Search results for: capacity building
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7524

Search results for: capacity building

7164 Identification of Location Parameters for Different User Types of the Inner-City Building Stock: An Austrian Example

Authors: Bernhard Bauer, Thomas Meixner, Amir Dini, Detlef Heck

Abstract:

The inner city building stock is characterized by different types of buildings of different decades and centuries and different types of historical constructions. Depending on the natural growth of a city, those types are often located in downtown areas and the surrounding suburbs. Since the population is becoming older and the variation of the different social requirements spread with the so-called 'Silver Society', city quarters have to be seen alternatively. If an area is very attractive for young students to live there because of the busy nightlife, it might not be suitable for the older society. To identify 'Location Types A, B, C' for different user groups, qualitative interviews with 24 citizens of the city of Graz (Austria) have been carried out, in order to identify the most important values for making a location or city quarter 'A', 'B', or 'C'. Furthermore these acknowledgements have been put into a softwaretool for predicting locations that are the most suitable for certain user groups. On the other hands side, investors or owners of buildings can use the tool for determining the most suitable user group for the location of their building or construction project in order to adapt the project or building stock to the requirements of the users.

Keywords: building stock, location parameters, inner city population, built environment

Procedia PDF Downloads 292
7163 Uncovering the Complex Structure of Building Design Process Based on Royal Institute of British Architects Plan of Work

Authors: Fawaz A. Binsarra, Halim Boussabaine

Abstract:

The notion of complexity science has been attracting the interest of researchers and professionals due to the need of enhancing the efficiency of understanding complex systems dynamic and structure of interactions. In addition, complexity analysis has been used as an approach to investigate complex systems that contains a large number of components interacts with each other to accomplish specific outcomes and emerges specific behavior. The design process is considered as a complex action that involves large number interacted components, which are ranked as design tasks, design team, and the components of the design process. Those three main aspects of the building design process consist of several components that interact with each other as a dynamic system with complex information flow. In this paper, the goal is to uncover the complex structure of information interactions in building design process. The Investigating of Royal Institute of British Architects Plan Of Work 2013 information interactions as a case study to uncover the structure and building design process complexity using network analysis software to model the information interaction will significantly enhance the efficiency of the building design process outcomes.

Keywords: complexity, process, building desgin, Riba, design complexity, network, network analysis

Procedia PDF Downloads 492
7162 Using Nature-Based Solutions to Decarbonize Buildings in Canadian Cities

Authors: Zahra Jandaghian, Mehdi Ghobadi, Michal Bartko, Alex Hayes, Marianne Armstrong, Alexandra Thompson, Michael Lacasse

Abstract:

The Intergovernmental Panel on Climate Change (IPCC) report stated the urgent need to cut greenhouse gas emissions to avoid the adverse impacts of climatic changes. The United Nations has forecasted that nearly 70 percent of people will live in urban areas by 2050 resulting in a doubling of the global building stock. Given that buildings are currently recognised as emitting 40 percent of global carbon emissions, there is thus an urgent incentive to decarbonize existing buildings and to build net-zero carbon buildings. To attain net zero carbon emissions in communities in the future requires action in two directions: I) reduction of emissions; and II) removal of on-going emissions from the atmosphere once de-carbonization measures have been implemented. Nature-based solutions (NBS) have a significant role to play in achieving net zero carbon communities, spanning both emission reductions and removal of on-going emissions. NBS for the decarbonisation of buildings can be achieved by using green roofs and green walls – increasing vertical and horizontal vegetation on the building envelopes – and using nature-based materials that either emit less heat to the atmosphere thus decreasing photochemical reaction rates, or store substantial amount of carbon during the whole building service life within their structure. The NBS approach can also mitigate urban flooding and overheating, improve urban climate and air quality, and provide better living conditions for the urban population. For existing buildings, de-carbonization mostly requires retrofitting existing envelopes efficiently to use NBS techniques whereas for future construction, de-carbonization involves designing new buildings with low carbon materials as well as having the integrity and system capacity to effectively employ NBS. This paper presents the opportunities and challenges in respect to the de-carbonization of buildings using NBS for both building retrofits and new construction. This review documents the effectiveness of NBS to de-carbonize Canadian buildings, identifies the missing links to implement these techniques in cold climatic conditions, and determine a road map and immediate approaches to mitigate the adverse impacts of climate change such as urban heat islanding. Recommendations are drafted for possible inclusion in the Canadian building and energy codes.

Keywords: decarbonization, nature-based solutions, GHG emissions, greenery enhancement, buildings

Procedia PDF Downloads 67
7161 Intelligent Building as a Pragmatic Approach towards Achieving a Sustainable Environment

Authors: Zahra Hamedani

Abstract:

Many wonderful technological developments in recent years has opened up the possibility of using intelligent buildings for a number of important applications, ranging from minimizing resource usage as well as increasing building efficiency to maximizing comfort, adaption to inhabitants and responsiveness to environmental changes. The concept of an intelligent building refers to the highly embedded, interactive environment within which by exploiting the use of artificial intelligence provides the ability to know its configuration, anticipate the optimum dynamic response to prevailing environmental stimuli, and actuate the appropriate physical reaction to provide comfort and efficiency. This paper contains a general identification of the intelligence paradigm and its impacts on the architecture arena, that with examining the performance of artificial intelligence, a mechanism to analyze and finally for decision-making to control the environment will be described. This mechanism would be a hierarchy of the rational agents which includes decision-making, information, communication and physical layers. This multi-agent system relies upon machine learning techniques for automated discovery, prediction and decision-making. Then, the application of this mechanism regarding adaptation and responsiveness of intelligent building will be provided in two scales of environmental and user. Finally, we review the identifications of sustainability and evaluate the potentials of intelligent building systems in the creation of sustainable architecture and environment.

