF Downloads 22
1156 Screening, Selection and Optimization of Extracellular Methanol and Ethanol Tolerant Lipase from Acinetobacter sp. K5B4

Authors: Khaled M. Khleifat

Abstract:

An extracellular methanol and ethanol tolerant lipase producing bacterial strain K5b4 was isolated from soil samples contaminated with hydrocarbon residues. It was identified by using morphological and biochemical characteristics and 16srRNA technique as Acinetobacter species. The immobilized lipase from Acinetobacter sp. K5b4 retained more than 98% of its residual activity after incubation with pure methanol and ethanol for 24 hours. The highest hydrolytic activity of the immobilized enzyme was obtained in the presence of 75% (v/v) methanol in the assay solution. In contrary, the enzyme was able to maintain its original activity up to only 25% (v/v) ethanol whereas at elevated concentrations of 50 and 75% (v/v) the enzyme activity was reduced to 10 and 40%, respectively. Maximum lipase activity of 31.5 mU/mL was achieved after 48 hr cultivation when the optimized medium (pH 7.0) that composed of 1.0% (w/v) olive oil, 0.2% (w/v) glycerol, 0.15% (w/v) yeast extract, and 0.05% (w/v) NaCl was inoculated with 0.4% (v/v) seed culture and incubated at 30°C and 150 rpm agitation speed. However, the presence of CaCl2 in the growth media did not show any inhibitory or stimulatory effect on the enzyme production as it compared to the control experiment. Meanwhile, the other mineral salts MgCl2, MnCl2, KCl and CoCl2 were negatively affected the production of lipase enzyme. The inhibition of lipase production from Acinetobacter sp. K5b4 in presence of glucose suggesting that lipase gene expression is prone to catabolic repression.

Keywords: K5B4, methanol and ethanol, acinetobacter, morphological

Procedia PDF Downloads 286
1155 Bienzymatic Nanocomposites Biosensors Complexed with Gold Nanoparticles, Polyaniline, Recombinant MN Peroxidase from Corn, and Glucose Oxidase to Measure Glucose

Authors: Anahita Izadyar

Abstract:

Using a recombinant enzyme derived from corn and a simple modification, we are fabricating a facile, fast, and cost-beneficial novel biosensor to measure glucose. We are applying Plant Produced Mn Peroxidase (PPMP), glucose oxidase (GOx), polyaniline (PANI) as conductive polymer and gold nanoparticles (AuNPs) on Au electrode using electrochemical response to detect glucose. We applied the entrapment method of enzyme composition, which is generally used to immobilize conductive polymer and facilitate electron transfer from the enzyme oxidation-reduction center to the sample solution. In this work, the oxidation of glucose on the modified gold electrode was quantified with Linear Sweep Voltammetry(LSV). We expect that the modified biosensor has the potential for monitoring various biofluids.

Keywords: plant-produced manganese peroxidase, enzyme-based biosensors, glucose, modified gold nanoparticles electrode, polyaniline

Procedia PDF Downloads 168
1154 Performance of Self-Compacting Mortars Containing Foam Glass Granulate

Authors: Brahim Safi, Djamila Aboutaleb, Mohammed Saidi, Abdelbaki Benmounah, Fahima Benbrahim

Abstract:

The inorganic wastes are currently used in the manufacture of concretes as mineral additions by cement substitution or as fine/coarse aggregates by replacing traditional aggregates. In this respect, this study aims to valorize the mineral wastes in particular glass wastes to produce granulated foam glass (as fine aggregates). Granulated foam glasses (GFG) were prepared from the glass powder (glass cullet) and foaming agent (limestone) according to applied manufacturing of GFG (at a heat treatment 850 ° C for 20min). After, self-compacting mortars were elaborated with fine aggregate (sand) and other variant mortars with granulated foam glass at volume ratio (0, 30, 50 and 100 %). Rheological characterization tests (fluidity) and physic-mechanical (density, porosity /absorption of water and mechanical tests) were carried out on studied mortars. The results obtained show that a slightly decreasing of compressive strength of mortars having lightness very important for building construction.

