Search results for: cellular targeting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1366

Search results for: cellular targeting

1216 Profiling of the Cell-Cycle Related Genes in Response to Efavirenz, a Non-Nucleoside Reverse Transcriptase Inhibitor in Human Lung Cancer

Authors: Rahaba Marima, Clement Penny

Abstract:

The Health-related quality of life (HRQoL) for HIV positive patients has improved since the introduction of the highly active antiretroviral treatment (HAART). However, in the present HAART era, HIV co-morbidities such as lung cancer, a non-AIDS (NAIDS) defining cancer have been documented to be on the rise. Under normal physiological conditions, cells grow, repair and proliferate through the cell-cycle as cellular homeostasis is important in the maintenance and proper regulation of tissues and organs. Contrarily, the deregulation of the cell-cycle is a hallmark of cancer, including lung cancer. The association between lung cancer and the use of HAART components such as Efavirenz (EFV) is poorly understood. This study aimed at elucidating the effects of EFV on the cell-cycle genes’ expression in lung cancer. For this purpose, the human cell-cycle gene array composed of 84 genes was evaluated on both normal lung fibroblasts (MRC-5) cells and adenocarcinoma (A549) lung cells, in response to 13µM EFV or 0.01% vehicle. The ±2 up or down fold change was used as a basis of target selection, with p < 0.05. Additionally, RT-qPCR was done to validate the gene array results. Next, In-silico bio-informatics tools, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Reactome, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Ingenuity Pathway Analysis (IPA) were used for gene/gene interaction studies as well as to map the molecular and biological pathways influenced by the identified targets. Interestingly, the DNA damage response (DDR) pathway genes such as p53, Ataxia telangiectasia mutated and Rad3 related (ATR), Growth arrest and DNA damage inducible alpha (GADD45A), HUS1 checkpoint homolog (HUS1) and Role of radiation (RAD) genes were shown to be upregulated following EFV treatment, as revealed by STRING analysis. Additionally, functional enrichment analysis by the KEGG pathway revealed that most of the differentially expressed gene targets function at the cell-cycle checkpoint such as p21, Aurora kinase B (AURKB) and Mitotic Arrest Deficient-Like 2 (MAD2L2). Core analysis by IPA revealed that p53 downstream targets such as survivin, Bcl2, and cyclin/cyclin dependent kinases (CDKs) complexes are down-regulated, following exposure to EFV. Furthermore, Reactome analysis showed a significant increase in cellular response to stress genes, DNA repair genes, and apoptosis genes, as observed in both normal and cancerous cells. These findings implicate the genotoxic effects of EFV on lung cells, provoking the DDR pathway. Notably, the constitutive expression of this pathway (DDR) often leads to uncontrolled cell proliferation and eventually tumourigenesis, which could be the attribute of HAART components’ (such as EFV) effect on human cancers. Targeting the cell-cycle and its regulation holds a promising therapeutic intervention to the potential HAART associated carcinogenesis, particularly lung cancer.

Keywords: cell-cycle, DNA damage response, Efavirenz, lung cancer

Procedia PDF Downloads 123
1215 The Impact of Low-Concentrated Acidic Electrolyzed Water on Foodborne Pathogens

Authors: Ewa Brychcy, Natalia Ulbin-Figlewicz, Dominika Kulig, Żaneta Król, Andrzej Jarmoluk

Abstract:

Acidic electrolyzed water (AEW) is an alternative with environmentally friendly broad spectrum microbial decontamination. It is produced by membrane electrolysis of a dilute NaCl solution in water ionizers. The aim of the study was to evaluate the effectiveness of low-concentrated AEW in reducing selected foodborne pathogens and to examine its bactericidal effect on cellular structures of Escherichia coli. E. coli and S. aureus cells were undetectable after 10 minutes of contact with electrolyzed salt solutions. Non-electrolyzed solutions did not inhibit the growth of bacteria. AE water was found to destroy the cellular structures of the E. coli. The use of more concentrated salt solutions and prolonged electrolysis time from 5 to 10 minutes resulted in a greater changes of rods shape as compared to the control and non-electrolyzed NaCl solutions. This research showed that low-concentrated acid electrolyzed water is an effective method to significantly reduce pathogenic microorganisms and indicated its potential application for decontamination of meat.

Keywords: acidic electrolyzed water, foodborne pathogens, meat decontamination, membrane electrolysis

Procedia PDF Downloads 466
1214 Synthesis of Highly Stable Multi-Functional Iron Oxide Nanoparticles for Active Mitochondrial Targeting in Immunotherapy

Authors: Masome Moeni, Roya Abedizadeh, Elham Aram, Hamid Sadeghi-Abandansari, Davood Sabour, Robert Menzel, Ali Hassanpour

Abstract:

Mitochondria- targeting immunogenic cell death inducers (MT-ICD) have been designed to trigger intrinsic apoptosis signalling pathway in malignant cells and revive the antitumour immune system. MT-ICD inducers have considered to be non-specific, which can deteriorate the ability to initiate mitochondria-selective oxidative stress, causing high toxicity. Iron oxide nanoparticles (IONPs) can be an ideal candidate as vehicles for utilizing in immunotherapy due to their biocompatibility, modifiable surface chemistry, magnetic characteristics and multi-functional applications in single platform. These types of NPs can facilitate a real time imaging which can provide an effective strategy to analyse pharmacokinetic parameters of nano-formula, including blood circulation time, targeted and controlled release at tumour microenvironment. To our knowledge, the conjugation of IONPs with MT-ICD and oxaliplatin (a chemotherapeutic agent used for the treatment of colorectal cancer) for immunotherapy have not been investigated. Herein, IONPs were generated via co-precipitation reaction at high temperatures, followed by coating the colloidal suspension with tetraethyl orthosilicate and 3-aminopropyltriethoxysilane to optimize their bio-compatibility, preventing aggregation and maintaining stability at physiological pH, then functionalized with (3-carboxypropyl) triphenyl phosphonium bromide for mitochondrial delivery. Analytical results demonstrated the successful process of IONPs functionalization. In particular, the colloidal particles of doped IONPs exhibited an excellent stability and dispersibility. The resultant particles were also successfully loaded with the oxaliplatin for an active mitochondrial targeting in immunotherapy, resulting in well-maintained super-paramagnetic characteristics and stable structure of the functionalized IONPs with nanoscale particle sizes.

