Search results for: concrete-filled steel tubes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1956

Search results for: concrete-filled steel tubes

1956 Behavior of Double Skin Circular Tubular Steel-Concrete-Composite Column

Authors: Usha Sivasankaran, Seetha Raman

Abstract:

Experimental work on Double skin Concrete Filled tubes (DSCFT) are a variation of CFT (Concrete- filled steel tubular) with a hollow core formed by two concentric steel tubes in – filled with concrete. Six Specimens with three different volume fractions of steel fibres are cast and tested. Experiments on circular steel tubes in – filled with steel fibre reinforced concrete (SFRC) and normal concrete have been performed to investigate the contribution of steel fibres to the load bearing capacity of Short Composite Columns. The main Variable considered in the test study is the percentage of steel fibres added to the in –filled concrete. All the specimens were tested under axial compression until failure state realisation. This project presents the percentage Variation in the compression strengths of the 3 types of Composite members taken under Study. The results show that 1.5% SFRC in filled steel columns exhibit enhanced ultimate load carrying capacity.

Keywords: composite columns, optimization of steel, double skin, DSCFT

Procedia PDF Downloads 527
1955 Simulation of Welded Steel Tube Subjected to Internal Pressure

Authors: H. Zedira, M. T. Hannachi, H. Djebaili, B. Daheche

Abstract:

The rapid pace of technology development and strong competition in the market, prompted us to consider the field of manufacturing of steel pipes by a process complies fully with the requirements of industrial induction welding is high frequency (HF), this technique is better known today in Algeria, more precisely for the manufacture of tubes diameters Single Annabib TG Tebessa. The aim of our study is based on the characterization of processes controlling the mechanical behavior of steel pipes (type E24-2), welded by high frequency induction, considering the different tests and among the most destructive known test internal pressure. The internal pressure test is performed according to the application area of welded pipes, or as leak test, either as a test of strength (bursting). All tubes are subjected to a hydraulic test pressure of 50 bar kept at room temperature for a period of 6 seconds. This study provides information that helps optimize the design and implementation to predict the behavior of the tubes during operation.

Keywords: castem, pressure, stress, tubes, thickness

Procedia PDF Downloads 306
1954 Crushing Behaviour of Thin Tubes with Various Corrugated Sections Using Finite Element Modelling

Authors: Shagil Akhtar, Syed Muneeb Iqbal, Mohammed R. Rahim

Abstract:

Common steel tubes with similar confines were used in simulation of tubes with distinctive type of corrugated sections. These corrugated cross-sections were arc-tangent, triangular, trapezoidal and square corrugated sections. The outcome of fluctuating structures of tube cross-section shape on the deformation feedback, collapse form and energy absorption characteristics of tubes under quasi-static axial compression have been prepared numerically. The finite element package of ANSYS Workbench was applied in the current analysis. The axial load-displacement products accompanied by the fold formation of disparate tubes were inspected and compared. Deviation of the initial peak load and the mean crushing force of the tubes with distinctive cross-sections were conscientiously examined.

Keywords: absorbed energy, axial loading, corrugated tubes, finite element, initial peak load, mean crushing force

Procedia PDF Downloads 363
1953 Analysis of Control by Flattening of the Welded Tubes

Authors: Hannachi Med Tahar, H. Djebaili, B. Daheche

Abstract:

In this approach, we have tried to describe the flattening of welded tubes, and its experimental application. The test is carried out at the (National product processing company dishes and tubes production). Usually, the final products (tubes) undergo a series of non-destructive inspection online and offline welding, and obviously destructive mechanical testing (bending, flattening, flaring, etc.). For this and for the purpose of implementing the flattening test, which applies to the processing of round tubes in other forms, it took four sections of welded tubes draft (before stretching hot) and welded tubes finished (after drawing hot and annealing), it was also noted the report 'health' flattened tubes must not show or crack or tear. The test is considered poor if it reveals a lack of ductility of the metal.

Keywords: flattening, destructive testing, tube drafts, finished tube, Castem 2001

Procedia PDF Downloads 425
1952 Deformation and Energy Absorption of Corrugated Tubes

Authors: Mohammad R. Rahim, Shagil Akhtar, Prem K. Bharti, Syed Muneeb Iqbal

Abstract:

Deformation and energy absorption studies with corrugated tubes where corrugation is perpendicular to the line of action which coincides exactly with the unstrained axis of the tubes. In the present study, several specimens with various geometric parameters are prepared and compressed quasi-statistically in ANSYS Workbench. It is observed that tubes with perpendicular corrugation alters the deformation condition considerably and culminates in a substantial escalation in energy absorption scope in juxtaposed with the tubes having a circular cross-section. This study will help automotive, aerospace and various other industries to design superior components with perpendicular corrugated tubes and will reduce the experimental trials by conducting the numerical simulations.