Keywords: glass wastes, lightweight aggregate, mortar, fluidity, density, mechanical strength

Procedia PDF Downloads 207
1153 Behaviour of Lightweight Expanded Clay Aggregate Concrete Exposed to High Temperatures

Authors: Lenka Bodnárová, Rudolf Hela, Michala Hubertová, Iveta Nováková

Abstract:

This paper is concerning the issues of behaviour of lightweight expanded clay aggregates concrete exposed to high temperature. Lightweight aggregates from expanded clay are produced by firing of row material up to temperature 1050°C. Lightweight aggregates have suitable properties in terms of volume stability, when exposed to temperatures up to 1050°C, which could indicate their suitability for construction applications with higher risk of fire. The test samples were exposed to heat by using the standard temperature-time curve ISO 834. Negative changes in resulting mechanical properties, such as compressive strength, tensile strength, and flexural strength were evaluated. Also visual evaluation of the specimen was performed. On specimen exposed to excessive heat, an explosive spalling could be observed, due to evaporation of considerable amount of unbounded water from the inner structure of the concrete.

Keywords: expanded clay aggregate, explosive spalling, high temperature, lightweight concrete, temperature-time curve ISO 834

Procedia PDF Downloads 409
1152 Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process

Authors: Vytautas Galvanauskas, Vykantas Grincas, Rimvydas Simutis

Abstract:

This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes.

Keywords: aggregated stem cells, dissolved oxygen profiles, modeling, stirred-tank, 3D expansion

Procedia PDF Downloads 282
1151 Papain Immobilized Polyurethane Film as an Antimicrobial Food Package

Authors: M. Cynthya, V. Prabhawathi, D. Mukesh

Abstract:

Food contamination occurs during post process handling. This leads to spoilage and growth of pathogenic microorganisms in the food, thereby reducing its shelf life or spreading of food borne diseases. Several methods are tried and one of which is use of antimicrobial packaging. Here, papain, a protease enzyme, is covalently immobilized with the help of glutarldehyde on polyurethane and used as a food wrap to protect food from microbial contamination. Covalent immobilization of papain was achieved at a pH of 7.4; temperature of 4°C; glutaraldehyde concentration of 0.5%; incubation time of 24 h; and 50 mg of papain. The formation of -C=N- observed in the Fourier transform infrared spectrum confirmed the immobilization of the enzyme on the polymer. Immobilized enzyme retained higher activity than the native free enzyme. The efficacy of this was studied by wrapping it over S. aureus contaminated cottage cheese (paneer) and cheese and stored at a temperature of 4°C for 7 days. The modified film reduced the bacterial contamination by eight folds when compared to the bare film. FTIR also indicates reduction in lipids, sugars and proteins in the biofilm.

Keywords: cheese, papain, polyurethane, Staphylococcus aureus

Procedia PDF Downloads 446
1150 Colorimetric Measurement of Dipeptidyl Peptidase IV (DPP IV) Activity via Peptide Capped Gold Nanoparticles

Authors: H. Aldewachi, M. Hines, M. McCulloch, N. Woodroofe, P. Gardiner

Abstract:

DPP-IV is an enzyme whose expression is affected in a variety of diseases, therefore, has been identified as possible diagnostic or prognostic marker for various tumours, immunological, inflammatory, neuroendocrine, and viral diseases. Recently, DPP-IV enzyme has been identified as a novel target for type II diabetes treatment where the enzyme is involved. There is, therefore, a need to develop sensitive and specific methods that can be easily deployed for the screening of the enzyme either as a tool for drug screening or disease marker in biological samples. A variety of assays have been introduced for the determination of DPP-IV enzyme activity using chromogenic and fluorogenic substrates, nevertheless these assays either lack the required sensitivity especially in inhibited enzyme samples or displays low water solubility implying difficulty for use in vivo samples in addition to labour and time-consuming sample preparation. In this study, novel strategies based on exploiting the high extinction coefficient of gold nanoparticles (GNPs) are investigated in order to develop fast, specific and reliable enzymatic assay by investigating synthetic peptide sequences containing a DPP IV cleavage site and coupling them to GNPs. The DPP IV could be detected by colorimetric response of peptide capped GNPs (P-GNPS) that could be monitored by a UV-visible spectrophotometer or even naked eyes, and the detection limit could reach 0.01 unit/ml. The P-GNPs, when subjected to DPP IV, showed excellent selectivity compared to other proteins (thrombin and human serum albumin) , which led to prominent colour change. This provided a simple and effective colorimetric sensor for on-site and real-time detection of DPP IV.

