Search results for: asphalt mixture properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9763

Search results for: asphalt mixture properties

9613 Effects of Sole and Integrated Application of Cocoa Pod Ash and Poultry Manure on Soil Properties and Leaf Nutrient Composition and Performance of White Yam

Authors: T. M. Agbede, A. O. Adekiya

Abstract:

Field experiments were conducted during 2013, 2014 and 2015 cropping seasons at Rufus Giwa Polytechnic, Owo, Ondo State, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of yam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 20 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control). The five treatments were arranged in a randomized complete block design with three replications. The test soil was slightly acidic, low in organic carbon (OC), N, P, K, Ca and Mg. Results showed that soil amendments significantly increased (p = 0.05) tuber weights and growth of yam, soil and leaf N, P, K, Ca and Mg, soil pH and OC concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased tuber weights of yam by 36%, compared with inorganic fertilizer (NPK) and 19%, compared with PM alone. Sole PM increased tuber weight of yam by 15%, compared with NPK. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties, nutrient availability, compared with NPK and the NSF (control). Integrated application of CPA at 10 t ha-1 + PM at 10 t ha-1 was the most effective treatment in improving soil physical properties, increasing nutrient availability and yam performance than sole application of any of the fertilizer materials.

Keywords: cocoa pod ash, leaf nutrient composition, poultry manure, soil properties, yam

Procedia PDF Downloads 288
9612 Polyolefin Fiber Reinforced Self-Compacting Concrete Replacing 20% Cement by Fly Ash

Authors: Suman Kumar Adhikary, Zymantus Rudzionis, Arvind Balakrishnan

Abstract:

This paper deals with the behavior of concrete’s workability in a fresh state and compressive and flexural strength in a hardened state with the addition of polyolefin macro fibers. Four different amounts (3kg/m3, 4.5kg/m3, 6kg/m3 and 9kg/m3) of polyolefin macro fibers mixed in concrete mixture to observe the workability and strength properties difference between the concrete specimens. 20% class C type fly ash added is the concrete as replacement of cement. The water-cement ratio(W/C) of those concrete mix was 0.35. Masterglenium SKY 700 superplasticizer was added to the concrete mixture for better results. Slump test was carried out for determining the flowability. On 7th, 14th and 28th day of curing process compression strength tests were done and on 28th day flexural strength test and CMOD test were carried to differentiate the strength properties and post-cracking behavior of concrete samples.

Keywords: self-compacting concrete, polyolefin fibers, fiber reinforced concrete, CMOD test of concrete

Procedia PDF Downloads 148
9611 Low Frequency Ultrasonic Degassing to Reduce Void Formation in Epoxy Resin and Its Effect on the Thermo-Mechanical Properties of the Cured Polymer

Authors: A. J. Cobley, L. Krishnan

Abstract:

The demand for multi-functional lightweight materials in sectors such as automotive, aerospace, electronics is growing, and for this reason fibre-reinforced, epoxy polymer composites are being widely utilized. The fibre reinforcing material is mainly responsible for the strength and stiffness of the composites whilst the main role of the epoxy polymer matrix is to enhance the load distribution applied on the fibres as well as to protect the fibres from the effect of harmful environmental conditions. The superior properties of the fibre-reinforced composites are achieved by the best properties of both of the constituents. Although factors such as the chemical nature of the epoxy and how it is cured will have a strong influence on the properties of the epoxy matrix, the method of mixing and degassing of the resin can also have a significant impact. The production of a fibre-reinforced epoxy polymer composite will usually begin with the mixing of the epoxy pre-polymer with a hardener and accelerator. Mechanical methods of mixing are often employed for this stage but such processes naturally introduce air into the mixture, which, if it becomes entrapped, will lead to voids in the subsequent cured polymer. Therefore, degassing is normally utilised after mixing and this is often achieved by placing the epoxy resin mixture in a vacuum chamber. Although this is reasonably effective, it is another process stage and if a method of mixing could be found that, at the same time, degassed the resin mixture this would lead to shorter production times, more effective degassing and less voids in the final polymer. In this study the effect of four different methods for mixing and degassing of the pre-polymer with hardener and accelerator were investigated. The first two methods were manual stirring and magnetic stirring which were both followed by vacuum degassing. The other two techniques were ultrasonic mixing/degassing using a 40 kHz ultrasonic bath and a 20 kHz ultrasonic probe. The cured cast resin samples were examined under scanning electron microscope (SEM), optical microscope, and Image J analysis software to study morphological changes, void content and void distribution. Three point bending test and differential scanning calorimetry (DSC) were also performed to determine the thermal and mechanical properties of the cured resin. It was found that the use of the 20 kHz ultrasonic probe for mixing/degassing gave the lowest percentage voids of all the mixing methods in the study. In addition, the percentage voids found when employing a 40 kHz ultrasonic bath to mix/degas the epoxy polymer mixture was only slightly higher than when magnetic stirrer mixing followed by vacuum degassing was utilized. The effect of ultrasonic mixing/degassing on the thermal and mechanical properties of the cured resin will also be reported. The results suggest that low frequency ultrasound is an effective means of mixing/degassing a pre-polymer mixture and could enable a significant reduction in production times.