Keywords: ANSYS Workbench, deformation and energy absorption, corrugated tubes, quasi-static compression

Procedia PDF Downloads 369
1951 Experimental Investigation of Folding of Rubber-Filled Circular Tubes on Energy Absorption Capacity

Authors: MohammadSadegh SaeediFakher, Jafar Rouzegar, Hassan Assaee

Abstract:

In this research, mechanical behavior and energy absorption capacity of empty and rubber-filled brazen circular tubes under quasi-static axial loading are investigated, experimentally. The brazen tubes were cut out of commercially available brazen circular tubes with the same length and diameter. Some of the specimens were filled with rubbers with three different shores and also, an empty tube was prepared. The specimens were axially compressed between two rigid plates in a quasi-static process using a Zwick testing machine. Load-displacement diagrams and energy absorption of the tested tubes were extracted from experimental data. The results show that filling the brazen tubes with rubber causes those to absorb more energy and the energy absorption of specimens are increased by increasing the shore of rubbers. In comparison to the empty tube, the first fold for the rubber-filled tubes occurs at lower load and it can be concluded that the rubber-filled tubes are better energy absorbers than the empty tubes. Also, in contrast with the empty tubes, the tubes that were filled with lower rubber shore deform asymmetrically.

Keywords: axial compression, quasi-static loading, folding, energy absorbers, rubber-filled tubes

Procedia PDF Downloads 414
1950 Confinement of Concrete Filled Steel Tubular Beams Using U-Links

Authors: Madiha Z. Ammari, Abdul Qader AlNajmi

Abstract:

A new system of U-links was used in this study to confine the concrete core in concrete-filled steel beams. This system aims to employ the separation expected between the steel tube and the concrete core in the compression side of the section in the plastic hinge zone. A total of six rectangular CFT beam specimens were tested under flexure using different D/t ratios and different diameters for the U-links to examine their effect on the flexural behavior of these beams. The ultimate flexural strength of the CFT beam specimens with U-links showed an increase of strength about 47% of the specimen with D/t ratio equals 37.5 above standard CFT beam specimen without U-links inside. State of concrete inside the tubes has shown no crushing of concrete when those beams were cut open at the location of the plastic hinge. Strain measurements revealed that the compressive strain of concrete was 5-6 times the concrete crushing strain.

Keywords: concrete-filled tubes, U-links, plated studies, beams, flexural strength, concrete, confinement

Procedia PDF Downloads 324
1949 Behaviour of Hollow Tubes Filled with Sand Slag Concrete

Authors: Meriem Senani, Noureedine Ferhoune

Abstract:

This paper presents the axial bearing capacity of thin welded rectangular steel stubs filled with concrete sand. A series of tests was conducted to study the behavior of short composite columns under axial compressive load, the cross section dimensions were: 100x70x2 mm. A total of 16 stubs have been tested, as follows: 4 filled with ordinary concrete appointed by BO columns, 6 filled with concrete witch natural sand was completely substitute a crystallized sand slag designated in this paper by BSI, and 6 others were tucked in concrete whose natural sand was partially replace by a crystallized sand slag called by BSII. The main objectives of these tests were to clarify the steel specimen's performance filled by concrete sand compared to those filled with ordinary concrete. The main parameters studied are: The height of the specimen (300mm-500mm), eccentricity of load and type of filling concrete. Based on test results obtained, it is confirmed that the length of the tubes, has a considerable effect on the bearing capacity and the failure mode. In all test tubes, fracture occurred by the convex warping of the largest, followed by the smallest due to the outward thrust of the concrete, it was observed that the sand concrete improves the bearing capacity of tubes compounds compared to those filled with ordinary concrete.