Keywords: artificial intelligence, intelligent building, responsiveness, adaption, sustainability

Procedia PDF Downloads 380
7160 Innovative Fabric Integrated Thermal Storage Systems and Applications

Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison

Abstract:

In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.

Keywords: fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration

Procedia PDF Downloads 143
7159 Prioritizing the Most Important Information from Contractors’ BIM Handover for Firefighters’ Responsibilities

Authors: Akram Mahdaviparsa, Tamera McCuen, Vahideh Karimimansoob

Abstract:

Fire service is responsible for protecting life, assets, and natural resources from fire and other hazardous incidents. Search and rescue in unfamiliar buildings is a vital part of firefighters’ responsibilities. Providing firefighters with precise building information in an easy-to-understand format is a potential solution for mitigating the negative consequences of fire hazards. The negative effect of insufficient knowledge about a building’s indoor environment impedes firefighters’ capabilities and leads to lost property. A data rich building information modeling (BIM) is a potentially useful source in three-dimensional (3D) visualization and data/information storage for fire emergency response. Therefore, this research’s purpose is prioritizing the required information for firefighters from the most important information to the least important. A survey was carried out with firefighters working in the Norman Fire Department to obtain the importance of each building information item. The results show that “the location of exit doors, windows, corridors, elevators, and stairs”, “material of building elements”, and “building data” are the three most important information specified by firefighters. The results also implied that the 2D model of architectural, structural and way finding is more understandable in comparison with the 3D model, while the 3D model of MEP system could convey more information than the 2D model. Furthermore, color in visualization can help firefighters to understand the building information easier and quicker. Sufficient internal consistency of all responses was proven through developing the Pearson Correlation Matrix and obtaining Cronbach’s alpha of 0.916. Therefore, the results of this study are reliable and could be applied to the population.

Keywords: BIM, building fire response, ranking, visualization

Procedia PDF Downloads 109
7158 Analysis of Geotechnical Parameters from Geophysical Information

Authors: Adewoyin O. Olusegun, Akinwumi I. Isaac

Abstract:

In some part of the world where legislations related to site investigations before constructions are not strictly enforced, the expenses and time required for carrying out a comprehensive geotechnical investigation to characterize a site can discourage prospective private residential building developers. Another factor that can discourage a developer is the fact that most of the geotechnical tests procedures utilized during site investigations, to a certain extent, alter the existing environment of the site. This study suggests a quick, non-destructive and non-intrusive method of obtaining key subsoil geotechnical properties necessary for foundation design for proposed engineering facilities. Seismic wave velocities generated from near surface refraction method was used to determine the bulk density of soil, Young’s modulus, bulk modulus, shear modulus and allowable bearing capacity of a competent layer that can bear structural load at the particular study site. Also, regression equations were developed in order to directly obtain the bulk density of soil, Young’s modulus, bulk modulus, shear modulus and allowable bearing capacity from the compressional wave velocities. The results obtained correlated with the results of standard geotechnical investigations carried out.

Keywords: characterize, environment, geophysical, geotechnical, regression

Procedia PDF Downloads 339
7157 An Experimental Investigation of the Variation of Evaporator Efficiency According to Load Amount and Textile Type in Hybrid Heat Pump Dryers

Authors: Gokhan Sir, Muhammed Ergun, Onder Balioglu

Abstract:

Nowadays, laundry dryers containing heaters and heat pumps are used to provide fast and efficient drying. In this system, as the drying capacity changes, the sensible and latent heat transfer rate in the evaporator changes. Therefore, the drying time measured for the unit capacity increases as the drying capacity decreases. The objective of this study is to investigate the evaporator efficiency according to load amount and textile type in hybrid heat pump dryers. Air side flow rate and system temperatures (air side and refrigeration side) were monitored instantly, and the specific moisture extraction rate (SMER), evaporator efficiency, and heat transfer mechanism between the textile and hybrid heat pump system were examined. Evaporator efficiency of heat pump dryers for cotton and synthetic based textile types in load amounts of 2, 5, 8 and 10 kg were investigated experimentally. As a result, the maximum evaporator efficiency (%72) was obtained in drying cotton and synthetic based textiles with a capacity of 5 kg; the minimum evaporator efficiency (%40) was obtained in drying cotton and synthetic based textiles with a capacity of 2 kg. The experimental study also reveals that capacity-dependent flow rate changes are the major factor for evaporator efficiency.

Keywords: evaporator, heat pump, hybrid, laundry dryer, textile

Procedia PDF Downloads 106
7156 Urban and Building Information Modeling’s Applications for Environmental Education: Case Study of Educational Campuses

Authors: Samar Alarif

Abstract:

Smart sustainable educational campuses are the latest paradigm of innovation in the education domain. Campuses become a hub for sustainable environmental innovations. University has a vital role in paving the road for digital transformations in the infrastructure domain by preparing skilled engineers and specialists. The open digital platform enables smart campuses to simulate real education experience by managing their infrastructure within the curriculums. Moreover, it allows the engagement between governments, businesses, and citizens to push for innovation and sustainable services. Urban and building information modeling platforms have recently attained widespread attention in smart campuses due to their applications and benefits for creating the campus's digital twin in the form of an open digital platform. Qualitative and quantitative strategies were used in directing this research to develop and validate the UIM/BIM platform benefits for smart campuses FM and its impact on the institution's sustainable vision. The research findings are based on literature reviews and case studies of the TU berlin El-Gouna campus. Textual data will be collected using semi-structured interviews with actors, secondary data like BIM course student projects, documents, and publications related to the campus actors. The study results indicated that UIM/BIM has several benefits for the smart campus. Universities can achieve better capacity-building by integrating all the actors in the UIM/BIM process. Universities would achieve their community outreach vision by launching an online outreach of UIM/BIM course for the academic and professional community. The UIM/BIM training courses would integrate students from different disciplines and alumni graduated as well as engineers and planners and technicians. Open platforms enable universities to build a partnership with the industry; companies should be involved in the development of BIM technology courses. The collaboration between academia and the industry would fix the gap, promote the academic courses to reply to the professional requirements, and transfer the industry's academic innovations. In addition to that, the collaboration between academia, industry, government vocational and training centers, and civil society should be promoted by co-creation workshops, a series of seminars, and conferences. These co-creation activities target the capacity buildings and build governmental strategies and policies to support expanding the sustainable innovations and to agree on the expected role of all the stakeholders to support the transformation.

Keywords: smart city, smart educational campus, UIM, urban platforms, sustainable campus

Procedia PDF Downloads 98
7155 Seismic Isolation of Existing Masonry Buildings: Recent Case Studies in Italy

Authors: Stefano Barone

Abstract:

Seismic retrofit of buildings through base isolation represents a consolidated protection strategy against earthquakes. It consists in decoupling the ground motion from that of the structure and introducing anti-seismic devices at the base of the building, characterized by high horizontal flexibility and medium/high dissipative capacity. This allows to protect structural elements and to limit damages to non-structural ones. For these reasons, full functionality is guaranteed after an earthquake event. Base isolation is applied extensively to both new and existing buildings. For the latter, it usually does not require any interruption of the structure use and occupants evacuation, a special advantage for strategic buildings such as schools, hospitals, and military buildings. This paper describes the application of seismic isolation to three existing masonry buildings in Italy: Villa “La Maddalena” in Macerata (Marche region), “Giacomo Matteotti” and “Plinio Il Giovane” school buildings in Perugia (Umbria region). The seismic hazard of the sites is characterized by a Peak Ground Acceleration (PGA) of 0.213g-0.287g for the Life Safety Limit State and between 0.271g-0.359g for the Collapse Limit State. All the buildings are isolated with a combination of free sliders type TETRON® CD with confined elastomeric disk and anti-seismic rubber isolators type ISOSISM® HDRB to reduce the eccentricity between the center of mass and stiffness, thus limiting torsional effects during a seismic event. The isolation systems are designed to lengthen the original period of vibration (i.e., without isolators) by at least three times and to guarantee medium/high levels of energy dissipation capacity (equivalent viscous damping between 12.5% and 16%). This allows the structures to resist 100% of the seismic design action. This article shows the performances of the supplied anti-seismic devices with particular attention to the experimental dynamic response. Finally, a special focus is given to the main site activities required to isolate a masonry building.

Keywords: retrofit, masonry buildings, seismic isolation, energy dissipation, anti-seismic devices

Procedia PDF Downloads 42
7154 Working Memory Capacity and Motivation in Japanese English as a Foreign Language Learners' Speaking Skills

Authors: Akiko Kondo

Abstract:

Although the effects of working memory capacity on second/foreign language speaking skills have been researched in depth, few studies have focused on Japanese English as a foreign language (EFL) learners as compared to other languages (Indo-European languages), and the sample sizes of the relevant Japanese studies have been relatively small. Furthermore, comparing the effects of working memory capacity and motivation which is another kind of frequently researched individual factor on L2 speaking skills would add to the scholarly literature in the field of second language acquisition research. Therefore, the purposes of this study were to investigate whether working memory capacity and motivation have significant relationships with Japanese EFL learners’ speaking skills and to investigate the degree to which working memory capacity and motivation contribute to their English speaking skills. One-hundred and ten Japanese EFL students aged 18 to 26 years participated in this study. All of them are native Japanese speakers and have learned English as s foreign language for 6 to 15. They completed the Versant English speaking test, which has been widely used to measure non-native speakers’ English speaking skills, two types of working memory tests (the L1-based backward digit span test and the L1-based listening span test), and the language learning motivation survey. The researcher designed the working memory tests and the motivation survey. To investigate the relationship between the variables (English speaking skills, working memory capacity, and language learning motivation), a correlation analysis was conducted, which showed that L2 speaking test scores were significantly related to both working memory capacity and language learning motivation, although the correlation coefficients were weak. Furthermore, a multiple regression analysis was performed, with L2 speaking skills as the dependent variable and working memory capacity and language learning motivation as the independent variables. The results showed that working memory capacity and motivation significantly explained the variance in L2 speaking skills and that the L2 motivation had slightly larger effects on the L2 speaking skills than the working memory capacity. Although this study includes several limitations, the results could contribute to the generalization of the effects of individual differences, such as working memory and motivation on L2 learning, in the literature.