Keywords: Immunotherapy, mitochondria, cancer, iron oxide nanoparticle

Procedia PDF Downloads 53
1213 Determining Cellular Biomarkers Sensitive to Low Damaging Exposure

Authors: Svetlana Guryeva, Inna Kornienko, Elena Petersen

Abstract:

At present, translational medicine is a rapidly developing branch of biomedicine. The main idea of translational medicine is a practical application of fundamental research. One of the possible applications for translational medicine is researching therapies that improve human age-related organism condition. To fill the gap between experiments and clinical practice, it is necessary to create the standardized system for the investigation of different effects on cellular aging models. In this study, primary human fibroblasts derived from patients of different ages were used as a cellular aging model. The senescence-associated β-galactosidase activity, lipofuscin, γ-H2AX, the reactive oxygen species level, and cell death markers (annexin V/propidium iodide) were used as biomarkers of the cell functional state. The effects of damaging exposures (oxidative stress and heat shock), potential positive factors (metformin and acetaminophen), and their combinations were investigated using the described biomarkers. Oxidative stress and heat shock caused the increase in the levels of all biomarkers, and only the cells from young patients partly coped with stress 3 days after the exposures. Metformin improved the state of pretreatment cells from young and old patients. The acetaminophen did not show significant changes in the biomarker levels compare to the action of metformin. This study proved the opportunity to develop a standardized screening system based on biomarkers of the cell functional state to identify potential positive or negative effects of some physical and chemical exposures. Moreover, such a system can be useful for the aims of regenerative medicine to determine the effect of cell pretreatment before transplantation.

Keywords: biomarkers, primary fibroblasts, regenerative medicine, senescence, test system, translational medicine

Procedia PDF Downloads 375
1212 Surface-Quenching Induced Cell Opening Technique in Extrusion of Thermoplastic Foamed Sheets

Authors: Abhishek Gandhi, Naresh Bhatnagar

Abstract:

In this article, a new technique has been developed to manufacture open cell extruded thermoplastic foamed sheets with the aid of extrudate surface-quenching phenomenon. As the extrudate foam exits the die, its surface is rapidly quenched which results in freezing of cells on the surface, while the cells at the core continue to grow and leads to development of open-cellular microstructure at the core. Influence of chill roll temperature was found to be extremely significant in developing porous morphological attributes. Subsequently, synergistic effect of blowing agent content and chill roll temperature was examined for their expansion ratio and open-cell microstructure. Further, chill roll rotating speed was found extremely significant in obtaining open-cellular foam structures. This study intends to enhance the understanding of researchers working in the area of open-cell foam processing.

Keywords: foams, porous materials, morphology, composite, microscopy, open-cell foams

Procedia PDF Downloads 421
1211 Development of Ketorolac Tromethamine Encapsulated Stealth Liposomes: Pharmacokinetics and Bio Distribution

Authors: Yasmin Begum Mohammed

Abstract:

Ketorolac tromethamine (KTM) is a non-steroidal anti-inflammatory drug with a potent analgesic and anti-inflammatory activity due to prostaglandin related inhibitory effect of drug. It is a non-selective cyclo-oxygenase inhibitor. The drug is currently used orally and intramuscularly in multiple divided doses, clinically for the management arthritis, cancer pain, post-surgical pain, and in the treatment of migraine pain. KTM has short biological half-life of 4 to 6 hours, which necessitates frequent dosing to retain the action. The frequent occurrence of gastrointestinal bleeding, perforation, peptic ulceration, and renal failure lead to the development of other drug delivery strategies for the appropriate delivery of KTM. The ideal solution would be to target the drug only to the cells or tissues affected by the disease. Drug targeting could be achieved effectively by liposomes that are biocompatible and biodegradable. The aim of the study was to develop a parenteral liposome formulation of KTM with improved efficacy while reducing side effects by targeting the inflammation due to arthritis. PEG-anchored (stealth) and non-PEG-anchored liposomes were prepared by thin film hydration technique followed by extrusion cycle and characterized for in vitro and in vivo. Stealth liposomes (SLs) exhibited increase in percent encapsulation efficiency (94%) and 52% percent of drug retention during release studies in 24 h with good stability for a period of 1 month at -20°C and 4°C. SLs showed about maximum 55% of edema inhibition with significant analgesic effect. SLs produced marked differences over those of non-SL formulations with an increase in area under plasma concentration time curve, t₁/₂, mean residence time, and reduced clearance. 0.3% of the drug was detected in arthritic induced paw with significantly reduced drug localization in liver, spleen, and kidney for SLs when compared to other conventional liposomes. Thus SLs help to increase the therapeutic efficacy of KTM by increasing the targeting potential at the inflammatory region.

Keywords: biodistribution, ketorolac tromethamine, stealth liposomes, thin film hydration technique

Procedia PDF Downloads 272
1210 Cellular Senescence and Neuroinflammation Following Controlled Cortical Impact Traumatic Brain Injury in Juvenile Mice

Authors: Zahra F. Al-Khateeb, Shenel Shekerzade, Hasna Boumenar, Siân M. Henson, Jordi L. Tremoleda, A. T. Michael-Titus

Abstract:

Traumatic brain injury (TBI) is the leading cause of disability and death in young adults and also increases the risk ofneurodegeneration. The mechanisms linking moderate to severe TBI to neurodegeneration are not known. It has been proposed that cellular senescence inductionpost-injury could amplify neuroinflammation and induce long-term changes. The impact of these processes after injury to an immature brain has not been characterised yet. We carried out a controlled cortical impact injury (CCI) in juvenile 1 month-old male CD1 mice. Animals were anesthetised and received a unilateral CCI injury. The sham group received anaesthesia and had a craniotomy. A naïve group had no intervention. The brain tissue was analysed at 5 days and 35 days post-injury using immunohistochemistry and markers for microglia, astrocytes, and senescence. Compared tonaïve animals, injured mice showed an increased microglial and astrocytic reaction early post-injury, as reflected in Iba1 and GFAP markers, respectively; the GFAP increase persisted in the later phase. The senescence analysis showed a significant increase inγH2AX-53BP1 nuclear foci, 8-oxoguanine, p19ARF, p16INK4a, and p53 expression in naïve vs. sham groups and naïve vs. CCI groups, at 5 dpi. At 35 days, the difference was no longer statistically significant in all markers. The injury induced a decrease p21 expression vs. the naïve group, at 35 dpi. These results indicate the induction of a complex senescence response after immature brain injury. Some changes occur early and may reflect the activation/proliferation of non-neuronal cells post-injury that had been hindered, whereas changes such as p21 downregulation may reflect a delayed response and pro-repair processes.

Keywords: cellular senescence, traumatic brain injury, brain injury, controlled cortical impact

Procedia PDF Downloads 117
1209 A Stokes Optimal Control Model of Determining Cellular Interaction Forces during Gastrulation

Authors: Yuanhao Gao, Ping Lin, Kees Weijer

Abstract:

An optimal control system model is proposed for the cell flow in the process of chick embryo gastrulation in this paper. The target is to determine the cellular interaction forces which are hard to measure. This paper will take an approach to investigate the forces with the idea of the inverse problem. By choosing the forces as the control variable and regarding the cell flow as Stokes fluid, an objective functional will be established to match the numerical result of cell velocity with the experimental data. So that the forces could be determined by minimizing the objective functional. The Lagrange multiplier method is utilized to derive the state and adjoint equations consisting the optimal control system, which specifies the first-order necessary conditions. Finite element method is used to discretize and approximate equations. A conjugate gradient algorithm is given for solving the minimum solution of the system and determine the forces.