Keywords: concrete sand, crystallized slag, failure mode, buckling

Procedia PDF Downloads 398
1948 Effect of CSL Tube Type on the Drilled Shaft Axial Load Carrying Capacity

Authors: Ali Motevalli, Shahin Nayyeri Amiri

Abstract:

Cross-Hole Sonic Logging (CSL) is a common type of Non-Destructive Testing (NDT) method, which is currently used to check the integrity of placed drilled shafts. CSL evaluates the integrity of the concrete inside the cage and between the access tubes based on propagation of ultrasonic waves between two or more access tubes. A number of access tubes are installed inside the reinforcing cage prior to concrete placement as guides for sensors. The access tubes can be PVC or steel galvanized based on ASTM6760. The type of the CSL tubes can affect the axial strength of the drilled shaft. The objective of this study is to compare the amount of axial load capacity of drilled shafts due to using a different type of CSL tubes inside the caging. To achieve this, three (3) large-scale drilled shaft samples were built and tested using a hydraulic actuator at the Florida International University’s (FIU) Titan America Structures and Construction Testing (TASCT) laboratory. During the static load test, load-displacement curves were recorded by the data acquisition system (MegaDAC). Three drilled shaft samples were built to evaluate the effect of the type of the CSL tube on the axial load capacity in drilled shaft foundations.

Keywords: drilled shaft foundations, axial load capacity, cage, PVC, galvanized tube, CSL tube

Procedia PDF Downloads 390
1947 Improving the Crashworthiness Characteristics of Long Steel Circular Tubes Subjected to Axial Compression by Inserting a Helical Spring

Authors: Mehdi Tajdari, Farzad Mokhtarnejad, Fatemeh Moradi, Mehdi Najafizadeh

Abstract:

Nowadays, energy absorbing devices have been widely used in all vehicles and moving parts such as railway couches, aircraft, ships and lifts. The aim is to protect these structures from serious damages while subjected to impact loads, or to minimize human injuries while collision is occurred in transportation systems. These energy-absorbing devices can dissipate kinetic energy in a wide variety of ways like friction, facture, plastic bending, crushing, cyclic plastic deformation and metal cutting. On the other hand, various structures may be used as collapsible energy absorbers. Metallic cylindrical tubes have attracted much more attention due to their high stiffness and strength combined with the low weight and ease of manufacturing process. As a matter of fact, favorable crash worthiness characteristics for energy dissipation purposes can be achieved from axial collapse of tubes while they crush progressively in symmetric modes. However, experimental and theoretical results have shown that depending on various parameters such as tube geometry, material properties of tube, boundary and loading conditions, circular tubes buckle in different modes of deformation, namely, diamond and Euler collapsing modes. It is shown that when the tube length is greater than the critical length, the tube deforms in overall Euler buckling mode, which is an inefficient mode of energy absorption and needs to be avoided in crash worthiness applications. This study develops a new method with the aim of improving energy absorption characteristics of long steel circular tubes. Inserting a helical spring into the tubes is proved experimentally to be an efficient solution. In fact when a long tube is subjected to axial compression load, the spring prevents of undesirable Euler or diamond collapsing modes. This is because the spring reinforces the internal wall of tubes and it causes symmetric deformation in tubes. In this research three specimens were prepared and three tests were performed. The dimensions of tubes were selected so that in axial compression load buckling is occurred. In the second and third tests a spring was inserted into tubes and they were subjected to axial compression load in quasi-static and impact loading, respectively. The results showed that in the second and third tests buckling were not happened and the tubes deformed in symmetric modes which are desirable in energy absorption.

Keywords: energy absorption, circular tubes, collapsing deformation, crashworthiness

Procedia PDF Downloads 323
1946 Evaluating of Design Codes for Circular High Strength Concrete-Filled Steel Tube Columns

Authors: Soner Guler, Eylem Guzel, Mustafa Gülen

Abstract:

Recently, concrete-filled steel tube columns are highly popular in high-rise buildings. The main aim of this study is to evaluate the axial load capacities of circular high strength concrete-filled steel tube columns according to Eurocode 4 (EC4) and American Concrete Institute (ACI) design codes. The axial load capacities of fifteen concrete-filled steel tubes stub columns were compared with design codes EU4 and ACI. The results showed that the EC4 overestimate the axial load capacity for all the specimens.

Keywords: concrete-filled steel tube column, axial load capacity, Eurocode 4, ACI design codes

Procedia PDF Downloads 369
1945 Simulation 2D of Flare Steel Tubes

Authors: B. Daheche, M. T. Hannachi, H. Djebaili

Abstract:

In this approach, we tried to describe the flare test tubes welded by high frequency induction HF, and its experimental application. The test is carried out ENTTPP (National company of pipe mill and processing of flat products). Usually, the final products (tube) undergo a series of destructive testing (CD) in order to see the efficiency of welding. This test performed on sections of pipe with a length defined in the notice is made under a determined effort (pressure), which depends on its share of other parameters namely mechanical (fracture resistance) and geometry (thickness tube, outside diameter), the variation of this effort is well researched and recorded.