Keywords: individual differences, motivation, speaking skills, working memory

Procedia PDF Downloads 139
7153 The Study of Cost Accounting in S Company Based on TDABC

Authors: Heng Ma

Abstract:

Third-party warehousing logistics has an important role in the development of external logistics. At present, the third-party logistics in our country is still a new industry, the accounting system has not yet been established, the current financial accounting system of third-party warehousing logistics is mainly in the traditional way of thinking, and only able to provide the total cost information of the entire enterprise during the accounting period, unable to reflect operating indirect cost information. In order to solve the problem of third-party logistics industry cost information distortion, improve the level of logistics cost management, the paper combines theoretical research and case analysis method to reflect cost allocation by building third-party logistics costing model using Time-Driven Activity-Based Costing(TDABC), and takes S company as an example to account and control the warehousing logistics cost. Based on the idea of “Products consume activities and activities consume resources”, TDABC put time into the main cost driver and use time-consuming equation resources assigned to cost objects. In S company, the objects focuses on three warehouse, engaged with warehousing and transportation (the second warehouse, transport point) service. These three warehouse respectively including five departments, Business Unit, Production Unit, Settlement Center, Security Department and Equipment Division, the activities in these departments are classified by in-out of storage forecast, in-out of storage or transit and safekeeping work. By computing capacity cost rate, building the time-consuming equation, the paper calculates the final operation cost so as to reveal the real cost. The numerical analysis results show that the TDABC can accurately reflect the cost allocation of service customers and reveal the spare capacity cost of resource center, verifies the feasibility and validity of TDABC in third-party logistics industry cost accounting. It inspires enterprises focus on customer relationship management and reduces idle cost to strengthen the cost management of third-party logistics enterprises.

Keywords: third-party logistics enterprises, TDABC, cost management, S company

Procedia PDF Downloads 326
7152 Influence of Building Orientation and Post Processing Materials on Mechanical Properties of 3D-Printed Parts

Authors: Raf E. Ul Shougat, Ezazul Haque Sabuz, G. M. Najmul Quader, Monon Mahboob

Abstract:

Since there are lots of ways for building and post processing of parts or models in 3D printing technology, the main objective of this research is to provide an understanding how mechanical characteristics of 3D printed parts get changed for different building orientations and infiltrates. Tensile, compressive, flexure, and hardness test were performed for the analysis of mechanical properties of those models. Specimens were designed in CAD software, printed on Z-printer 450 with five different build orientations and post processed with four different infiltrates. Results show that with the change of infiltrates or orientations each of the above mechanical property changes and for each infiltrate the highest tensile strength, flexural strength, and hardness are found for such orientation where there is the lowest number of layers while printing.

Keywords: 3D printing, building orientations, infiltrates, mechanical characteristics, number of layers

Procedia PDF Downloads 258
7151 Optimization of Waqf Land through Sukuk Al-Intifa’ to Build MSMEs in Indonesia

Authors: Khadijah Hasim, Achmad Fauzan Firdaus, Choirunnisa

Abstract:

Waqf land which previously was idle assets can be built on top of a building that is a means for people to conduct business. Nadzir (waqf managers) lease of waqf lands it manages, the agreed rental fee, which is payable in the form of the building, not in cash. After standing building, the developer will lease to interested companies. Given the magnitude of the beginning funds needed, The company later issuing sukuk al-intifa on the trading floor. With this sukuk issuance, the company has sufficient capital to begin operations and pay obligations of the rental fee to the developer each year. Building that had stood trade area will be established (Micro, Small, Middle Entreprises) MSMEs. It is expected that through the sukuk al-intifa, can help to make waqf land previously unproductive due to lack of capital to be very beneficial and help awaken the people of Indonesian MSMEs

Keywords: Sukuk Al-Intifa, MSMEs, waqf land, underlying asset

Procedia PDF Downloads 443
7150 Tender Systems and Processes within the Mauritian Construction Industry: Investigating the Predominance of International Firms and the Lack of Absorptive Capacity in Local Firms

Authors: K. Appasamy, P. Paul

Abstract:

Mauritius, a developing small-island-state, is facing a recession which is having a considerable economic impact particularly on its construction sector. Further, the presence of foreign entities, both as companies and workers, within this sector is creating a very competitive environment for local firms. This study investigates the key drivers that allow foreign firms to participate in this sector, in particular looking at the international and local tender processes, and the capacity of local industry to participate. This study also looks at how the current set up may hinder the latter’s involvement. The methodology used included qualitative semi-structured interviews conducted with established foreign companies, local companies, and public bodies. Study findings indicate: there is an adequate availability of professional skills and expertise within the Mauritian construction industry but a lack of skilled labour especially at the operative level; projects awarded to foreign firms are either due to their uniqueness and hence lack of local knowledge, or due to foreign firms having lower tender bids; tendering systems and processes are weak, including monitoring and enforcement, which encourages corruption and favouritism; a high level of ignorance of this sector’s characteristics and opportunities exists amongst the local population; local entities are very profit oriented and have short term strategies that discourage long term investment in workforce training and development; but most importantly, stakeholders do not grasp the importance of encouraging youngsters to join this sector, they have no long term vision, and there is a lack of mutual involvement and collaboration between them. Although local industry is highly competent, qualified and experienced, the tendering and procurement systems in Mauritius are not conducive enough to allow for effective strategic planning and an equitable allocation of projects during an economic downturn so that the broadest spread of stakeholders’ benefit. It is of utmost importance that all sector and government entities collaborate to formulate strategies and reforms on tender processes and capacity building to ensure fairness and continuous growth of this sector in Mauritius.