Keywords: optimal control model, Stokes equation, conjugate gradient method, finite element method, chick embryo gastrulation

Procedia PDF Downloads 226
1208 Examples of Techniques and Algorithms Used in Wlan Security

Authors: Vahid Bairami Rad

Abstract:

Wireless communications offer organizations and users many benefits such as portability and flexibility, increased productivity, and lower installation costs. Wireless networks serve as the transport mechanism between devices and among devices and the traditional wired networks (enterprise networks and the internet). Wireless networks are many and diverse but are frequently categorized into three groups based on their coverage range: WWAN, WLAN, and WPAN. WWAN, representing wireless wide area networks, includes wide coverage area technologies such as 2G cellular, Cellular Digital Packet Data (CDPD), Global System for Mobile Communications (GSM), and Mobitex. WLAN, representing wireless local area networks, includes 802.11, Hyper lan, and several others. WPAN, represents wireless personal area network technologies such as Bluetooth and Infrared. The security services are provided largely by the WEP (Wired Equivalent Privacy) protocol to protect link-level data during wireless transmission between clients and access points. That is, WEP does not provide end-to-end security but only for the wireless portion of the connection.

Keywords: wireless lan, wired equivalent privacy, wireless network security, wlan security

Procedia PDF Downloads 535
1207 Role of Endonuclease G in Exogenous DNA Stability in HeLa Cells

Authors: Vanja Misic, Mohamed El-Mogy, Yousef Haj-Ahmad

Abstract:

Endonuclease G (EndoG) is a well conserved mitochondrio-nuclear nuclease with dual lethal and vital roles in the cell. The aim of our study was to examine whether EndoG exerts its nuclease activity on exogenous DNA substrates such as plasmid DNA (pDNA), considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA and nuclease activity in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four day time-course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus, targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances it may non-specifically cleave intracellular DNA regardless of its origin. These findings make it unlikely that targeting of EndoG is a viable strategy for improving the duration and level of transgene expression from non-viral DNA vectors in gene therapy efforts.

Keywords: EndoG, silencing, exogenous DNA stability, HeLa cells

Procedia PDF Downloads 439
1206 Hsa-miR-192-5p, and Hsa-miR-129-5p Prominent Biomarkers in Regulation Glioblastoma Cancer Stem Cells Genes Microenvironment

Authors: Rasha Ahmadi

Abstract:

Glioblastoma is one of the most frequent brain malignancies, having a high mortality rate and limited survival in individuals with this malignancy. Despite different treatments and surgery, recurrence of glioblastoma cancer stem cells may arise as a subsequent tumor. For this reason, it is crucial to research the markers associated with glioblastoma stem cells and specifically their microenvironment. In this study, using bioinformatics analysis, we analyzed and nominated genes in the microenvironment pathways of glioblastoma stem cells. In this study, an appropriate database was selected for analysis by referring to the GEO database. This dataset comprised gene expression patterns in stem cells derived from glioblastoma patients. Gene clusters were divided as high and low expression. Enrichment databases such as Enrichr, STRING, and GEPIA were utilized to analyze the data appropriately. Finally, we extracted the potential genes 2700 high-expression and 1100 low-expression genes are implicated in the metabolic pathways of glioblastoma cancer progression. Cellular senescence, MAPK, TNF, hypoxia, zimosterol biosynthesis, and phosphatidylinositol metabolism pathways were substantially expressed and the metabolic pathways were downregulated. After assessing the association between protein networks, MSMP, SOX2, FGD4 ,and CNTNAP3 genes with high expression and DMKN and SBSN genes with low were selected. All of these genes were observed in the survival curve, with a survival of fewer than 10 percent over around 15 months. hsa-mir-192-5p, hsa-mir-129-5p, hsa-mir-215-5p, hsa-mir-335-5p, and hsa-mir-340-5p played key function in glioblastoma cancer stem cells microenviroments. We introduced critical genes through integrated and regular bioinformatics studies by assessing the amount of gene expression profile data that can play an important role in targeting genes involved in the energy and microenvironment of glioblastoma cancer stem cells. Have. This study indicated that hsa-mir-192-5p, and hsa-mir-129-5p are appropriate candidates for this.

Keywords: Glioblastoma, Cancer Stem Cells, Biomarker Discovery, Gene Expression Profiles, Bioinformatics Analysis, Tumor Microenvironment

Procedia PDF Downloads 106
1205 Comparison of Phytochemicals in Grapes and Wine from Shenton Park Winery

Authors: Amanda Sheard, Garry Lee, Katherine Stockham

Abstract:

Introduction: Health benefits associated with wine consumption have been well documented; these include anticancer, anti-inflammatory, and cardiovascular protection. The majority of these health benefits have been linked to polyphenols found within wine and grapes. Once consumed polyphenols exhibit free radical quenching capabilities. Environmental factors such as rainfall, temperature, CO2 levels and sunlight exposure have been shown to affect the polyphenol content of grapes. The objective of this work was to evaluate the effect of growing conditions on the antioxidant capacity of grapes obtained from a single plot vineyard in Perth. This was achieved through the analysis of samples using; oxygen radical antioxidant capacity (ORAC), cellular antioxidant activity (CAA) in human red blood cells, ICP-MS and ICP-OES, total polyphenols (PP’s), and total flavonoid’s (FLa). The data obtained was compared to observed climate data. The 14 Selected Vitis Vinefera L. cultivars included Cabernet franc, Cabernet Sauvignon, Carnelian, Chardonnay, Grenache, Melbec, Merlot, Orange muscat, Rousanne, Sauvignon Blanc, Shiraz, Tempernillo, Verdelho, and Voignier. Results: Notable variation’s between cultivars included results ranging from 125 mg/100 g-350 mg/100 g for PP’s, 93 mg/100 g–300 mg/100 g for FLa, 13 mM T.E/kg–33 mM T.E/kg for ORAC and 0.3 mM Q.E/kg–27 mM Q.E/kg CAA were found between red and white grape cultivars. No correlation was found between CAA and the ORAC obtained in this study; except that white cultivars were consistently lower than red. ICP analysis showed that seeds contained the highest concentration of copper followed by skins and flesh of the grape. A positive correlation between copper and ORAC was found. The ORAC, PP’s, and FLa in red grapes were consistently higher than white grape cultivars; these findings were supported by literature values. Significance: The cellular antioxidant activities of white and red wine cultivars were used to compare the bioactivity of these grapes against the chemical ORAC measurement. The common method of antioxidant activity measurement is the chemical value from ORAC analysis; however this may not reflect the activity within the human body. Hence, the measurements were also carried out using the cellular antioxidant activity to perform a comparison. Additionally, the study explored the influence of weather systems such as El Niño and La Niña on the polyphenol content of Australian wine cultivars grown in Perth.