Keywords: flare, destructive testing, pressure, drafts tube, tube finished

Procedia PDF Downloads 293
1944 Microstructure and Hardness Changes on T91 Weld Joint after Heating at 560°C

Authors: Suraya Mohamad Nadzir, Badrol Ahmad, Norlia Berahim

Abstract:

T91 steel has been used as construction material for superheater tubes in sub-critical and super critical boiler. This steel was developed with higher creep strength property as compared to conventional low alloy steel. However, this steel is also susceptible to materials degradation due to its sensitivity to heat treatment especially Post Weld Heat Treatment (PWHT) after weld repair process. Review of PWHT process shows that the holding temperature may different from one batch to other batch of samples depending on the material composition. This issue was reviewed by many researchers and one of the potential solutions is the development of weld repair process without PWHT. This process is possible with the use of temper bead welding technique. However, study has shown the hardness value across the weld joint with exception of PWHT is much higher compare to recommended hardness value. Based on the above findings, a study to evaluate the microstructure and hardness changes of T91 weld joint after heating at 560°C at varying duration was carried out. This study was carried out to evaluate the possibility of self-tempering process during in-service period. In this study, the T91 weld joint was heat-up in air furnace at 560°C for duration of 50 and 150 hours. The heating process was controlled with heating rate of 200°C/hours, and cooling rate about 100°C/hours. Following this process, samples were prepared for the microstructure examination and hardness evaluation. Results have shown full tempered martensite structure and acceptance hardness value was achieved after 50 hours heating. This result shows that the thin component such as T91 superheater tubes is able to self-tempering during service hour.

Keywords: T91, weld-joint, tempered martensite, self-tempering

Procedia PDF Downloads 353
1943 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns

Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan

Abstract:

Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.

Keywords: composite, columns, experimental, finite element, fully encased, strength

Procedia PDF Downloads 273
1942 Failure and Stress Analysis of Super Heater Tubes of a 67 TPH Coke Dry Quenching Boiler

Authors: Subodh N. Patel, Abhijit Pusty, Manashi Adhikary, Sandip Bhattacharyya

Abstract:

The steam superheater (SH) is a coil type heat exchanger which is used to produce superheated steam or to convert the wet steam to dry steam (69.6 kg/cm² and 495°C), generated by a boiler. There were two superheaters in the system, SH I and SH II. SH II is a set of tubes that faces the initial interaction with flue gas at high temperature followed by SH I tubes. After a service life of 2100 hours, a tube in the SH II found to be punctured. Dye penetrant test revealed that out of 50 such tubes, 14 more tubes had severe cracks at a similar location. The failure was investigated in detail. The materials and scale were characterized by optical microscope and advance characterization technique. Scale, observed on fracture surface, was characterized under scanning electron microscope and Raman spectroscopy. Stresses acting on the tubes in working condition were analyzed by finite element method software, ANSYS. Cyclic stresses were observed in the simulation at the same prone location due to restriction in expansion of tubes. Based on scale characterization and stress analysis, it was concluded that the tube failed in thermo-mechanical fatigue. Finally, prevention and control measures were taken to avoid such failure in the future.

Keywords: finite element analysis, oxide scale, superheater tube, thermomechanical fatigue

Procedia PDF Downloads 103
1941 Press Hardening of Tubes with Additional Interior Spray Cooling

Authors: B. A. Behrens, H. J. Maier, A. Neumann, J. Moritz, S. Hübner, T. Gretzki, F. Nürnberger, A. Spiekermeier

Abstract:

Press-hardened profiles are used e.g. for automotive applications in order to improve light weight construction due to the high reachable strength. The application of interior water-air spray cooling contributes to significantly reducing the cycle time in the production of heat-treated tubes. This paper describes a new manufacturing method for producing press-hardened hollow profiles by means of an additional interior cooling based on a water-air spray. Furthermore, this paper provides the results of thorough investigations on the properties of press-hardened tubes in dependence of varying spray parameters.