Keywords: gold nanoparticles, synthetic peptides, colorimetric detection, DPP-IV enzyme

Procedia PDF Downloads 278
1149 Effect of a Muscarinic Antagonist Drug on Extracellular Lipase Activityof Pseudomonas aeruginosa

Authors: Zohreh Bayat, Dariush Minai-Tehrani

Abstract:

Pseudomonas aeruginosa is a Gram-negative, rode shape and aerobic bacterium that has shown to be resistance to many antibiotics. This resistance makes the bacterium very harmful in some diseases. It can also generate diseases in any part of the gastrointestinal tract from oropharynx to rectum. P. aeruginosa has become an important cause of infection, especially in patients with compromised host defense mechanisms. One of the most important reasons that make P. aeruginosa an emerging opportunistic pathogen in patients is its ability to use various compounds as carbon sources. Lipase is an enzyme that catalyzes the hydrolysis of lipids. Most lipases act at a specific position on the glycerol backbone of lipid substrate. Some lipases are expressed and secreted by pathogenic organisms during the infection. Muscarinic antagonist used as an antispasmodic and in urinary incontinence. The drug has little effect on glandular secretion or the cardiovascular system. It does have some local anesthetic properties and is used in gastrointestinal, biliary, and urinary tract spasms. Aim: In this study the inhibitory effect of a muscarinic antagonist on lipase of P. aeruginosa was investigated. Methods: P. aeruginosa was cultured in minimal salt medium with 1% olive oil as carbon source. The cells were harvested and the supernatant, which contained lipase, was used for enzyme assay. Results: Our results showed that the drug can inhibit P. aeruginosa lipase by competitive manner. In the presence of different concentrations of the drug, the Vmax (2 mmol/min/mg protein) of enzyme did not change, while the Km raised by increasing the drug concentration. The Ki (inhibition constant) and IC50 (the half maximal inhibitory concentration) value of drug was estimated to be about 30 uM and 60 uM which determined that the drug binds to enzyme with high affinity. Maximum activity of the enzyme was observed at pH 8 in the absence and presence of muscarinic antagonist, respectively. The maximum activity of lipase was observed at 600C and the enzyme became inactive at 900C. Conclusion: The muscarinic antagonist drug could inhibit lipase of P. aeruginosa and changed the kinetic parameters of the enzyme. The drug binded to enzyme with high affinity and did not chang the optimum pH of the enzyme. Temperature did not affect the binding of drug to musmuscarinic antagonist.

Keywords: Pseudomonas aeruginosa, drug, enzyme, inhibition

Procedia PDF Downloads 409
1148 Isolation, Characterization, and Optimization of Immobilized L-Asparginase- Anticancer Enzyme from Aspergillus.Niger

Authors: Supriya Chatla, Anjana Male, Srikala Kamireddy

Abstract:

L-asparaginase (E.C.3.5.1.1) is an anti-cancer enzyme that has been purified and characterized for decades to study and evaluate its anti-carcinogenic activity against Hodgkin’s lymphoma. The present investigation deals with screening, isolation and optimization of L-asparaginase giving fungal strain of soil samples from different areas of AP, India. L-Aspariginase activity was estimated on the basis of the pink color surrounding the growing colony. A total of 132 colonies were screened and isolated from different samples. Based on the zone diameter, L-asparaginase activity is determined, L- asparaginase activity is optimized at 28oc and Immobilized Aspariginase had more potency than the free enzymes.