Keywords: oxygen radical antioxidant activity, cellular antioxidant activity, total polyphenols, total flavonoids, wine grapes, climate

Procedia PDF Downloads 263
1204 Fostering Student Interest in Senior Secondary Two Biology Using Prior Knowledge of Behavioural Objectives and Assertive Questioning Strategies in Benue State, Nigeria

Authors: John Odo Ogah

Abstract:

The study investigated ways of fostering students’ interest in senior secondary two Biology, using prior knowledge of behavioural objectives and assertive questioning strategies in Benue State of Nigeria. A quasi-experimental research design was adopted; the population comprised 8,571 senior Secondary two students. The sample consisted of 265 SSII biology students selected from six government schools in the study area using a multi-staged sampling technique. Data was generated using the Biology Interest Inventory (BII). The instrument was validated and subjected to reliability analysis using Cronbach’s Alpha formula, which yielded a coefficient of 0.73. Three research questions guided the study, while three hypotheses were formulated and tested. Data collected were analyzed using means, bar graphs, and standard deviations to answer the research questions, while analysis of covariance (ANCOVA) was employed in testing the hypotheses at 0.05 level of significance. The finding revealed that there is a significant difference in the mean interest ratings of students taught cellular respiration and excretory system using assertive questioning strategy, prior knowledge of behavioural objectives strategy and lecture method (p=0.000˂0.05). There is no significant difference in the mean interest ratings of male and female students taught cellular respiration and excretory systems using an assertive questioning strategy (p=0.790>0.05). There is significant difference in the mean interest ratings of male and female students taught cellular respiration and execratory system using prior knowledge of behavioural objectives strategy (p=0.028˂0.05). It was recommended, among others, that teachers should endeavor to utilize prior knowledge of behavioral objectives strategy in teaching biology in order to harness its benefits as it enhances students’ interest.

Keywords: interest, assertive, questioning, prior, knowledge

Procedia PDF Downloads 15
1203 A Comparison of Sulfur Mustard Cytotoxic Effects on the Two Human Lung Origin Cell Lines

Authors: P. Jost, L. Muckova, M. Matula, J. Pejchal, D. Jun, R. Stetina

Abstract:

Sulfur mustard (bis(2-chlorethyl) sulfide) is highly toxic, chemical warfare agent that has been used in the past in several armed conflicts. Except for the skin, respiratory tract is one of the important routes of exposure. The elucidation and understanding of the mechanism of toxicity of SM have been effort intensive research. The multiple targets character of SM caused cellular damage resulted in activation of many different mechanisms which contribute to cellular response and participate in the final cytopathology effect. In our present work, we compared time-dependent changes in sulfur mustard exposed adult human lung fibroblasts NHLF and lung epithelial alveolar cell line A-549. Cell viability (MTT assay, Calcein-AM assay, and xCELLigence - real-time cell analysis), apoptosis (flow cytometry), mitochondrial membrane potential (Δψm, flow cytometry), reactive oxygen species induction (DC and cell cycle distribution (flow cytometry) were studied. We observed significantly decreased mitochondrial membrane potential and subsequent induction of apoptosis correlating with decreased cellular viability in the sulfur mustard exposed cells. In low concentrations, sulfur mustard-induced S-phase cell cycle arrest, on the other hand, high concentrations, cell cycle phase distribution of sulfur mustard exposed cells resembled cell cycle phase distribution of control group, which implies nonspecific cell cycle inhibition. Epithelial cells A-549 was found as more sensible to sulfur mustard toxicity. Acknowledgements: This work was supported by a long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence.

Keywords: apoptosis, cell cycle, cytotoxicity, sulfur mustard

Procedia PDF Downloads 164
1202 Instability of H2-O2-CO2 Premixed Flames on Flat Burner

Authors: Kaewpradap Amornrat, Endo Takahiro, Kadowaki Satoshi

Abstract:

The combustion of hydrogen-oxygen (H2-O2) mixtures was investigated to consider the reduction of carbon dioxide (CO2) and nitrogen oxide (NOx) as the greenhouse emission. Normally, the flame speed of combustion H2-O2 mixtures are very fast thus it is necessary to control the limit of mixtures with CO2 addition as H2-O2-CO2 combustion. The limit of hydrogen was set and replaced by CO2 with O2:CO2 ratio as 1:3.76, 1:4 and 1:5 for this study. In this study, the combustion of H2-O2 -CO2 on flat burner at equivalence ratio =0.5 was investigated for 10, 15 and 20 L/min of flow rate mixtures. When the ratio of CO2 increases, the power spectral density is lower, the size of attractor and cellular flame become larger because the decrease of hydrogen replaced by CO2 affects the diffusive-thermal instability. Moreover, the flow rate mixtures increases, the power spectral density increases, the size of reconstructed attractor and cell size become smaller due to decreasing of instability. The results show that the variation of CO2 and mixture flow rate affects the instability of cellular premixed flames on flat burner.

Keywords: instability, H2-O2-CO2 combustion, flat burner, diffusive-thermal instability

Procedia PDF Downloads 327
1201 On the Theory of Persecution

Authors: Aleksander V. Zakharov, Marat R. Bogdanov, Ramil F. Malikov, Irina N. Dumchikova

Abstract:

Classification of persecution movement laws is proposed. Modes of persecution in number of specific cases were researched. Modes of movement control using GLONASS/GPS are discussed.

Keywords: UAV Management, mathematical algorithms of targeting and persecution, GLONASS, GPS

Procedia PDF Downloads 312
1200 Oxidative Stress Related Alteration of Mitochondrial Dynamics in Cellular Models

Authors: Orsolya Horvath, Laszlo Deres, Krisztian Eros, Katalin Ordog, Tamas Habon, Balazs Sumegi, Kalman Toth, Robert Halmosi

Abstract:

Introduction: Oxidative stress induces an imbalance in mitochondrial fusion and fission processes, finally leading to cell death. The two antioxidant molecules, BGP-15 and L2286 have beneficial effects on mitochondrial functions and on cellular oxidative stress response. In this work, we studied the effects of these compounds on the processes of mitochondrial quality control. Methods: We used H9c2 cardiomyoblast and isolated neonatal rat cardiomyocytes (NRCM) for the experiments. The concentration of stressors and antioxidants was beforehand determined with MTT test. We applied 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG) in 125 µM, 400 µM and 800 µM concentrations for 4 and 8 hours on H9c2 cells. H₂O₂ was applied in 150 µM and 300 µM concentration for 0.5 and 4 hours on both models. L2286 was administered in 10 µM, while BGP-15 in 50 µM doses. Cellular levels of the key proteins playing role in mitochondrial dynamics were measured in Western blot samples. For the analysis of mitochondrial network dynamics, we applied electron microscopy and immunocytochemistry. Results: Due to MNNG treatment the level of fusion proteins (OPA1, MFN2) decreased, while the level of fission protein DRP1 elevated markedly. The levels of fusion proteins OPA1 and MNF2 increased in the L2286 and BGP-15 treated groups. During the 8 hour treatment period, the level of DRP1 also increased in the treated cells (p < 0.05). In the H₂O₂ stressed cells, administration of L2286 increased the level of OPA1 in both H9c2 and NRCM models. MFN2 levels in isolated neonatal rat cardiomyocytes raised considerably due to BGP-15 treatment (p < 0.05). L2286 administration decreased the DRP1 level in H9c2 cells (p < 0.05). We observed that the H₂O₂-induced mitochondrial fragmentation could be decreased by L2286 treatment. Conclusion: Our results indicated that the PARP-inhibitor L2286 has beneficial effect on mitochondrial dynamics during oxidative stress scenario, and also in the case of directly induced DNA damage. We could make the similar conclusions in case of BGP-15 administration, which, via reducing ROS accumulation, propagates fusion processes, this way aids preserving cellular viability. Funding: GINOP-2.3.2-15-2016-00049; GINOP-2.3.2-15-2016-00048; GINOP-2.3.3-15-2016-00025; EFOP-3.6.1-16-2016-00004; ÚNKP-17-4-I-PTE-209

Keywords: H9c2, mitochondrial dynamics, neonatal rat cardiomyocytes, oxidative stress

Procedia PDF Downloads 125
1199 Wireless Signal Propagation in Glass Windows

Authors: Syed Irfan Sohail, Syed Muzahir Abbas

Abstract:

This paper presents theoretical transmission response analysis of RF/Microwave signals propagating through a single- and multi-layer float glass panels. These signals are GSM cellular/mobile, GPS, PCS, VHF/UHF and mobile broadband signals that lie in 0-2 GHz range. In theoretical analysis and the experiments conducted, significant transmission response with minimum attenuation was found in all the panels for those signals. Through detailed parametric study, it was further observed that these panels can be further optimized to transmit the desired frequency signals while blocking the others. Moreover, with number of practical investigations, it was also found that the pass-band ripples, cut-off frequency and in-band attenuation of different transmission bands can be determined by the number of panels used and the gap kept between those panels. This allows the designers to optimize the outdoor glass-window-panels to meet some specific wireless cellular and mobile communication needs. Presented here are the predicted and measured results of a single-, dual- and a triple-layer float glass panel with a detailed discussion on the propagation phenomenon of RF/Microwave signals for each of the three float glass-panel.

Keywords: cutt-off, energy-saving glass, frequency, microwave, pass-band, RF

Procedia PDF Downloads 46
1198 A Parallel Cellular Automaton Model of Tumor Growth for Multicore and GPU Programming

Authors: Manuel I. Capel, Antonio Tomeu, Alberto Salguero

Abstract:

Tumor growth from a transformed cancer-cell up to a clinically apparent mass spans through a range of spatial and temporal magnitudes. Through computer simulations, Cellular Automata (CA) can accurately describe the complexity of the development of tumors. Tumor development prognosis can now be made -without making patients undergo through annoying medical examinations or painful invasive procedures- if we develop appropriate CA-based software tools. In silico testing mainly refers to Computational Biology research studies of application to clinical actions in Medicine. To establish sound computer-based models of cellular behavior, certainly reduces costs and saves precious time with respect to carrying out experiments in vitro at labs or in vivo with living cells and organisms. These aim to produce scientifically relevant results compared to traditional in vitro testing, which is slow, expensive, and does not generally have acceptable reproducibility under the same conditions. For speeding up computer simulations of cellular models, specific literature shows recent proposals based on the CA approach that include advanced techniques, such the clever use of supporting efficient data structures when modeling with deterministic stochastic cellular automata. Multiparadigm and multiscale simulation of tumor dynamics is just beginning to be developed by the concerned research community. The use of stochastic cellular automata (SCA), whose parallel programming implementations are open to yield a high computational performance, are of much interest to be explored up to their computational limits. There have been some approaches based on optimizations to advance in multiparadigm models of tumor growth, which mainly pursuit to improve performance of these models through efficient memory accesses guarantee, or considering the dynamic evolution of the memory space (grids, trees,…) that holds crucial data in simulations. In our opinion, the different optimizations mentioned above are not decisive enough to achieve the high performance computing power that cell-behavior simulation programs actually need. The possibility of using multicore and GPU parallelism as a promising multiplatform and framework to develop new programming techniques to speed-up the computation time of simulations is just starting to be explored in the few last years. This paper presents a model that incorporates parallel processing, identifying the synchronization necessary for speeding up tumor growth simulations implemented in Java and C++ programming environments. The speed up improvement that specific parallel syntactic constructs, such as executors (thread pools) in Java, are studied. The new tumor growth parallel model is proved using implementations with Java and C++ languages on two different platforms: chipset Intel core i-X and a HPC cluster of processors at our university. The parallelization of Polesczuk and Enderling model (normally used by researchers in mathematical oncology) proposed here is analyzed with respect to performance gain. We intend to apply the model and overall parallelization technique presented here to solid tumors of specific affiliation such as prostate, breast, or colon. Our final objective is to set up a multiparadigm model capable of modelling angiogenesis, or the growth inhibition induced by chemotaxis, as well as the effect of therapies based on the presence of cytotoxic/cytostatic drugs.

Keywords: cellular automaton, tumor growth model, simulation, multicore and manycore programming, parallel programming, high performance computing, speed up

Procedia PDF Downloads 214
1197 Fluorescence in situ Hybridization (FISH) Detection of Bacteria and Archaea in Fecal Samples

Authors: Maria Nejjari, Michel Cloutier, Guylaine Talbot, Martin Lanthier

Abstract:

The fluorescence in situ hybridization (FISH) is a staining technique that allows the identification, detection and quantification of microorganisms without prior cultivation by means of epifluorescence and confocal laser scanning microscopy (CLSM). Oligonucleotide probes have been used to detect bacteria and archaea that colonize the cattle and swine digestive systems. These bacterial strains have been obtained from fecal samples issued from cattle manure and swine slurry. The collection of these samples has been done at 3 different pit’s levels A, B and C with same height. Two collection depth levels have been taken in consideration, one collection level just under the pit’s surface and the second one at the bottom of the pit. Cells were fixed and FISH was performed using oligonucleotides of 15 to 25 nucleotides of length associated with a fluorescent molecule Cy3 or Cy5. The double hybridization using Cy3 probe targeting bacteria (Cy3-EUB338-I) along with a Cy5 probe targeting Archaea (Gy5-ARCH915) gave a better signal. The CLSM images show that there are more bacteria than archaea in swine slurry. However, the choice of fluorescent probes is critical for getting the double hybridization and a unique signature for each microorganism. FISH technique is an easy way to detect pathogens like E. coli O157, Listeria, Salmonella that easily contaminate water streams, agricultural soils and, consequently, food products and endanger human health.