Keywords: 22MnB5, press hardening, water-air spray cooling, hollow profiles, tubes

Procedia PDF Downloads 258
1940 Hybrid Stainless Steel Girder for Bridge Construction

Authors: Tetsuya Yabuki, Yasunori Arizumi, Tetsuhiro Shimozato, Samy Guezouli, Hiroaki Matsusita, Masayuki Tai

Abstract:

The main object of this paper is to present the research results of the development of a hybrid stainless steel girder system for bridge construction undertaken at University of Ryukyu. In order to prevent the corrosion damage and reduce the fabrication costs, a hybrid stainless steel girder in bridge construction is developed, the stainless steel girder of which is stiffened and braced by structural carbon steel materials. It is verified analytically and experimentally that the ultimate strength of the hybrid stainless steel girder is equal to or greater than that of conventional carbon steel girder. The benefit of the life-cycle cost of the hybrid stainless steel girder is also shown.

Keywords: smart structure, hybrid stainless steel members, ultimate strength, steel bridge, corrosion prevention

Procedia PDF Downloads 360
1939 Energy Absorption of Circular Thin-Walled Tube with Curved-Crease Patterns under Axial Crushing

Authors: Grzegorz Dolzyk, Sungmoon Jung

Abstract:

Thin-walled tubes are commonly used as energy absorption devices for their excellent mechanical properties and high manufacturability. Techniques such as grooving and pre-folded origami shapes were introduced to circular and polygonal tubes to improve its energy absorption efficiency. This paper examines the energy absorption characteristics of circular tubes with pre-embedded curved-crease pattern. Set of numerical analyzes were conducted with different grooving patterns for tubes with various diameter (D) to thickness (t) ratio. It has been found that even very shallow grooving can positively affect thin wall tubes, leading to increased energy absorption and higher crushing load efficiency. The phenomenon is associated with nonsymmetric deformation that is usually observed for tubes with a high D/t ratio ( > 90). Grooving can redirect a natural mode of post-buckling deformation to a one with a higher number of lobes such that its beneficial and more stable. Also, the opposite effect can be achieved, and highly disrupted deformation can be a cause of reduced energy absorption capabilities. Curved-crease engraved patterns can be used to stabilize and change a form of hazardous post-buckling deformation.

Keywords: axial crushing, energy absorption, grooving, thin-wall structures

Procedia PDF Downloads 124
1938 Analysis of Rectangular Concrete-Filled Double Skin Tubular Short Columns with External Stainless Steel Tubes

Authors: Omnia F. Kharoob, Nashwa M. Yossef

Abstract:

Concrete-filled double skin steel tubular (CFDST) columns could be utilized in structures such as bridges, high-rise buildings, viaducts, and electricity transmission towers due to its great structural performance. Alternatively, lean duplex stainless steel has recently gained significant interest for its high structural performance, similar corrosion resistance and lower cost compared to the austenitic steel grade. Hence, this paper presents the nonlinear finite element (FE) analysis, behaviour and design of rectangular outer lean duplex stainless steel (EN 1.4162) CFDST short columns under compression. All classes of the outer rectangular hollow section according to the depth-to-thickness (D/t) ratios were considered. The results showed that the axial ultimate strength of rectangular CFDST short columns increased linearly by increasing the concrete compressive strength, while it does not influence when changing the hollow ratios. Finally, the axial capacities were compared with the available design methods, and recommendations were conducted for the design strength of this type of column.

Keywords: concrete-filled double skin columns, compressive strength, finite element analysis, lean duplex stainless steel, ultimate axial strength, short columns

Procedia PDF Downloads 276
1937 A Range of Steel Production in Japan towards 2050

Authors: Reina Kawase

Abstract:

Japan set the goal of 80% reduction in GHG emissions by 2050. To consider countermeasures for reducing GHG emission, the production estimation of energy intensive materials, such as steel, is essential. About 50% of steel production is exported in Japan, so it is necessary to consider steel production including export. Steel productions from 2005-2050 in Japan were estimated under various global assumptions based on combination of scenarios such as goods trade scenarios and steel making process selection scenarios. Process selection scenarios decide volume of steel production by process (basic oxygen furnace and electric arc furnace) with considering steel consumption projection, supply-demand balance of steel, and scrap surplus. The range of steel production by process was analyzed. Maximum steel production was estimated under the scenario which consumes scrap in domestic steel production at maximum level. In 2035, steel production reaches 149 million ton because of increase in electric arc furnace steel. However, it decreases towards 2050 and amounts to 120 million ton, which is almost same as a current level. Minimum steel production is under the scenario which assumes technology progress in steel making and supply-demand balance consideration in each region. Steel production decreases from base year and is 44 million ton in 2050.