Keywords: construction industry, tender process, international firms, local capacity, Mauritius

Procedia PDF Downloads 295
7149 Impact of Foreign Aid on Economic Development

Authors: Saeed Anwar

Abstract:

Foreign aid has long been a prominent tool in the pursuit of economic development in recipient countries. This research paper aims to analyze the impact of foreign aid on economic development and explore the effectiveness of aid in promoting sustainable growth, poverty reduction, and improvements in human development indicators. Drawing upon a comprehensive review of existing literature, both theoretical frameworks and empirical evidence are synthesized to provide insights into the complex relationship between foreign aid and economic development. The paper examines various channels through which foreign aid influences economic development, including infrastructure development, education and healthcare investments, technology transfer, and institutional capacity building. It explores the potential positive effects of aid in stimulating economic growth, reducing poverty, and enhancing human capital formation. Additionally, it investigates the potential challenges and limitations associated with aid, such as aid dependency, governance issues, and the potential crowding out of domestic resources. Furthermore, the study assesses the heterogeneity of aid effectiveness across different types of aid modalities, recipient country characteristics, and aid allocation mechanisms. It considers the role of aid conditionality, aid fragmentation, and aid targeting in influencing the effectiveness of aid in promoting economic development. The findings of this research contribute to the ongoing discourse on foreign aid and economic development by providing a comprehensive analysis of the existing literature. The study highlights the importance of context-specific factors, recipient country policies, and aid effectiveness frameworks in determining the impact of foreign aid on economic development outcomes. The insights derived from this research can inform policymakers, donor agencies, and practitioners in designing and implementing effective aid strategies to maximize the positive impact of foreign aid on economic development.

Keywords: foreign aid, economic development, sustainable growth, poverty reduction, human development indicators, infrastructure development, education, healthcare, technology transfer, institutional capacity building, aid effectiveness, aid dependency, governance, crowding out, aid conditionality, aid fragmentation, aid targeting, recipient country policies, aid strategies, donor agencies, policymaking

Procedia PDF Downloads 34
7148 Effects of Different Climate Zones, Building Types, and Primary Fuel Sources for Energy Production on Environmental Damage from Four External Wall Technologies for Residential Buildings in Israel

Authors: Svetlana Pushkar, Oleg Verbitsky

Abstract:

The goal of the present study is to evaluate environmental damage from four wall technologies under the following conditions: four climate zones in Israel, two building (conventional vs. low-energy) types, and two types of fuel source [natural gas vs. photovoltaic (PV)]. The hierarchical ReCiPe method with a two-stage nested (hierarchical) ANOVA test is applied. It was revealed that in a hot climate in Israel in a conventional building fueled by natural gas, OE is dominant (90 %) over the P&C stage (10 %); in a mild climate in Israel in a low-energy building with PV, the P&C stage is dominant (85 %) over the OE stage (15 %). It is concluded that if PV is used in the building sector in Israel, (i) the P&C stage becomes a significant factor that influences the environment, (ii) autoclaved aerated block is the best external wall technology, and (iii) a two-stage nested mixed ANOVA can be used to evaluate environmental damage via ReCiPe when wall technologies are compared.

Keywords: life cycle assessment (LCA), photovoltaic, ReCiPe method, residential buildings

Procedia PDF Downloads 268
7147 Power Allocation Algorithm for Orthogonal Frequency Division Multiplexing Based Cognitive Radio Networks

Authors: Bircan Demiral

Abstract:

Cognitive radio (CR) is the promising technology that addresses the spectrum scarcity problem for future wireless communications. Orthogonal Frequency Division Multiplexing (OFDM) technology provides more power band ratios for cognitive radio networks (CRNs). While CR is a solution to the spectrum scarcity, it also brings up the capacity problem. In this paper, a novel power allocation algorithm that aims at maximizing the sum capacity in the OFDM based cognitive radio networks is proposed. Proposed allocation algorithm is based on the previously developed water-filling algorithm. To reduce the computational complexity calculating in water filling algorithm, proposed algorithm allocates the total power according to each subcarrier. The power allocated to the subcarriers increases sum capacity. To see this increase, Matlab program was used, and the proposed power allocation was compared with average power allocation, water filling and general power allocation algorithms. The water filling algorithm performed worse than the proposed algorithm while it performed better than the other two algorithms. The proposed algorithm is better than other algorithms in terms of capacity increase. In addition the effect of the change in the number of subcarriers on capacity was discussed. Simulation results show that the increase in the number of subcarrier increases the capacity.

Keywords: cognitive radio network, OFDM, power allocation, water filling

Procedia PDF Downloads 113
7146 Exploration of Environmental Parameters on the Evolution of Vernacular Building Techniques in East Austria

Authors: Hubert Feiglstorfer

Abstract:

Due to its location in a transition zone from the Pannonian to the pre-Alpine region, the east of Austria shows a small-scale diversity in the regional development of certain vernacular building techniques. In this article the relationship between natural building material resources, topography and climate will be examined. Besides environmental preconditions, social and economic historical factors have developed different construction techniques within certain regions in the Weinviertel and Burgenland, the two eastern federal states of Austria. But even within these regions, varying building techniques were found, due to the locally different use of raw materials like wood, stone, clay, lime, or organic fibres. Within these small-scale regions, building traditions were adapted over the course of time due to changes in the use of the building material, for example from wood to brick or from wood to earth. The processing of the raw materials varies from region to region, for example as rammed earth, cob, log, or brick construction. Environmental preconditions cross national borders. For that reason, developments in the neighbouring countries, the Czech Republic, Slovakia, Hungary and Slovenia are included in this analysis. As an outcome of this research a map was drawn which shows the interrelation between locally available building materials, topography, climate and local building techniques? As a result of this study, which covers the last 300 years, one can see how the local population used natural resources very sensitively adapted to local environmental preconditions. In the case of clay, for example, changes of proportions of lime and particular minerals cause structural changes that differ from region to region. Based on material analyses in the field of clay mineralogy, on ethnographic research, literature and archive research, explanations for certain local structural developments will be given for the first time over the region of East Austria.