Keywords: archaea, bacteria, detection, FISH, fluorescence

Procedia PDF Downloads 360
1196 Proposing an Algorithm to Cluster Ad Hoc Networks, Modulating Two Levels of Learning Automaton and Nodes Additive Weighting

Authors: Mohammad Rostami, Mohammad Reza Forghani, Elahe Neshat, Fatemeh Yaghoobi

Abstract:

An Ad Hoc network consists of wireless mobile equipment which connects to each other without any infrastructure, using connection equipment. The best way to form a hierarchical structure is clustering. Various methods of clustering can form more stable clusters according to nodes' mobility. In this research we propose an algorithm, which allocates some weight to nodes based on factors, i.e. link stability and power reduction rate. According to the allocated weight in the previous phase, the cellular learning automaton picks out in the second phase nodes which are candidates for being cluster head. In the third phase, learning automaton selects cluster head nodes, member nodes and forms the cluster. Thus, this automaton does the learning from the setting and can form optimized clusters in terms of power consumption and link stability. To simulate the proposed algorithm we have used omnet++4.2.2. Simulation results indicate that newly formed clusters have a longer lifetime than previous algorithms and decrease strongly network overload by reducing update rate.

Keywords: mobile Ad Hoc networks, clustering, learning automaton, cellular automaton, battery power

Procedia PDF Downloads 379
1195 The Regulation of the Cancer Epigenetic Landscape Lies in the Realm of the Long Non-coding RNAs

Authors: Ricardo Alberto Chiong Zevallos, Eduardo Moraes Rego Reis

Abstract:

Pancreatic adenocarcinoma (PDAC) patients have a less than 10% 5-year survival rate. PDAC has no defined diagnostic and prognostic biomarkers. Gemcitabine is the first-line drug in PDAC and several other cancers. Long non-coding RNAs (lncRNAs) contribute to the tumorigenesis and are potential biomarkers for PDAC. Although lncRNAs aren’t translated into proteins, they have important functions. LncRNAs can decoy or recruit proteins from the epigenetic machinery, act as microRNA sponges, participate in protein translocation through different cellular compartments, and even promote chemoresistance. The chromatin remodeling enzyme EZH2 is a histone methyltransferase that catalyzes the methylation of histone 3 at lysine 27, silencing local expression. EZH2 is ambivalent, it can also activate gene expression independently of its histone methyltransferase activity. EZH2 is overexpressed in several cancers and interacts with lncRNAs, being recruited to a specific locus. EZH2 can be recruited to activate an oncogene or silence a tumor suppressor. The lncRNAs misregulation in cancer can result in the differential recruitment of EZH2 and in a distinct epigenetic landscape, promoting chemoresistance. The relevance of the EZH2-lncRNAs interaction to chemoresistant PDAC was assessed by Real Time quantitative PCR (RT-qPCR) and RNA Immunoprecipitation (RIP) experiments with naïve and gemcitabine-resistant PDAC cells. The expression of several lncRNAs and EZH2 gene targets was evaluated contrasting naïve and resistant cells. Selection of candidate genes was made by bioinformatic analysis and literature curation. Indeed, the resistant cell line showed higher expression of chemoresistant-associated lncRNAs and protein coding genes. RIP detected lncRNAs interacting with EZH2 with varying intensity levels in the cell lines. During RIP, the nuclear fraction of the cells was incubated with an antibody for EZH2 and with magnetic beads. The RNA precipitated with the beads-antibody-EZH2 complex was isolated and reverse transcribed. The presence of candidate lncRNAs was detected by RT-qPCR, and the enrichment was calculated relative to INPUT (total lysate control sample collected before RIP). The enrichment levels varied across the several lncRNAs and cell lines. The EZH2-lncRNA interaction might be responsible for the regulation of chemoresistance-associated genes in multiple cancers. The relevance of the lncRNA-EZH2 interaction to PDAC was assessed by siRNA knockdown of a lncRNA, followed by the analysis of the EZH2 target expression by RT-qPCR. The chromatin immunoprecipitation (ChIP) of EZH2 and H3K27me3 followed by RT-qPCR with primers for EZH2 targets also assess the specificity of the EZH2 recruitment by the lncRNA. This is the first report of the interaction of EZH2 and lncRNAs HOTTIP and PVT1 in chemoresistant PDAC. HOTTIP and PVT1 were described as promoting chemoresistance in several cancers, but the role of EZH2 is not clarified. For the first time, the lncRNA LINC01133 was detected in a chemoresistant cancer. The interaction of EZH2 with LINC02577, LINC00920, LINC00941, and LINC01559 have never been reported in any context. The novel lncRNAs-EZH2 interactions regulate chemoresistant-associated genes in PDAC and might be relevant to other cancers. Therapies targeting EZH2 alone weren’t successful, and a combinatorial approach also targeting the lncRNAs interacting with it might be key to overcome chemoresistance in several cancers.

Keywords: epigenetics, chemoresistance, long non-coding RNAs, pancreatic cancer, histone modification

Procedia PDF Downloads 64
1194 Efficacy and Safety of COVID-19 Vaccination in Patients with Multiple Sclerosis: Looking Forward to Post-COVID-19

Authors: Achiron Anat, Mathilda Mandel, Mayust Sue, Achiron Reuven, Gurevich Michael

Abstract:

Introduction: As coronavirus disease 2019 (COVID-19) vaccination is currently spreading around the world, it is of importance to assess the ability of multiple sclerosis (MS) patients to mount an appropriate immune response to the vaccine in the context of disease-modifying treatments (DMT’s). Objectives: Evaluate immunity generated following COVID-19 vaccination in MS patients, and assess factors contributing to protective humoral and cellular immune responses in MS patients vaccinated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) virus infection. Methods: Review our recent data related to (1) the safety of PfizerBNT162b2 COVID-19 mRNA vaccine in adult MS patients; (2) the humoral post-vaccination SARS-CoV2 IgG response in MS vaccinees using anti-spike protein-based serology; and (3) the cellular immune response of memory B-cells specific for SARS-CoV-2 receptor-binding domain (RBD) and memory T-cells secreting IFN-g and/or IL-2 in response to SARS-CoV2 peptides using ELISpot/Fluorospot assays in MS patients either untreated or under treatment with fingolimod, cladribine, or ocrelizumab; (4) covariate parameters related to mounting protective immune responses. Results: COVID-19 vaccine proved safe in MS patients, and the adverse event profile was mainly characterised by pain at the injection site, fatigue, and headache. Not any increased risk of relapse activity was noted and the rate of patients with acute relapse was comparable to the relapse rate in non-vaccinated patients during the corresponding follow-up period. A mild increase in the rate of adverse events was noted in younger MS patients, among patients with lower disability, and in patients treated with DMTs. Following COVID-19 vaccination protective humoral immune response was significantly decreased in fingolimod- and ocrelizumab- treated MS patients. SARS-CoV2 specific B-cell and T-cell cellular responses were respectively decreased. Untreated MS patients and patients treated with cladribine demonstrated protective humoral and cellular immune responses, similar to healthy vaccinated subjects. Conclusions: COVID-19 BNT162b2 vaccine proved as safe for MS patients. No increased risk of relapse activity was noted post-vaccination. Although COVID-19 vaccination is new, accumulated data demonstrate differences in immune responses under various DMT’s. This knowledge can help to construct appropriate COVID-19 vaccine guidelines to ensure proper immune responses for MS patients.