Keywords: degassing, low frequency ultrasound, polymer composites, voids

Procedia PDF Downloads 273
9610 Evaluation of Fracture Resistance and Moisture Damage of Hot Mix Asphalt Using Plastic Coated Aggregates

Authors: Malleshappa Japagal, Srinivas Chitragar

Abstract:

The use of waste plastic in pavement is becoming important alternative worldwide for disposal of plastic as well as to improve the stability of pavement and to meet out environmental issues. However, there are still concerns on fatigue and fracture resistance of Hot Mix Asphalt with the addition of plastic waste, (HMA-Plastic mixes) and moisture damage potential. The present study was undertaken to evaluate fracture resistance of HMA-Plastic mixes using semi-circular bending (SCB) test and moisture damage potential by Indirect Tensile strength (ITS) test using retained tensile strength (TSR). In this study, a dense graded asphalt mix with 19 mm nominal maximum aggregate size was designed in the laboratory using Marshall Mix design method. Aggregates were coated with different percentages of waste plastic (0%, 2%, 3% and 4%) by weight of aggregate and performance evaluation of fracture resistance and Moisture damage was carried out. The following parameters were estimated for the mixes: J-Integral or Jc, strain energy at failure, peak load at failure, and deformation at failure. It was found that the strain energy and peak load of all the mixes decrease with an increase in notch depth, indicating that increased percentage of plastic waste gave better fracture resistance. The moisture damage potential was evaluated by Tensile strength ratio (TSR). The experimental results shown increased TRS value up to 3% addition of waste plastic in HMA mix which gives better performance hence the use of waste plastic in road construction is favorable.

Keywords: hot mix asphalt, semi circular bending, marshall mix design, tensile strength ratio

Procedia PDF Downloads 277
9609 Effect of Nano-CaCO₃ Addition on the Nano-Mechanical Properties of Cement Paste

Authors: Muzeyyen Balcikanli, Selma Ozaslan, Osman Sahin, Burak Uzal, Erdogan Ozbay

Abstract:

In this study, the effect of nano-CaCO3 replacement with cement on the nano-mechanical properties of cement paste was investigated. Hydrophobic and hydrophilic characteristics Two types of nano CaCO3 were replaced with Portland cement at 0, 0.5 and 1%. Water to (cement+nano-CaCO3) ratio was kept constant at 0.5 for all mixtures. 36 indentations were applied on each cement paste, and the values of nano-hardness and elastic modulus of cement pastes were determined from the indentation depth-load graphs. Then, by getting the average of them, nano-hardness and elastic modulus were identified for each mixture. Test results illustrate that replacement of hydrophilic n-CaCO3 with cement lead to a significant increase in nano-mechanical properties, however, replacement of hydrophobic n-CaCO3 with cement worsened the nano-mechanical properties considerably.

Keywords: nanoindenter, CaCO3, nano-hardness, nano-mechanical properties

Procedia PDF Downloads 254
9608 Prevention of Biocompounds and Amino Acid Losses in Vernonia amygdalina duringPost Harvest Treatment Using Hot Oil-Aqueous Mixture

Authors: Nneka Nkechi Uchegbu, Temitope Omolayo Fasuan

Abstract:

This study investigated how to reduce bio-compounds and amino acids in V. amygdalina leaf during processing as a functional food ingredient. Fresh V. amygdalina leaf was processed using thermal oil-aqueous mixtures (soybean oil: aqueous and palm oil: aqueous) at 1:40 and 130 (v/v), respectively. Results indicated that the hot soybean oil-aqueous mixture was the most effective in preserving the bio-compounds and amino acids with retention potentials of 80.95% of the bio-compounds at the rate of 90-100%. Hot palm oil-aqueous mixture retained 61.90% of the bio-compounds at the rate of 90-100% and hot aqueous retained 9.52% of the bio-compounds at the same rate. During the debittering process, seven new bio-compounds were formed in the leaves treated with hot soybean oil-aqueous mixture, six in palm oil-aqueous mixture, and only four in hot aqueous leaves. The bio-compounds in the treated leaves have potential functions as antitumor, antioxidants, antihistaminic, anti-ovarian cancer, anti-inflammatory, antiarthritic, hepatoprotective, antihistaminic, haemolytic 5-α reductase inhibitor, nt, immune-stimulant, diuretic, antiandrogenic, and anaemiagenic. Alkaloids and polyphenols were retained at the rate of 81.34-98.50% using oil: aqueous mixture while aqueous recorded the rate of 33.47-41.46%. Most of the essential amino acids were retained at a rate above 90% through the aid of oil. The process is scalable and could be employed for domestic and industrial applications.

Keywords: V. amygdalina leaf, bio-compounds, oil-aqueous mixture, amino acids

Procedia PDF Downloads 114
9607 Entropy Generation Analysis of Heat Recovery Vapor Generator for Ammonia-Water Mixture

Authors: Chul Ho Han, Kyoung Hoon Kim

Abstract:

This paper carries out a performance analysis based on the first and second laws of thermodynamics for heat recovery vapor generator (HRVG) of ammonia-water mixture when the heat source is low-temperature energy in the form of sensible heat. In the analysis, effects of the ammonia mass concentration and mass flow ratio of the binary mixture are investigated on the system performance including the effectiveness of heat transfer, entropy generation, and exergy efficiency. The results show that the ammonia concentration and the mass flow ratio of the mixture have significant effects on the system performance of HRVG.

Keywords: entropy, exergy, ammonia-water mixture, heat exchanger

Procedia PDF Downloads 370
9606 Basic Calibration and Normalization Techniques for Time Domain Reflectometry Measurements

Authors: Shagufta Tabassum

Abstract:

The study of dielectric properties in a binary mixture of liquids is very useful to understand the liquid structure, molecular interaction, dynamics, and kinematics of the mixture. Time-domain reflectometry (TDR) is a powerful tool for studying the cooperation and molecular dynamics of the H-bonded system. In this paper, we discuss the basic calibration and normalization procedure for time-domain reflectometry measurements. Our approach is to explain the different types of error occur during TDR measurements and how these errors can be eliminated or minimized.

Keywords: time domain reflectometry measurement techinque, cable and connector loss, oscilloscope loss, and normalization technique

Procedia PDF Downloads 179
9605 Valorization of Local Materials in the Waterproofing Technique of Landfills Site "TLS"

Authors: M. Debieche, F. Kaoua

Abstract:

This paper deals with the use two locals materials abundant in our country, with the view to use a mixture in the waterproofing the landfills. Our interest comes from the necessity to the environment protection, which has recently considerably grown. The site's waterproofing technique, in the landfills sites, is nowadays a very necessary condition to protect the environment, which requires the use of appropriate materials. To this end, an optimal mixture ensuring good performance in terms of hydraulic conductivity, durability and shear strength, mixtures based of sand at different concentrations of sodium bentonite, at compact state are prepared and studied. This study showed that a low permeability of mixture (sand / bentonite) can be achieved 6% of sodium bentonite. This mixture confers also good mechanical behavior, expressed by the recorded, reduction of friction (φ) and the increase of the cohesion (C). Thus, the selected formulation represents an optimal mixture for waterproofing systems. It guarantees an economical and ecological advantages.

Keywords: hydraulic conductivity, sand, sodium bentonite, sustainability

Procedia PDF Downloads 250
9604 Operational Characteristics of the Road Surface Improvement

Authors: Iuri Salukvadze

Abstract:

Construction takes importance role in the history of mankind, there is not a single thing-product in our lives in which the builder’s work was not to be materialized, because to create all of it requires setting up factories, roads, and bridges, etc. The function of the Republic of Georgia, as part of the connecting Europe-Asia transport corridor, is significantly increased. In the context of transit function a large part of the cargo traffic belongs to motor transport, hence the improvement of motor roads transport infrastructure is rather important and rise the new, increased operational demands for existing as well as new motor roads. Construction of the durable road surface is related to rather large values, but because of high transport-operational properties, such as high-speed, less fuel consumption, less depreciation of tires, etc. If the traffic intensity is high, therefore the reimbursement of expenses occurs rapidly and accordingly is increasing income. If the traffic intensity is relatively small, it is recommended to use lightened structures of road carpet in order to pay for capital investments amounted to no more than normative one. The road carpet is divided into the following basic types: asphaltic concrete and cement concrete. Asphaltic concrete is the most perfect type of road carpet. It is arranged in two or three layers on rigid foundation and will be compacted. Asphaltic concrete is artificial building material, which due stratum will be selected and measured from stone skeleton and sand, interconnected by bitumen and a mixture of mineral powder. Less strictly selected similar material is called as bitumen-mineral mixture. Asphaltic concrete is non-rigid building material and well durable on vertical loadings; it is less resistant to the impact of horizontal forces. The cement concrete is monolithic and durable material, it is well durable the horizontal loads and is less resistant related to vertical loads. The cement concrete consists from strictly selected, measured stone material and sand, the binder is cement. The cement concrete road carpet represents separate slabs of sizes from 3 ÷ 5 op to 6 ÷ 8 meters. The slabs are reinforced by a rather complex system. Between the slabs are arranged seams that are designed for avoiding of additional stresses due temperature fluctuations on the length of slabs. For the joint behavior of separate slabs, they are connected by metal rods. Rods provide the changes in the length of slabs and distribute to the slab vertical forces and bending moments. The foundation layers will be extremely durable, for that is required high-quality stone material, cement, and metal. The qualification work aims to: in order for improvement of traffic conditions on motor roads to prolong operational conditions and improving their characteristics. The work consists from three chapters, 80 pages, 5 tables and 5 figures. In the work are stated general concepts as well as carried out by various companies using modern methods tests and their results. In the chapter III are stated carried by us tests related to this issue and specific examples to improving the operational characteristics.

Keywords: asphalt, cement, cylindrikal sample of asphalt, building

Procedia PDF Downloads 195
9603 The Effect of Carbon Nanofibers on the Electrical Resistance of Cementitious Composites

Authors: Reza Pourjafar, Morteza Sohrabi-Gilani, Mostafa Jamshidi Avanaki, Malek Mohammad Ranjbar

Abstract:

Cementitious composites like concrete, are the most widely used materials in civil infrastructures. Numerous investigations on fiber’s effect on the properties of cement-based composites have been conducted in the last few decades. The use of fibers such as carbon nanofibers (CNFs) and carbon nanotubes (CNTs) in these materials is an ongoing field and needs further researches and studies. Excellent mechanical, thermal, and electrical properties of carbon nanotubes and nanofibers have motivated the development of advanced nanocomposites with outstanding and multifunctional properties. In this study, the electrical resistance of CNF reinforced cement mortar was examined. Three different dosages of CNF were used, and the resistances were compared to plain cement mortar. One of the biggest challenges in this study is dispersing CNF particles in the mortar mixture. Therefore, polycarboxylate superplasticizer and ultrasonication of the mixture have been selected for the purpose of dispersing CNFs in the cement matrix. The obtained results indicated that the electrical resistance of the CNF reinforced mortar samples decreases with increasing CNF content, which would be the first step towards examining strain and damage monitoring ability of cementitious composites containing CNF for structural health monitoring purposes.

Keywords: carbon nanofiber, cement and concrete, CNF reinforced mortar, smart mater, strain monitoring, structural health monitoring

Procedia PDF Downloads 112
9602 Filler for Higher Bitumen Adhesion

Authors: Alireza Rezagholilou

Abstract:

Moisture susceptibility of bituminous mixes directly affect the stripping of asphalt layers. The majority of relevant test methods are mechanical methods with low repeatability and consistency of results. Thus, this research aims to evaluate the physicochemical interactions of bitumen and aggregates based on the wettability concept. As such, the surface energies of components at the interface are measured by contact angle method. That gives an opportunity to investigate the adhesion properties of multiple mineral fillers at various percentages to explore the best dosage in the mix. Three types of fillers, such as hydrated lime, ground lime and rock powder, are incorporated into the bitumen mix for a series of sessile drop tests for both aggregates and binders. Results show the variation of adhesion properties versus filler (%).