Keywords: European crafts, material culture, architectural history, earthen architecture, earth building history

Procedia PDF Downloads 200
7145 Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey

Authors: Mahdiyeh Zafaranchi

Abstract:

With rapid development of urbanization and improvement of living standards in the world, energy consumption and carbon emissions of the building sector are expected to increase in the near future; because of that, energy-saving issues have become more important among the engineers. Besides, the building sector is a major contributor to energy consumption and carbon emissions. The concept of efficient building appeared as a response to the need for reducing energy demand in this sector which has the main purpose of shifting from standard buildings to low-energy buildings. Although energy-saving should happen in all steps of a building during the life cycle (material production, construction, demolition), the main concept of efficient energy building is saving energy during the life expectancy of a building by using passive and active systems, and should not sacrifice comfort and quality to reach these goals. The main aim of this study is to investigate passive strategies (do not need energy consumption or use renewable energy) to achieve energy-efficient buildings. Energy retrofit measures were explored by eQuest software using a case study as a base model. The study investigates predictive accuracy for the major factors like thermal transmittance (U-value) of the material, windows, shading devices, thermal insulation, rate of the exposed envelope, window/wall ration, lighting system in the energy consumption of the building. The base model was located in Istanbul, Turkey. The impact of eight passive parameters on energy consumption had been indicated. After analyzing the base model by eQuest, a final scenario was suggested which had a good energy performance. The results showed a decrease in the U-values of materials, the rate of exposing buildings, and windows had a significant effect on energy consumption. Finally, savings in electric consumption of about 10.5%, and gas consumption by about 8.37% in the suggested model were achieved annually.

Keywords: efficient building, electric and gas consumption, eQuest, Passive parameters

Procedia PDF Downloads 84
7144 Building Information Modeling Implementation for Managing an Extra Large Governmental Building Renovation Project

Authors: Pornpote Nusen, Manop Kaewmoracharoen

Abstract:

In recent years, there was an observable shift in fully developed countries from constructing new buildings to modifying existing buildings. The issue was that although an effective instrument like BIM (Building Information Modeling) was well developed for constructing new buildings, it was not widely used to renovate old buildings. BIM was accepted as an effective means to overcome common managerial problems such as project delay, cost overrun, and poor quality of the project life cycle. It was recently introduced in Thailand and rarely used in a renovation project. Today, in Thailand, BIM is mostly used for creating aesthetic 3D models and quantity takeoff purposes, though it can be an effective tool to use as a project management tool in planning and scheduling. Now the governmental sector in Thailand begins to recognize the uses of using BIM to manage a construction project, but the knowledge about the BIM implementation to governmental construction projects is underdeveloped. Further studies need to be conducted to maximize its advantages for the governmental sector. An educational extra large governmental building of 17,000 square-meters was used in this research. It is currently under construction for a two-year renovation project. BIM models of the building for the exterior and interior areas were created for the whole five floors. Then 4D BIM with combination of 3D BIM plus time was created for planning and scheduling. Three focus groups had been done with executive committee, contractors, and officers of the building to discuss the possibility of usage and usefulness of BIM approach over the traditional process. Several aspects were discussed in the positive sides, especially several foreseen problems, such as the inadequate accessibility of ways, the altered ceiling levels, the impractical construction plan created through a traditional approach, and the lack of constructability information. However, for some parties, the cost of BIM implementation was a concern, though, this study believes, its uses outweigh the cost.

Keywords: building information modeling, extra large building, governmental building renovation, project management, renovation, 4D BIM

Procedia PDF Downloads 122
7143 The Impact of Passive Design Factors on House Energy Efficiency for New Cities in Egypt

Authors: Mahmoud Mourad, Ahmad Hamza H. Ali, S.Ookawara, Ali Kamel Abdel-Rahman, Nady M. Abdelkariem

Abstract:

The energy consumption of a house can be affected simultaneously by many building design factors related to its main architectural features, building elements and materials. This study focuses on the impact of passive design factors on the annual energy consumption of a suggested prototype house for single-family detached houses of 240 m2 in two floors, each floor of 120 m2 in new Egyptian cities located in (Alexandria - Cairo - Siwa - Assuit – Aswan) which resemble five different climatic zones (Northern coast – Northern upper Egypt - dessert region- Southern upper Egypt – South Egypt) respectively. This study present the effect of the passive design factors affecting the building energy consumption as building orientation, building material (walls, roof and slabs), building type (residential, educational, commercial), building occupancy (type of occupant, no. of occupant, age), building landscape and site selection, building envelope and fenestration (glazing material, shading), and building plan form. This information can be used to estimate the approximate saving in energy consumption, which would result on a change in the design datum for the future houses development, and to identify the major design problems for energy efficiency. To achieve the above objective, this paper presents a study for the factors affecting on the building energy consumption in the hot arid area in new Egyptian cities in five different climatic zones , followed by defining the energy needs for different utilization in this suggested prototype house. Consequently, a detailed analysis of the available Renewable Energy utilizations technologies used in the suggested home, and a calculation of the energy as a function of yearly distribution that required for this home will presented. The results obtained from building annual energy analyses show that architecture passive design factors saves about 35% of the annual energy consumption. It shows also passive cooling techniques saves about 45%, and renewable energy systems saves about 40% of the annual energy needs for this proposed home depending on the cities location on the climatic zones.