Keywords: covid-19, vaccination, multiple sclerosis, IgG

Procedia PDF Downloads 120
1193 Mimicking of Various ECM Tangible Cues for the Manipulation of Hepatocellular Behaviours

Authors: S. A. Abdellatef, A. Taniguchi, Namiki, Tsukuba, Ibaraki

Abstract:

The alterations in the physicochemical characteristics of bio-materials are renowned for their impact in cellular behaviors. Surface chemistry and substratum topography are separately considered as mutable characteristics with deep impact on the overall cell behaviors. In our recent work, we examined the manipulation of the physical cues on hepatic cellular behaviors. We have proven that the geometrical or dimensional characteristics of nano features are essential for the optimum hepatocellular functions. While here, the collective impact of both physical and chemical cues on hepatocellular behaviors was investigated. On which RGD peptide was immobilized on a TiO2 nano pattern that imitates the hierarchically extend collagen nano fibrillar structures. The hepatocytes morphological and functional changes induced by simultaneously combining the diversified cues were investigated. TiO2 substrates that integrate nano topography with the adhesive peptide motif (RGD) had showed an increase in the hepatocellular functionality to the maximum extent. While a significant enhancement in expression of these liver specific markers on RGD coated surfaces were observed compared to uncoated substrates regardless of topography. Consequently in depth understanding of the relationship between various kind of cues and hepatocytes behaviors would be a paving step in the application of tissue engineering and bio reactor technology.

Keywords: biomaterial, tiO2, hepG2, RGD

Procedia PDF Downloads 369
1192 Foamability and Foam Stability of Gelatine-Sodium Dodecyl Sulfate Solutions

Authors: Virginia Martin Torrejon, Song Hang

Abstract:

Gelatine foams are widely explored materials due to their biodegradability, biocompatibility, and availability. They exhibit outstanding properties and are currently subject to increasing scientific research due to their potential use in different applications, such as biocompatible cellular materials for biomedical products or biofoams as an alternative to fossil-fuel-derived packaging. Gelatine is a highly surface-active polymer, and its concentrated solutions usually do not require surfactants to achieve low surface tension. Still, anionic surfactants like sodium dodecyl sulfate (SDS) strongly interact with gelatine, impacting its viscosity and rheological properties and, in turn, their foaming behaviour. Foaming behaviour is a key parameter for cellular solids produced by mechanical foaming as it has a significant effect on the processing and properties of cellular materials. Foamability mainly impacts the density and the mechanical properties of the foams, while foam stability is crucial to achieving foams with low shrinkage and desirable pore morphology. This work aimed to investigate the influence of SDS on the foaming behaviour of concentrated gelatine foams by using a dynamic foam analyser. The study of maximum foam height created, foam formation behaviour, drainage behaviour, and foam structure with regard to bubble size and distribution were carried out in 10 wt% gelatine solutions prepared at different SDS/gelatine concentration ratios. Comparative rheological and viscometry measurements provided a good correlation with the data from the dynamic foam analyser measurements. SDS incorporation at optimum dosages and gelatine gelation led to highly stable foams at high expansion ratios. The viscosity increase of the hydrogel solution at SDS content increased was a key parameter for foam stabilization. In addition, the impact of SDS content on gelling time and gel strength also considerably impacted the foams' stability and pore structure.

Keywords: dynamic foam analyser, gelatine foams stability and foamability, gelatine-surfactant foams, gelatine-SDS rheology, gelatine-SDS viscosity

Procedia PDF Downloads 124
1191 Exploiting the Tumour Microenvironment in Order to Optimise Sonodynamic Therapy for Cancer

Authors: Maryam Mohammad Hadi, Heather Nesbitt, Hamzah Masood, Hashim Ahmed, Mark Emberton, John Callan, Alexander MacRobert, Anthony McHale, Nikolitsa Nomikou

Abstract:

Sonodynamic therapy (SDT) utilises ultrasound in combination with sensitizers, such as porphyrins, for the production of cytotoxic reactive oxygen species (ROS) and the confined ablation of tumours. Ultrasound can be applied locally, and the acoustic waves, at frequencies between 0.5-2 MHz, are transmitted efficiently through tissue. SDT does not require highly toxic agents, and the cytotoxic effect only occurs upon ultrasound exposure at the site of the lesion. Therefore, this approach is not associated with adverse side effects. Further highlighting the benefits of SDT, no cancer cell population has shown resistance to therapy-triggered ROS production or their cytotoxic effects. This is particularly important, given the as yet unresolved issues of radiation and chemo-resistance, to the authors’ best knowledge. Another potential future benefit of this approach – considering its non-thermal mechanism of action – is its possible role as an adjuvant to immunotherapy. Substantial pre-clinical studies have demonstrated the efficacy and targeting capability of this therapeutic approach. However, SDT has yet to be fully characterised and appropriately exploited for the treatment of cancer. In this study, a formulation based on multistimulus-responsive sensitizer-containing nanoparticles that can accumulate in advanced prostate tumours and increase the therapeutic efficacy of SDT has been developed. The formulation is based on a polyglutamate-tyrosine (PGATyr) co-polymer carrying hematoporphyrin. The efficacy of SDT in this study was demonstrated using prostate cancer as the translational exemplar. The formulation was designed to respond to the microenvironment of advanced prostate tumours, such as the overexpression of the proteolytic enzymes, cathepsin-B and prostate-specific membrane antigen (PSMA), that can degrade the nanoparticles, reduce their size, improving both diffusions throughout the tumour mass and cellular uptake. The therapeutic modality was initially tested in vitro using LNCaP and PC3 cells as target cell lines. The SDT efficacy was also examined in vivo, using male SCID mice bearing LNCaP subcutaneous tumours. We have demonstrated that the PGATyr co-polymer is digested by cathepsin B and that digestion of the formulation by cathepsin-B, at tumour-mimicking conditions (acidic pH), leads to decreased nanoparticle size and subsequent increased cellular uptake. Sonodynamic treatment, at both normoxic and hypoxic conditions, demonstrated ultrasound-induced cytotoxic effects only for the nanoparticle-treated prostate cancer cells, while the toxicity of the formulation in the absence of ultrasound was minimal. Our in vivo studies in immunodeficient mice, using the hematoporphyrin-containing PGATyr nanoparticles for SDT, showed a 50% decrease in LNCaP tumour volumes within 24h, following IV administration of a single dose. No adverse effects were recorded, and body weight was stable. The results described in this study clearly demonstrate the promise of SDT to revolutionize cancer treatment. It emphasizes the potential of this therapeutic modality as a fist line treatment or in combination treatment for the elimination or downstaging of difficult to treat cancers, such as prostate, pancreatic, and advanced colorectal cancer.