Keywords: aspariginase, anticancer enzyme, Isolation, optimization

Procedia PDF Downloads 52
1147 Determination of the Inhibitory Effects of N-Methylpyrrole Derivatives on Glutathione Reductase Enzyme

Authors: Esma Kocaoglu, Oktay Talaz, Huseyin Cavdar, Murat Senturk, Deniz Eki̇nci̇

Abstract:

Glutathione reductase (GR) is a crucial antioxidant enzyme which is responsible for the maintenance of the antioxidant GSH (glutathione) molecule. Antimalarial effects of some chemical molecules are attributed to their inhibition of GR; thus inhibitors of this enzyme are expected to be promising candidates for the treatment of malaria. In this work, GR inhibitory properties of N-Methylpyrrole derivatives are reported. Firstly, GR was purified by means of affinity chromatography using 2’,5’-ADP-Sepharose 4B as ligand. Enzymatic activity was measured by Beutler’s method. Synthesis of the compounds was approved by thin layer chromatography and column chromatography. Different inhibitor concentrations were used and all compounds were tested in triplicate at each concentration used. It was found that all compounds have better inhibitory activity than the strong GR inhibitor N,N-bis(2-chloroethyl)-N-nitrosourea, especially three molecules, 8m, 8n, and 8q, are the best among them with low micromolar I₅₀ values. Findings of our study indicate that these Schiff base derivatives are strong GR inhibitors which can be used as leads for designation of novel antimalaria candidates.

Keywords: glutathione reductase, antimalaria, inhibitor, enzyme

Procedia PDF Downloads 244
1146 Structure-Based Virtual Screening and in Silico Toxicity Test of Compounds against Mycobacterium tuberculosis 7,8-Diaminopelargonic Acid Aminotransferase (MtbBioA)

Authors: Junie B. Billones, Maria Constancia O. Carrillo, Voltaire G. Organo, Stephani Joy Y. Macalino, Inno A. Emnacen, Jamie Bernadette A. Sy

Abstract:

One of the major interferences in the Philippines’ tuberculosis control program is the widespread prevalence of Mtb strains that are resistant to known drugs, such as the MDR-TB (Multi Drug Resistant Tuberculosis) and XDR-TB (Extensively Drug Resistant Tuberculosis). Therefore, there is a pressing need to search for novel Mtb drug targets in order to be able to combat these drug resistant strains. The enzyme 7,8-diaminopelargonic acid aminotransferase enzyme, or more commonly known as BioA, is one such ideal target, as it is known that humans do not possess this enzyme. BioA primarily plays a key role in Mtb’s lipid biosynthesis pathway; more specifically in the synthesis of the enzyme cofactor biotin. In this study, structure-based pharmacophore screening, docking, and ADMET evaluation of compounds obtained from the DrugBank chemical database were performed against the MtbBioA enzyme. Results of the screening, docking, ADMET, and TOPKAT calculations revealed that out of the 6,516 compounds in the library, only 7 compounds indicated more favorable binding energies as compared to the enzyme’s known inhibitor, amiclenomycin (ACM), as well as good solubility and toxicity properties. Moreover, out of these 7 compounds, Molecule 6 exhibited the best solubility and toxicity properties. In the future, these lead compounds may then be subjected to bioactivity assays in vitro or in vivo for further evaluation of its therapeutic efficacy.

Keywords: 7, 8-diaminopelargonic acid aminotransferase, BioA, pharmacophore, molecular docking, ADMET, TOPKAT

Procedia PDF Downloads 423
1145 Rheological Study of Chitosan/Montmorillonite Nanocomposites: The Effect of Chemical Crosslinking

Authors: K. Khouzami, J. Brassinne, C. Branca, E. Van Ruymbeke, B. Nysten, G. D’Angelo

Abstract:

The development of hybrid organic-inorganic nanocomposites has recently attracted great interest. Typically, polymer silicates represent an emerging class of polymeric nanocomposites that offer superior material properties compared to each compound alone. Among these materials, complexes based on silicate clay and polysaccharides are one of the most promising nanocomposites. The strong electrostatic interaction between chitosan and montmorillonite can induce what is called physical hydrogel, where the coordination bonds or physical crosslinks may associate and dissociate reversibly and in a short time. These mechanisms could be the main origin of the uniqueness of their rheological behavior. However, owing to their structure intrinsically heterogeneous and/or the lack of dissipated energy, they are usually brittle, possess a poor toughness and may not have sufficient mechanical strength. Consequently, the properties of these nanocomposites cannot respond to some requirements of many applications in several fields. To address the issue of weak mechanical properties, covalent chemical crosslink bonds can be introduced to the physical hydrogel. In this way, quite homogeneous dually crosslinked microstructures with high dissipated energy and enhanced mechanical strength can be engineered. In this work, we have prepared a series of chitosan-montmorillonite nanocomposites chemically crosslinked by addition of poly (ethylene glycol) diglycidyl ether. This study aims to provide a better understanding of the mechanical behavior of dually crosslinked chitosan-based nanocomposites by relating it to their microstructures. In these systems, the variety of microstructures is obtained by modifying the number of cross-links. Subsequently, a superior uniqueness of the rheological properties of chemically crosslinked chitosan-montmorillonite nanocomposites is achieved, especially at the highest percentage of clay. Their rheological behaviors depend on the clay/chitosan ratio and the crosslinking. All specimens exhibit a viscous rheological behavior over the frequency range investigated. The flow curves of the nanocomposites show a Newtonian plateau at very low shear rates accompanied by a quite complicated nonlinear decrease with increasing the shear rate. Crosslinking induces a shear thinning behavior revealing the formation of network-like structures. Fitting shear viscosity curves via Ostward-De Waele equation disclosed that crosslinking and clay addition strongly affect the pseudoplasticity of the nanocomposites for shear rates γ ̇>20.

Keywords: chitosan, crossliking, nanocomposites, rheological properties

Procedia PDF Downloads 113
1144 Prevalence of Cyp2d6 and Its Implications for Personalized Medicine in Saudi Arabs

Authors: Hamsa T. Tayeb, Mohammad A. Arafah, Dana M. Bakheet, Duaa M. Khalaf, Agnieszka Tarnoska, Nduna Dzimiri

Abstract:

Background: CYP2D6 is a member of the cytochrome P450 mixed-function oxidase system. The enzyme is responsible for the metabolism and elimination of approximately 25% of clinically used drugs, especially in breast cancer and psychiatric therapy. Different phenotypes have been described displaying alleles that lead to a complete loss of enzyme activity, reduced function (poor metabolizers – PM), hyperfunctionality (ultrarapid metabolizers–UM) and therefore drug intoxication or loss of drug effect. The prevalence of these variants may vary among different ethnic groups. Furthermore, the xTAG system has been developed to categorized all patients into different groups based on their CYP2D6 substrate metabolization. Aim of the study: To determine the prevalence of the different CYP2D6 variants in our population, and to evaluate their clinical relevance in personalized medicine. Methodology: We used the Luminex xMAP genotyping system to sequence 305 Saudi individuals visiting the Blood Bank of our Institution and determine which polymorphisms of CYP2D6 gene are prevalent in our region. Results: xTAG genotyping showed that 36.72% (112 out of 305 individuals) carried the CYP2D6_*2. Out of the 112 individuals with the *2 SNP, 6.23% had multiple copies of *2 SNP (19 individuals out of 305 individuals), resulting in an UM phenotype. About 33.44% carried the CYP2D6_*41, which leads to decreased activity of the CYP2D6 enzyme. 19.67% had the wild-type alleles and thus had normal enzyme function. Furthermore, 15.74% carried the CYP2D6_*4, which is the most common nonfunctional form of the CYP2D6 enzyme worldwide. 6.56% carried the CYP2D6_*17, resulting in decreased enzyme activity. Approximately 5.73% carried the CYP2D6_*10, consequently decreasing the enzyme activity, resulting in a PM phenotype. 2.30% carried the CYP2D6_*29, leading to decreased metabolic activity of the enzyme, and 2.30% carried the CYP2D6_*35, resulting in an UM phenotype, 1.64% had a whole-gene deletion CYP2D6_*5, thus resulting in the loss of CYP2D6 enzyme production, 0.66% carried the CYP2D6_*6 variant. One individual carried the CYP2D6_*3(B), producing an inactive form of the enzyme, which leads to decrease of enzyme activity, resulting in a PM phenotype. Finally, one individual carried the CYP2D6_*9, which decreases the enzyme activity. Conclusions: Our study demonstrates that different CYP2D6 variants are highly prevalent in ethnic Saudi Arabs. This finding sets a basis for informed genotyping for these variants in personalized medicine. The study also suggests that xTAG is an appropriate procedure for genotyping the CYP2D6 variants in personalized medicine.