Keywords: architecture passive design factors, energy efficient homes, Egypt new cites, renewable energy technologies

Procedia PDF Downloads 370
7142 Implementation of Distributor Management Solution and Its Effects on Supply Chain Performance

Authors: Charles Amoatey, Ebenezer Kumah

Abstract:

Purpose: The purpose of this paper is to assess the effects of implementation of Distributor Management Solution (DMS) on supply chain performance in the Fast Moving Consumer Goods (FMCG) industry in Ghana. Methodology: A purposive sampling approach was used in selecting the respondents for the study. Data was collected from senior management and field supervisors from sales, distribution and customer service units of the case study firm and its channel members. This study made use of systematic literature review and results of survey data analysis to assess how information system has been used to improve supply chain performance. Findings: Results from the study showed that the critical effect factors from implementation of a DMS include (1) Obtain prompt and reliable feedback from the market; (2) Building the capacity and skills levels of employees as well as 3rd Party Agents; (3) Motivated top management to invest in MIS; and (4) Performance improvement in sales route management. The most critical challenges to an effective and sustainable MIS implementation are lack of enough trained IT employees and high barriers to cultural change especially with distributors. The paper recommends consistent investment in IS infrastructure and development of IT skills. Research limitations/implications: This study contributes to the literature by exploring the effects of distribution management solution implementation and supply chain performance in a developing country context. Considering the fact that this study is based on data from only one case study firm and its channel members, generalization of the results should be treated with caution. Practical implications: The findings have confirmed the benefits of implementing a Management Information System. The result should encourage channel members to allocate adequate resources for building MIS capacity to enhance their supply chain performance. Originality/Value: In this paper, the relationship between DMS/MIS implementation and improvement in supply chain performance, in the Ghanaian context, has been established.

Keywords: distributor management solution, fast-moving consumer goods, supply chain management, information systems, Ghana

Procedia PDF Downloads 538
7141 Review of Life-Cycle Analysis Applications on Sustainable Building and Construction Sector as Decision Support Tools

Authors: Liying Li, Han Guo

Abstract:

Considering the environmental issues generated by the building sector for its energy consumption, solid waste generation, water use, land use, and global greenhouse gas (GHG) emissions, this review pointed out to LCA as a decision-support tool to substantially improve the sustainability in the building and construction industry. The comprehensiveness and simplicity of LCA make it one of the most promising decision support tools for the sustainable design and construction of future buildings. This paper contains a comprehensive review of existing studies related to LCAs with a focus on their advantages and limitations when applied in the building sector. The aim of this paper is to enhance the understanding of a building life-cycle analysis, thus promoting its application for effective, sustainable building design and construction in the future. Comparisons and discussions are carried out between four categories of LCA methods: building material and component combinations (BMCC) vs. the whole process of construction (WPC) LCA,attributional vs. consequential LCA, process-based LCA vs. input-output (I-O) LCA, traditional vs. hybrid LCA. Classical case studies are presented, which illustrate the effectiveness of LCA as a tool to support the decisions of practitioners in the design and construction of sustainable buildings. (i) BMCC and WPC categories of LCA researches tend to overlap with each other, as majority WPC LCAs are actually developed based on a bottom-up approach BMCC LCAs use. (ii) When considering the influence of social and economic factors outside the proposed system by research, a consequential LCA could provide a more reliable result than an attributional LCA. (iii) I-O LCA is complementary to process-based LCA in order to address the social and economic problems generated by building projects. (iv) Hybrid LCA provides a more superior dynamic perspective than a traditional LCA that is criticized for its static view of the changing processes within the building’s life cycle. LCAs are still being developed to overcome their limitations and data shortage (especially data on the developing world), and the unification of LCA methods and data can make the results of building LCA more comparable and consistent across different studies or even countries.

Keywords: decision support tool, life-cycle analysis, LCA tools and data, sustainable building design

Procedia PDF Downloads 90
7140 Compilation of Tall Building with Green Architecture Case Study: Babolsar City (North of Iran) at 2014-2015

Authors: Seyyed Hossein Alavi, Soudabeh Mehri Talarposhti

Abstract:

Quick development of urban population need for housing on the one hand and prevention of irregular urban extension for optimum usage of urban land, resolving problems of urban physiognomy, land using, and environmental issues and urban transport, on the other hand, proposed tall building as urban area extension requirement in developing and advanced countries. Beside the tall building, protection, and creation of green architecture is one the most important issues of today's architecture world. This research is about attending tall building with green architecture in Babolsar city 2015. For this, the issues that can make favorite conditions for green architecture has been discussed. The purpose of this discussion is skeleton extension and accessing interactions between architecture and related technologies. This discussion with using of qualitative research methods (Analytical Description) tried to studying designed performance models and also studying and analyzing the inside and foreign articles and books. Hope this research is useful in solving the existing problems in this issue.