Keywords: goods trade scenario, steel making process selection scenario, steel production, global warming

Procedia PDF Downloads 362
1936 Comparative Study on Structural Behaviour of Circular Hollow Steel Tubular, Concrete Filled Steel Tubular, and Reinforced Cement Concrete Stub Columns under Pure Axial Compression

Authors: Niladri Roy, M. Longshithung Patton

Abstract:

This paper is aimed at studying the structural response of circular hollow steel tubular (HST), concrete filled steel tubular (CFST), and reinforced cement concrete (RCC) stub columns when subjected to only axial compressive forces and also examining their comparative nature using finite element (FE) models. These results are further compared with the respective experimental results. FE software package ABAQUS 6.14 has been used for further parametric studies where a total of 108 FE models were modelled. The diameters of the HST, CFST, and RCC stub columns are kept as 100, 140, 180, and 220, with length to diameter ratio fixed at 3 to avoid end effects and flexural failure. To keep the same percentage of steel (by volume), the thicknesses of steel tubes in HST and CFST columns were varied in response to the change in diameter of the main reinforcement bar in RCC columns. M25 grade of concrete was used throughout. The objective is to compare the structural behaviour of HST, CFST, and RCC stub columns on the basis of their axial compressive load carrying capacity and failure modes. The studies show that filling the circular HST columns with concrete increases the Pu of the CCFST columns by 2.97 times. It was also observed that the Pu (HST) is about 0.72 times Pu (RCC) on average, and the Pu (CFST) is about 2.08 times Pu (RCC) on average. After the analysis and comparison, it has been proved that CFST has much more load carrying capacity than HST and RCC and also provides the same strength at a very less sectional size.

Keywords: HST columns, stub columns, CFST columns, RCC columns, finite element modeling, ABAQUS

Procedia PDF Downloads 82
1935 Air Flow Characteristics and Pressure Distributions for Staggered Wing Shaped Tubes Bundle

Authors: Sayed A. Elsayed, Emad Z. Ibrahim, Osama M. Mesalhy, Mohamed A. Abdelatief

Abstract:

An experimental and numerical study has been conducted to clarify fluid flow characteristics and pressure drop distributions of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 x 102 and at from 1.8 x 103 to 9.7 x 103, respectively. Three cases of the tubes arrangements with various angles of attack, row angles of attack and 90° cone angles were employed at the considered Rea range. Correlation of pressure drop coefficient Pdc in terms of Rea, design parameters for the studied cases were presented. The flow pattern around the staggered wing-shaped tubes bundle were predicted by using commercial CFD FLUENT 6.3.26 software package. Results indicated that the values of Pdc were increased by increasing the angle of attack from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

Keywords: wing-shaped tubes, cross-flow cooling, staggered arrangement, CFD

Procedia PDF Downloads 355
1934 Zinc Oxid Nanotubes Modified by SiO2 as a Recyclable Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones

Authors: Rakhshan Hakimelahi

Abstract:

In recent years, zinc oxid nano tubes have attracted much attention. The direct use of zinc oxid nano tubes modified by SiO2 as recoverable catalysts for organic reactions is very rare. The catalysts were characterized by XRD. The average particle size of ZnO catalysts is 57 nm and there are high density defects on nano tubes surfaces. A simple and efficient method for the quinazolin derivatives synthesis from the condensation isatoic anhydride and an aromatic aldehyde with ammonium acetate in the presence of a catalytic amount zinc oxid nano tubes modified by SiO2 is described. The reason proposed for higher catalytic activity of zinc oxid nano tubes modified by SiO2 is a combination effect of the small particle size and high-density surface defects. The practical and simple method led to excellent yields of the 2,3-Di hydro quinazolin-4(1H)-one derivatives under mild conditions and within short times.