Keywords: sonodynamic therapy, nanoparticles, tumour ablation, ultrasound

Procedia PDF Downloads 117
1190 Synthesis of 5'-Azidonucleosides as Building Blocks for the Preparation of Biologically Active Bioconjugates

Authors: Brigitta Bodnár, Lajos Kovács, Zoltán Kupihár

Abstract:

The cancer cells require higher amount of nucleoside building blocks for their proliferation, therefore they have significantly higher uptake of nucleosides by the different nucleoside transporters. Therefore, the conjugation with nucleosides may significantly increase the efficiency and selectivity of potential active pharmaceutical ingredients. On the other hand, the advantage of using a nucleoside could be either the higher activity on targeted enzymes overrepresented in cancer cells or an enhanced cellular uptake of the bioconjugates in these cells compared to the healthy ones. This fact can be used to make the nucleosides, as targeting moieties covalently bound to anti-cancer drug molecules which can selectively accumulate in cancer cells. However, in order to form the nucleoside-drug conjugates, such nucleoside building blocks are needed, which can selectively be coupled to the drug molecules containing even a high number of diverse functional groups. One of the most selective conjugation techniques is the copper-catalyzed azide-alkyne click reaction that requires the presence of an alkyl group on one of the conjugated molecules and an azide group on the other. In case of nucleosides, the development of azide group is simpler for which the replacement of the 5'-hydroxy group is the most suitable. This transformation generally involves many side reactions and result in very low yields. In addition, during our experiments, the transformation of the 2'-deoxyguanosine to the corresponding 5'-deoxy-5’-azido-2’-deoxyguanosine could not be performed with any of the methods described in the literature. Therefore, we have tried to overcome these difficulties with not only using the traditional process based on the 2 step exchange of tosyl to azide, but also using the Mitsunobu reaction which requires only one step. However, this path proved to be unsuccessful in spite of the optimizing the reaction conditions. Finally, a method has been developed whereby the azide groups were incorporated into the 5’-position resulting in significantly better yields compared to all other previous methods, and we were able to produce all the four nucleoside derivatives.

Keywords: 5'-azidonucleosides, bioconjugate, click reaction, proliferation

Procedia PDF Downloads 221
1189 Determination of Inactivation and Recovery of Saccharomyces cerevisiae Cells after the Gas-Phase Plasma Treatment

Authors: Z. Herceg, V. Stulic, T. Vukusic, A. Rezek Jambrak

Abstract:

Gas phase plasma treatment is a new nonthermal technology used for food and water decontamination. In this study, we have investigated influence of the gas phase plasma treatment on yeast cells of S. cerevisiae. Sample was composed of 10 mL of yeast suspension and 190 mL of 0.01 M NaNO₃ with a medium conductivity of 100 µS/cm. Samples were treated in a glass reactor with a point- to-plate electrode configuration (high voltage electrode-titanium wire in the gas phase and grounded electrode in the liquid phase). Air or argon were injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min and positive polarity were defined parameters. Inactivation was higher with the applied higher frequency, longer treatment time and injected argon. Inactivation was not complete which resulted in complete recovery. Cellular leakage (260 nm and 280 nm) was higher with a longer treatment time and higher frequency. Leakage at 280 nm which defines a leakage of proteins was higher than leakage at 260 nm which defines a leakage of nucleic acids. The authors would like to acknowledge the support by Croatian Science Foundation and research project 'Application of electrical discharge plasma for preservation of liquid foods'.

Keywords: Saccharomyces cerevisiae, inactivation, gas-phase plasma treatment, cellular leakage

Procedia PDF Downloads 174
1188 Adjustment and Scale-Up Strategy of Pilot Liquid Fermentation Process of Azotobacter sp.

Authors: G. Quiroga-Cubides, A. Díaz, M. Gómez

Abstract:

The genus Azotobacter has been widely used as bio-fertilizer due to its significant effects on the stimulation and promotion of plant growth in various agricultural species of commercial interest. In order to obtain significantly viable cellular concentration, a scale-up strategy for a liquid fermentation process (SmF) with two strains of A. chroococcum (named Ac1 and Ac10) was validated and adjusted at laboratory and pilot scale. A batch fermentation process under previously defined conditions was carried out on a biorreactor Infors®, model Minifors of 3.5 L, which served as a baseline for this research. For the purpose of increasing process efficiency, the effect of the reduction of stirring speed was evaluated in combination with a fed-batch-type fermentation laboratory scale. To reproduce the efficiency parameters obtained, a scale-up strategy with geometric and fluid dynamic behavior similarities was evaluated. According to the analysis of variance, this scale-up strategy did not have significant effect on cellular concentration and in laboratory and pilot fermentations (Tukey, p > 0.05). Regarding air consumption, fermentation process at pilot scale showed a reduction of 23% versus the baseline. The percentage of reduction related to energy consumption reduction under laboratory and pilot scale conditions was 96.9% compared with baseline.

Keywords: Azotobacter chroococcum, scale-up, liquid fermentation, fed-batch process

Procedia PDF Downloads 415
1187 Spatial Organization of Organelles in Living Cells: Insights from Mathematical Modelling

Authors: Congping Lin

Abstract:

Intracellular transport in fungi has a number of important roles in, e.g., filamentous fungal growth and cellular metabolism. Two basic mechanisms for intracellular transport are motor-driven trafficking along microtubules (MTs) and diffusion. Mathematical modelling has been actively developed to understand such intracellular transport and provide unique insight into cellular complexity. Based on live-cell imaging data in Ustilago hyphal cells, probabilistic models have been developed to study mechanism underlying spatial organization of molecular motors and organelles. In particular, anther mechanism - stochastic motility of dynein motors along MTs has been found to contribute to half of its accumulation at hyphal tip in order to support early endosome (EE) recycling. The EE trafficking not only facilitates the directed motion of peroxisomes but also enhances their diffusive motion. Considering the importance of spatial organization of early endosomes in supporting peroxisome movement, computational and experimental approaches have been combined to a whole-cell level. Results from this interdisciplinary study promise insights into requirements for other membrane trafficking systems (e.g., in neurons), but also may inform future 'synthetic biology' studies.

Keywords: intracellular transport, stochastic process, molecular motors, spatial organization

Procedia PDF Downloads 106