Keywords: CYP2D6, hormonal breast cancer, pharmacogenetics, polymorphism, psychiatric treatment, Saudi population

Procedia PDF Downloads 543
1143 Structural Behavior of Lightweight Concrete Made With Scoria Aggregates and Mineral Admixtures

Authors: M. Shannag, A. Charif, S. Naser, F. Faisal, A. Karim

Abstract:

Structural lightweight concrete is used primarily to reduce the dead-load weight in concrete members such as floors in high-rise buildings and bridge decks. With given materials, it is generally desired to have the highest possible strength/unit weight ratio with the lowest cost of concrete. The work presented herein is part of an ongoing research project that investigates the properties of concrete mixes containing locally available Scoria lightweight aggregates and mineral admixtures. Properties considered included: workability, unit weight, compressive strength, and splitting tensile strength. Test results indicated that developing structural lightweight concretes (SLWC) using locally available Scoria lightweight aggregates and specific blends of silica fume and fly ash seems to be feasible. The stress-strain diagrams plotted for the structural LWC mixes developed in this investigation were comparable to a typical stress-strain diagram for normal weight concrete with relatively larger strain capacity at failure in case of LWC.

Keywords: lightweight concrete, scoria, stress, strain, silica fume, fly ash

Procedia PDF Downloads 478
1142 Dye Retention by a Photochemicaly Crosslinked Poly(2-Hydroxy-Ethyl-Meth-Acrylic) Network in Water

Authors: Yasmina Houda Bendahma, Tewfik Bouchaour, Meriem Merad, Ulrich Maschke

Abstract:

The purpose of this work is to study retention of dye dissolved in distilled water, by an hydrophilic acrylic polymer network. The polymer network considered is Poly (2-hydroxyethyl methacrylate) (PHEMA): it is prepared by photo-polymerization under UV irradiation in the presence of a monomer (HEMA), initiator and an agent cross-linker. PHEMA polymer network obtained can be used in the retention of dye molecules present in the wastewater. The results obtained are interesting in the study of the kinetics of swelling and de-swelling of cross linked polymer networks PHEMA in colored aqueous solutions. The dyes used for retention by the PHEMA networks are eosin Y and Malachite Green, dissolved in distilled water. Theoretical conformational study by a simplified molecular model of system cross linked PHEMA / dye (eosin Y and Malachite Green), is used to simulate the retention phenomenon (or Docking) dye molecules in cavities in nano-domains included in the PHEMA polymer network.

Keywords: dye retention, molecular modeling, photochemically crosslinked polymer network, swelling deswelling, PHEMA, HEMA

Procedia PDF Downloads 338
1141 Aspects Concerning the Use of Recycled Concrete Aggregates

Authors: Ion Robu, Claudiu Mazilu, Radu Deju

Abstract:

Natural aggregates (gravel and crushed) are essential non-renewable resources which are used for infrastructure works and civil engineering. In European Union member states from Southeast Europe, it is estimated that the construction industry will grow by 4.2% thereafter complicating aggregate supply management. In addition, a significant additional problem that can be associated to the aggregates industry is wasting potential resources through waste dumping of inert waste, especially waste from construction and demolition activities. In 2012, in Romania, less than 10% of construction and demolition waste (including concrete) are valorized, while the European Union requires that by 2020 this proportion should be at least 70% (Directive 2008/98/EC on waste, transposed into Romanian legislation by Law 211/2011). Depending on the efficiency of waste processing and the quality of recycled aggregate concrete (RCA) obtained, poor quality aggregate can be used as foundation material for roads and at the high quality for new concrete on construction. To obtain good quality concrete using recycled aggregate is necessary to meet the minimum requirements defined by the rules for the manufacture of concrete with natural aggregate. Properties of recycled aggregate (density, granulosity, granule shape, water absorption, weight loss to Los Angeles test, attached mortar content etc.) are the basis for concrete quality; also establishing appropriate proportions between components and the concrete production methods are extremely important for its quality. This paper presents a study on the use of recycled aggregates, from a concrete of specified class, to acquire new cement concrete with different percentages of recycled aggregates. To achieve recycled aggregates several batches of concrete class C16/20, C25/30 and C35/45 were made, the compositions calculation being made according NE012/2007 CP012/2007. Tests for producing recycled aggregate was carried out using concrete samples of the established three classes after 28 days of storage under the above conditions. Cubes with 150mm side were crushed in a first stage with a jaw crusher Liebherr type set at 50 mm nominally. The resulting material was separated by sieving on granulometric sorts and 10-50 sort was used for preliminary tests of crushing in the second stage with a jaw crusher BB 200 Retsch model, respectively a hammer crusher Buffalo Shuttle WA-12-H model. It was highlighted the influence of the type of crusher used to obtain recycled aggregates on granulometry and granule shape and the influence of the attached mortar on the density, water absorption, behavior to the Los Angeles test etc. The proportion of attached mortar was determined and correlated with provenance concrete class of the recycled aggregates and their granulometric sort. The aim to characterize the recycled aggregates is their valorification in new concrete used in construction. In this regard have been made a series of concrete in which the recycled aggregate content was varied from 0 to 100%. The new concrete were characterized by point of view of the change in the density and compressive strength with the proportion of recycled aggregates. It has been shown that an increase in recycled aggregate content not necessarily mean a reduction in compressive strength, quality of the aggregate having a decisive role.

Keywords: recycled concrete aggregate, characteristics, recycled aggregate concrete, properties

Procedia PDF Downloads 184
1140 Use of Fine Recycled Aggregates in Normal Concrete Production

Authors: Vignesh Pechiappan Ayyathurai, Mukesh Limbachiya, Hsein Kew

Abstract:

There is a growing interest in using recycled, secondary use and industrial by product materials in high value commercial applications. Potential high volume applications include use of fine aggregate in flowable fill or as a component in manufactured aggregates. However, there is much scientific, as well as applied research needed in this area due to lack to availability of data on the mechanical and environmental properties of elements or products produced using fine recycled aggregates. The principle objectives of this research are to synthesize existing data on the beneficial reuse of fine recycled materials and to develop extensive testing programme for assessing and establishing engineering and long term durability properties of concrete and other construction products produced using such material for use in practical application widely. This paper is a research proposal for PhD admission. The proposed research aims to supply the necessary technical, as well as practical information on fine recycled aggregate concrete to the construction industry for promoting its wider use within the construction industry. Furthermore, to disseminate research outcomes to the local authorities for consideration of use of fine recycled aggregate concrete in various applications.

Keywords: FRA, fine aggregate, recycling, concrete

Procedia PDF Downloads 292
1139 Use of Waste Road-Asphalt as Aggregate in Pavement Block Production

Authors: Babagana Mohammed, Abdulmuminu Mustapha Ali, Solomon Ibrahim, Buba Ahmad Umdagas

Abstract:

This research investigated the possibility of replacing coarse and fine aggregates with waste road-asphalt (RWA), when sieved appropriately, in concrete production. Interlock pavement block is used widely in many parts of the world as modern day solution to outdoor flooring applications. The weight-percentage replacements of both coarse and fine aggregates with RWA at 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% respectively using a concrete mix ratio of 1:2:4 and water-to-cement ratio of 0.45 were carried out. The interlock block samples produced were then cured for 28days. Unconfined compressive strength (UCS) and the water absorption properties of the samples were then tested. Comparison of the results of the RWA-containing samples to those of the respective control samples shows significant benefits of using RWA in interlock block production. UCS results of RWA-containing samples compared well with those of the control samples and the RWA content also influenced the lowering of the water absorption of the samples. Overall, the research shows that it is possible to replace both coarse and fine aggregates with RWA materials when sieved appropriately, hence indicating that RWA could be recycled beneficially.