Keywords: 2, 3-Dihydroquinazolin-4(1H)-one derivatives, reusable catalyst, SiO2, zinc oxid nanotubes

Procedia PDF Downloads 361
1933 Stress Analysis of Water Wall Tubes of a Coal-fired Boiler during Soot Blowing Operation

Authors: Pratch Kittipongpattana, Thongchai Fongsamootr

Abstract:

This research aimed to study the influences of a soot blowing operation and geometrical variables to the stress characteristic of water wall tubes located in soot blowing areas which caused the boilers of Mae Moh power plant to lose their generation hour. The research method is divided into 2 parts (a) measuring the strain on water wall tubes by using 3-element rosette strain gages orientation during a full capacity plant operation and in periods of soot blowing operations (b) creating a finite element model in order to calculate stresses on tubes and validating the model by using experimental data in a steady state plant operation. Then, the geometrical variables in the model were changed to study stresses on the tubes. The results revealed that the stress was not affected by the soot blowing process and the finite element model gave the results 1.24% errors from the experiment. The geometrical variables influenced the stress, with the most optimum tubes design in this research reduced the average stress from the present design 31.28%.

Keywords: boiler water wall tube, finite element, stress analysis, strain gage rosette

Procedia PDF Downloads 366
1932 Structural Performance of Concrete Beams Reinforced with Steel Plates: Experimental Study

Authors: Mazin Mohammed S. Sarhan

Abstract:

This study presents the performance of concrete beams reinforced with steel plates as a technique of reinforcement. Three reinforced concrete beams with the dimensions of 200 mm x 300 mm x 4000 mm (width x height x length, respectively) were experimentally investigated under flexural loading. The deformed steel bars were used as the main reinforcement for the first beam. A steel plate placed horizontally was used as the main reinforcement for the second beam. The bond between the steel plate and the surrounding concrete was enhanced by using steel bolts (with a diameter of 20 mm and length of 100 mm) welded to the steel plate at a regular distance of 200 mm. A pair of steel plates placed vertically was used as the main reinforcement for the third beam. The bond between the pair steel plates and the surrounding concrete was enhanced by using 4 equal steel angles (with the dimensions of 75 mm x 75 mm and the thickness of 8 mm) for each vertical steel plate. Two steel angles were welded at each end of the steel plate. The outcomes revealed that the bending stiffness of the beams reinforced with steel plates was higher than that reinforced with deformed steel bars. Also, the flexural ductile behavior of the second beam was much higher than the rest beams.

Keywords: concrete beam, deflection, ductility, plate

Procedia PDF Downloads 139
1931 Ultimate Stress of the Steel Tube in Circular Concrete-Filled Steel Tube Stub Columns Subjected to Axial Compression

Authors: Siqi Lin, Yangang Zhao

Abstract:

Concrete-filled steel tube column achieves the excellent performance of high strength, stiffness, and ductility due to the confinement from the steel tube. Well understanding the stress of the steel tube is important to make clear the confinement effect. In this paper, the ultimate stress of the steel tube in circular concrete-filled steel tube columns subjected to axial compression was studied. Experimental tests were conducted to investigate the effects of the parameters, including concrete strength, steel strength, and D/t ratio, on the ultimate stress of the steel tube. The stress of the steel tube was determined by employing the Prandtl-Reuss flow rule associated with isotropic strain hardening. Results indicate that the stress of steel tube was influenced by the parameters. Specimen with higher strength ratio fy/fc and smaller D/t ratio generally leads to a higher utilization efficiency of the steel tube.

Keywords: concrete-filled steel tube, axial compression, ultimate stress, utilization efficiency

Procedia PDF Downloads 396
1930 Numerical Analysis of Heat Transfer Enhancement in Heat Exchangers by using Dimpled Tube

Authors: Bader Alhumaidi Alsubaei, Zahid H. Akash, Ali Imam Sunny

Abstract:

The heat transfer coefficient can be improved passively by using a dimpled surface on the tube. The contact area where heat transfer takes place can be enlarged and turbulence will be purposefully produced inside the duct; as a consequence, higher heat transfer quality will be achieved by employing an extended inner or outer surface (dimpled surface). In order to compare the rate and quality of heat transfer between a regular-shaped pipe and a dimpled pipe, a dimpled tube with a fixed dimple radius was created. Numerical analysis of the plain and dimpled pipes was performed using ANSYS. A 23% increase in Nusselt number was seen for dimpled tubes compared to plain tubes. In comparison to plain tubes, dimpled tubes' increase in thermal performance index was found to be between 8% and 10%. An increase in pressure drop of 18% was noted.