Keywords: tall building, green architecture, skeleton extension, Babolsar city

Procedia PDF Downloads 399
7139 Perceptions and Expectations by Participants of Monitoring and Evaluation Short Course Training Programmes in Africa

Authors: Mokgophana Ramasobana

Abstract:

Background: At the core of the demand to utilize evidence-based approaches in the policy-making cycle, prioritization of limited financial resources and results driven initiatives is the urgency to develop a cohort of competent Monitoring and Evaluation (M&E) practitioners and public servants. The ongoing strides in the evaluation capacity building (ECB) initiatives are a direct response to produce the highly-sought after M&E skills. Notwithstanding the rapid growth of M&E short courses, participants perceived value and expectation of M&E short courses as a panacea for ECB have not been empirically quantified or measured. The objective of this article is to explicitly illustrate the importance of measuring ECB interventions and understanding what works in ECB and why it works. Objectives: This article illustrates the importance of establishing empirical ECB measurement tools to evaluate ECB interventions in order to ascertain its contribution to the broader evaluation practice. Method: The study was primarily a desktop review of existing literature, juxtaposed by a survey of the participants across the African continent based on the 43 M&E short courses hosted by the Centre for Learning on Evaluation and Results Anglophone Africa (CLEAR-AA) in collaboration with the Department of Planning Monitoring and Evaluation (DPME) Results: The article established that participants perceive short course training as a panacea to improve their M&E practical skill critical to executing their organizational duties. In tandem, participants are likely to demand customized training as opposed to general topics in Evaluation. However, the organizational environments constrain the application of the newly acquired skills. Conclusion: This article aims to contribute to the 'how to' measure ECB interventions discourse and contribute towards the improvement to evaluate ECB interventions. The study finds that participants prefer training courses with longer duration to cover more topics. At the same time, whilst organizations call for customization of programmes, the study found that individual participants demand knowledge of generic and popular evaluation topics.

Keywords: evaluation capacity building, effectiveness and training, monitoring and evaluation (M&E) short course training, perceptions and expectations

Procedia PDF Downloads 97
7138 Post Occupancy Evaluation of Thermal Comfort and User Satisfaction in a Green IT Commercial Building

Authors: Shraddha Jadhav

Abstract:

We are entering a new age in the built environment where we expect our buildings to deliver far more than just a place to work or live. It is widely believed that sustainable building design strategies create improved occupants’ comfort & satisfaction with respect to thermal comfort & indoor environmental quality. Yet this belief remains a hypothesis with little empirical support. IT buildings cater to more than 3000 users at a time. Nowadays people spend 90% of the time inside offices. These sustainable IT office buildings should provide the occupants with maximum comfort for better work productivity. Such green rated buildings fulfill all the criteria at the designing stage, but do they really work as expected at the occupancy stage. The aim of this paper is to evaluate whether green IT buildings provide the required comfort level as expected at the design stage. Building Occupants are a rich source of information for evaluating their comfort level in the building and to find out the solutions for their discomfort. This can be achieved by carrying out Post Occupancy Evaluation after the building has been occupied for more than a year or two. The technique consists of qualitative methods like questionnaire surveys & observations and quantitative methods like field measurements, photographs. Post Occupancy Evaluation was carried out in a Green (Platinum rated) IT building in Pune. 30 samples per floor were identified for the questionnaire survey. The core questions access occupant satisfaction with thermal comfort in the work area and measures adopted for making it comfortable were identified. The Mean Radiant Temperature of the same samples was taken to compare the quantitative and qualitative results. The survey was used to evaluate the occupant thermal comfort in a green office building and identify areas needing improvement. The survey has been designed in reference to ASHRAE standard 55-2010 & ISHRAE 10001:2017 IEQ and was further refined to suit the user of the building.

Keywords: green office building, building occupant, thermal comfort, POE, user satisfaction, survey

Procedia PDF Downloads 45
7137 Evaluating Acid Buffering Capacity of Sewage Sludge Barrier for Inhibiting Remobilization of Heavy Metals in Tailing Impoundment

Authors: Huyuan Zhang, Yi Chen

Abstract:

Compacted sewage sludge has been proved to be feasible as a barrier material for tailing impoundment because of its low permeability and retardation of heavy metals. The long-term penetration of acid mine drainage, however, would acidify the barrier system and result in remobilization of previously immobilized heavy metal pollutants. In this study, the effect of decreasing pH on the mobility of three typical heavy metals (Zn, Pb, and Cu) is investigated by acid titration test on sewage sludge under various conditions. The remobilization of heavy metals is discussed based on the acid buffering capacity of sewage sludge-leachate system. Test results indicate that heavy metals are dramatically released out when pH is decreased below 6.2, and their amounts take the order of Zn > Cu > Pb. The acid buffering capacity of sewage sludge decreases with the solid-liquid ratio but increases with the anaerobic incubation time, and it is mainly governed by dissolution of contained carbonate and organics. These results reveal that the sewage sludge possesses enough acid buffering capacity to consume protons within the acid mine drainage. Thus, this study suggests that an explosive remobilization of heavy metals is not expected in a long-term perspective.

Keywords: acid buffering capacity, barrier, heavy metals, remobilization, sewage sludge

Procedia PDF Downloads 281
7136 Infrared Thermography Applications for Building Investigation

Authors: Hamid Yazdani, Raheleh Akbar

Abstract:

Infrared thermography is a modern non-destructive measuring method for the examination of redeveloped and non-renovated buildings. Infrared cameras provide a means for temperature measurement in building constructions from the inside, as well as from the outside. Thus, heat bridges can be detected. It has been shown that infrared thermography is applicable for insulation inspection, identifying air leakage and heat losses sources, finding the exact position of heating tubes or for discovering the reasons why mold, moisture is growing in a particular area, and it is also used in conservation field to detect hidden characteristics, degradations of building structures. The paper gives a brief description of the theoretical background of infrared thermography.

Keywords: infrared thermography, examination of buildings, emissivity, heat losses sources

Procedia PDF Downloads 491
7135 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.

Keywords: apartment complex, big data, life-cycle building value analysis, machine learning

Procedia PDF Downloads 352