Keywords: aggregate, block-production, pavement, road-asphalt, use, waste

Procedia PDF Downloads 168
1138 The Effect of Artesunate on Myeloperoxidase Activity of Human Polymorphonuclear Neutrophil

Authors: J. B. Minari, O. B. Oloyede, A. A. Odutuga

Abstract:

Myeloperoxidase is the most abundant enzyme found in the polymorphonuclear neutrophil and is known to play a central role in the host defense system of the leukocyte. The enzyme has been reported to interact with some drugs to generate free radical which inhibits its activity. This study investigated the effects of artesunate on the activity of the enzyme and the subsequent effect on the host immune system. In investigating the effects of the drugs on myeloperoxidase, the influence of concentration, pH, partition ratio estimation and kinetics of inhibition were studied. This study showed that artesunate is concentration-dependent inhibitor of myeloperoxidase with an IC50 of 0.078mM. Partition ratio estimation showed that 60 enzymatic turnover cycles are required for complete inhibition of myeloperoxidase in the presence of artesunate. The influence of pH on the effect of artesunate on the enzyme showed least activity of myeloperoxidase at physiological pH. The kinetic inhibition studies showed that artesunate caused a competitive inhibition with an increase in the Km value from 0.12mM to 0.26mM and no effect on the Vmax value. The Ki value was estimated to be 2.5mM. The results obtained from this study show that artesunate is a potent inhibitor of myeloperoxidase and it is capable of inactivating the enzyme. It is considered that the inhibition of myeloperoxidase in the presence of artesunate as revealed in this study may partly explain the impairment of polymorphonuclear neutrophil and consequent reduction of the strength of the host defense system against secondary infections.

Keywords: myeloperoxidase, artesunate, inhibition, nuetrophill

Procedia PDF Downloads 342
1137 Strength Evaluation by Finite Element Analysis of Mesoscale Concrete Models Developed from CT Scan Images of Concrete Cube

Authors: Nirjhar Dhang, S. Vinay Kumar

Abstract:

Concrete is a non-homogeneous mix of coarse aggregates, sand, cement, air-voids and interfacial transition zone (ITZ) around aggregates. Adoption of these complex structures and material properties in numerical simulation would lead us to better understanding and design of concrete. In this work, the mesoscale model of concrete has been prepared from X-ray computerized tomography (CT) image. These images are converted into computer model and numerically simulated using commercially available finite element software. The mesoscale models are simulated under the influence of compressive displacement. The effect of shape and distribution of aggregates, continuous and discrete ITZ thickness, voids, and variation of mortar strength has been investigated. The CT scan of concrete cube consists of series of two dimensional slices. Total 49 slices are obtained from a cube of 150mm and the interval of slices comes approximately 3mm. In CT scan images, the same cube can be CT scanned in a non-destructive manner and later the compression test can be carried out in a universal testing machine (UTM) for finding its strength. The image processing and extraction of mortar and aggregates from CT scan slices are performed by programming in Python. The digital colour image consists of red, green and blue (RGB) pixels. The conversion of RGB image to black and white image (BW) is carried out, and identification of mesoscale constituents is made by putting value between 0-255. The pixel matrix is created for modeling of mortar, aggregates, and ITZ. Pixels are normalized to 0-9 scale considering the relative strength. Here, zero is assigned to voids, 4-6 for mortar and 7-9 for aggregates. The value between 1-3 identifies boundary between aggregates and mortar. In the next step, triangular and quadrilateral elements for plane stress and plane strain models are generated depending on option given. Properties of materials, boundary conditions, and analysis scheme are specified in this module. The responses like displacement, stresses, and damages are evaluated by ABAQUS importing the input file. This simulation evaluates compressive strengths of 49 slices of the cube. The model is meshed with more than sixty thousand elements. The effect of shape and distribution of aggregates, inclusion of voids and variation of thickness of ITZ layer with relation to load carrying capacity, stress-strain response and strain localizations of concrete have been studied. The plane strain condition carried more load than plane stress condition due to confinement. The CT scan technique can be used to get slices from concrete cores taken from the actual structure, and the digital image processing can be used for finding the shape and contents of aggregates in concrete. This may be further compared with test results of concrete cores and can be used as an important tool for strength evaluation of concrete.

Keywords: concrete, image processing, plane strain, interfacial transition zone

Procedia PDF Downloads 217