Keywords: heat transfer, dimpled tube, CFD, ANSYS

Procedia PDF Downloads 86
1929 Behavior Study of Concrete-Filled Thin-Walled Square Hollow Steel Stub Columns

Authors: Mostefa Mimoune

Abstract:

Test results on concrete-filled steel tubular stub columns under axial compression are presented. The study was mainly focused on square hollow section SHS columns; 27 columns were tested. The main experimental parameters considered were the thickness of the tube, columns length and cross section sizes. Existing design codes and theoretical model were used to predict load-carrying capacities of composite section to compare the accuracy of the predictions by using the recommendations of DTR-BC (Algerian code), CSA (Canadian standard), AIJ, EC4, DBJ, AISC, BS and EC4. Experimental results indicate that the studied parameters have significant influence on both the compressive load capacity and the column failure mode. All codes used in the comparison, provide higher resistance compared to those of tests. Equation method has been suggested to evaluate the axial capacity of the composite section seem to be in agreement with tests.

Keywords: axial loading, composite section, concrete-filled steel tubes, square hollow section

Procedia PDF Downloads 360
1928 Effect of Longitudinal Fins on Air-Flow Characteristics for Wing-Shaped Tubes in Cross Flow

Authors: Sayed Ahmed El Sayed, Osama M. Mesalhy, Mohamed A. Abdelatief

Abstract:

A numerical study has been conducted to clarify fluid flow characteristics, pressure distributions, and skin friction coefficient over a wing-shaped tubes bundle in staggered arrangement with the placement of longitudinal fins (LF) at downstream position of the tube. The air-side Rea were at 1.8 x 103 to 9.7 x 103. The tubes bundle were employed with various fin height [hf] and fin thickness (δ) from (2 mm ≤ hf ≤ 12 mm) and (1.5 mm ≤ δ ≤ 3.5 mm) respectively at the considered Rea range. The flow pattern around the staggered wing-shaped tubes bundle was predicted using the commercial CFD FLUENT 6.3.26 software package. The distribution of average skin friction coefficient around wing-shaped tubes bundle is studied. Correlation of pressure drop coefficient Pdc and skin friction coefficient (Cf) in terms of Rea, design parameters for the studied cases were presented. Results indicated that the values of Pdc for hf = 6 mm are lower than these of NOF and hf = 2 mm by about 11 % and 13 % respectively for considered Rea range. Cf decreases as Rea increases. LFTH with hf = 6 mm offers lower form drag than that with hf = 12 mm and that of NOF. The lowest values of the pumping power are achieved for arrangements of hf = 6 mm for the considered Rea range. δ has negligible effect on skin friction coefficient, while has a slightly variation in ∆Pa. The wing-shaped tubes bundle heat exchanger with hf = 6 mm has the lowest values of ∆Pa, Pdc, Cf, and pumping power and hence the best performance comparing with the other bundles. Comparisons between the experimental and numerical results of the present study and those obtained by similar previous studies showed good agreements.

Keywords: longitudinal fins, skin friction, flow characteristics, FLUENT, wing-shaped tubes

Procedia PDF Downloads 522
1927 Condensation Heat Transfer and Pressure Drop of R-134a Flowing inside Dimpled Tubes

Authors: Kanit Aroonrat, Somchai Wongwises

Abstract:

A heat exchanger is one of the vital parts in a wide variety of applications. The tube with surface modification is generally referred to as an enhanced tube. With this, the thermal performance of the heat exchanger is improved. A dimpled tube is one of many kinds of enhanced tube. The heat transfer and pressure drop of two-phase flow inside dimpled tubes have received little attention in the literature, despite of having an important role in the development of refrigeration and air conditioning systems. As a result, the main aim of this study is to investigate the condensation heat transfer and pressure drop of refrigerant-134a flowing inside dimpled tubes. The test section is a counter-flow double-tube heat exchanger, which the refrigerant flows in the inner tube and water flows in the annulus. The inner tubes are one smooth tube and three dimpled tubes with different helical pitches. All test tubes are made from copper with an inside diameter of 8.1 mm and length of 1500 mm. The experiments are conducted over mass fluxes ranging from 300 to 500 kg/m²s, heat flux ranging from 10 to 20 kW/m², and condensing temperature ranging from 40 to 50 ˚C. The results show that all dimpled tubes provide higher heat transfer coefficient and frictional pressure drop compared to the smooth tube. In addition, the heat transfer coefficient and frictional pressure drop increase with decreasing of helical pitch. It can be observed that the dimpled tube with lowest helical pitch yields the heat transfer enhancement in the range of 60-89% with the frictional pressure drop increase of 289-674% in comparison to the smooth tube.

Keywords: condensation, dimpled tube, heat transfer, pressure drop

Procedia PDF Downloads 197