Keywords: adhesion, contact angle, filler, surface energy, moisture susceptibility

Procedia PDF Downloads 49
9601 Monitoring Synthesis of Biodiesel through Online Density Measurements

Authors: Arnaldo G. de Oliveira, Jr, Matthieu Tubino

Abstract:

The transesterification process of triglycerides with alcohols that occurs during the biodiesel synthesis causes continuous changes in several physical properties of the reaction mixture, such as refractive index, viscosity and density. Amongst them, density can be an useful parameter to monitor the reaction, in order to predict the composition of the reacting mixture and to verify the conversion of the oil into biodiesel. In this context, a system was constructed in order to continuously determine changes in the density of the reacting mixture containing soybean oil, methanol and sodium methoxide (30 % w/w solution in methanol), stirred at 620 rpm at room temperature (about 27 °C). A polyethylene pipe network connected to a peristaltic pump was used in order to collect the mixture and pump it through a coil fixed on the plate of an analytical balance. The collected mass values were used to trace a curve correlating the mass of the system to the reaction time. The density variation profile versus the time clearly shows three different steps: 1) the dispersion of methanol in oil causes a decrease in the system mass due to the lower alcohol density followed by stabilization; 2) the addition of the catalyst (sodium methoxide) causes a larger decrease in mass compared to the first step (dispersion of methanol in oil) because of the oil conversion into biodiesel; 3) the final stabilization, denoting the end of the reaction. This density variation profile provides information that was used to predict the composition of the mixture over the time and the reaction rate. The precise knowledge of the duration of the synthesis means saving time and resources on a scale production system. This kind of monitoring provides several interesting features such as continuous measurements without collecting aliquots.

Keywords: biodiesel, density measurements, online continuous monitoring, synthesis

Procedia PDF Downloads 550
9600 Hydro-Mechanical Behavior of a Tuff and Calcareous Sand Mixture for Use in Pavement in Arid Region

Authors: I. Goual, M. S. Goual, M. K. Gueddouda, Taïbi Saïd, Abou-Bekr Nabil, A. Ferhat

Abstract:

The aim of the paper is to study the hydro-mechanical behavior of a tuff and calcareous sand mixture. A first experimental phase was carried out in order to find the optimal mixture. This showed that the material composed of 80% tuff and 20% calcareous sand provides the maximum mechanical strength. The second experimental phase concerns the study of the drying-wetting behavior of the optimal mixture was carried out on slurry samples and compacted samples at the MPO. Experimental results let to deduce the parameters necessary for the prediction of the hydro-mechanical behavior of pavement formulated from tuff and calcareous sand mixtures, related to moisture. This optimal mixture satisfies the regulation rules and hence constitutes a good local eco-material, abundantly available, for the conception of pavements.

Keywords: tuff, sandy calcareous, road engineering, hydro mechanical behaviour, suction

Procedia PDF Downloads 409
9599 The Effects of Alkalization to the Mechanical Properties of Biocomposite PLA reinforced the Ijuk Fibers

Authors: Mochamad Chalid, Imam Prabowo

Abstract:

The pollution due to non-degradable material such as plastics, has led to studies about the development of environmental-friendly material. Because of biodegradability obtained from natural sources, polylactid acid (PLA) and ijuk fiber are interesting to modify into a composite. This material is also expected to reduce the impact of environmental pollution. Surface modification of ijuk fiber through alkalinization with 0.25 M NaOH solution for 30 minutes, was aimed to enhance it’s compatibility to PLA, in order to improve properties of the composite such as the mechanical properties. Alkalinization of the ijuk fibers annihilates some surface components such as lignin, wax and hemicelloluse, so the pore on the surface clearly appeared, decreasing of the density and diameter of the ijuk fibers. The change of the ijuk fiber properties leads to increase the mechanical properties of PLA composites reinforced the ijuk fibers through strengthening of the mechanical interlocking with the PLA matrix. An addition to enhance the distribution of the fibers in the PLA matrix, the stirring during DCM solvent evaporation from the mixture of the ijuk fibers and the dissolved-PLA can reduce amount of the trapped-voids and fibers pull-out phenomena, which can decrease the mechanical properties of the composite.

Keywords: polylactic acid, Arenga pinnata, alkalinization, compatibility, adhesion, morphology, mechanical properties, volume fraction, distributiom

Procedia PDF Downloads 341
9598 Nano Ceramics Materials in Clean Rooms: Properties and Characterization

Authors: HebatAllah Tarek, Zeyad El-Sayad, Ali F. Bakr

Abstract:

Surface coating can permit the bulk materials to remain unchanged, whereas the surface functionality is engineered to afford a more required characteristic. Nano-Ceramic coatings are considered ideal coatings on materials that can significantly improve the surface properties, including anti-fouling, self-cleaning, corrosion resistance, wear resistance, anti-scratch, waterproof, anti-acid rain and anti-asphalt. Furthermore, various techniques have been utilized to fabricate a range of different ceramic coatings with more desirable properties on Nano-ceramics, which make the materials usually used in in-service environments and worth mentioning that the practical part of this study will be applied in one of the most important architectural applications due to the contamination-free conditions provided by it in the manufacturing industry. Without cleanrooms, products will become contaminated and either malfunction or infect people with bacteria. Cleanrooms are used for the manufacture of items used in computers, cars, airplanes, spacecraft, televisions, disc players and many other electronic and mechanical devices, as well as the manufacture of medicines, medical devices, and foods. The aim of this study will be to examine the Nano-ceramics on porcelain and glass panels. The investigation will be included fabrications, methods, surface properties and applications in clean rooms. The unfamiliarity in this study is using Nano-ceramics in clean rooms instead of using them on metallic materials.

Keywords: nano-ceramic coating, clean rooms, porcelain, surface properties

Procedia PDF Downloads 64
9597 Factors Affecting the Occurrence of Cracks on Road Surfaces and the Causes of Their Formation

Authors: Ainura Kairanbayeva

Abstract:

Currently, the issue of maintaining the operational condition of highways at the required level is acute in Kazakhstan. The impact of landslides on the state of the road industry in Kazakhstan has been poorly studied. This article presents the classification of natural hazards and examines the influence of atmospheric natural processes on the operational condition of the sections of the highway "Ayusai–Kosmostantsia" passing along the mountain slopes of the Trans-Ili Alatau. According to the results of field studies, multi-turn reflected cracks have been identified, this is also due to the fact that the base of the road is made of a sand-gravel mixture and is not treated with reinforcing additives and the actual density of the asphalt concrete pavement is below regulatory requirements.

Keywords: building materials and products, construction of highways and engineering structures, construction processes, displacements of the earth's surface, geodynamic processes

Procedia PDF Downloads 50
9596 Physicochemical Characterization of Medium Alkyd Resins Prepared with a Mixture of Linum usitatissimum L. and Plukenetia volubilis L. Oils

Authors: Antonella Hadzich, Santiago Flores

Abstract:

Alkyds have become essential raw materials in the coating and paint industry, due to their low cost, good application properties and lower environmental impact in comparison with petroleum-based polymers. The properties of these oil-modified materials depend on the type of polyunsaturated vegetable oil used for its manufacturing, since a higher degree of unsaturation provides a better crosslinking of the cured paint. Linum usitatissimum L. (flax) oil is widely used to develop alkyd resins due to its high degree of unsaturation. Although it is intended to find non-traditional sources and increase their commercial value, to authors’ best knowledge a natural source that can replace flaxseed oil has not yet been found. However, Plukenetia volubilis L. oil, of Peruvian origin, contains a similar fatty acid polyunsaturated content to the one reported for Linum usitatissimum L. oil. In this perspective, medium alkyd resins were prepared with a mixture of 50% of Linum usitatissimum L. oil and 50% of Plukenetia volubilis L. oil. Pure Linum usitatissimum L. oil was also used for comparison purposes. Three different resins were obtained by varying the amount of glycerol and pentaerythritol. The synthesized alkyd resins were characterized by FT-IR, and physicochemical properties like acid value, colour, viscosity, density and drying time were evaluated by standard methods. The pencil hardness and chemical resistance behaviour of the cured resins were also studied. Overall, it can be concluded that medium alkyd resins containing Plukenetia volubilis L. oil have an equivalent behaviour compared to those prepared purely with Linum usitatissimum L. oil. Both Plukenetia volubilis L. oil and pentaerythritol have a remarkable influence on certain physicochemical properties of medium alkyd resins.

Keywords: alkyd resins, flaxseed oil, pentaerythritol, Plukenetia volubilis L. oil, protective coating

Procedia PDF Downloads 94
9595 Useful Effects of Silica Nanoparticles in Ionic Liquid Electrolyte for Energy Storage

Authors: Dong Won Kim, Hye Ji Kim, Hyun Young Jung

Abstract:

Improved energy storage is inevitably needed to improve energy efficiency and to be environmentally friendly to chemical processes. Ionic liquids (ILs) can play a crucial role in addressing these needs due to inherent adjustable properties including low volatility, low flammability, inherent conductivity, wide liquid range, broad electrochemical window, high thermal stability, and recyclability. Here, binary mixtures of ILs were prepared with fumed silica nanoparticles and characterized to obtain ILs with conductivity and electrochemical properties optimized for use in energy storage devices. The solutes were prepared by varying the size and the weight percent concentration of the nanoparticles and made up 10 % of the binary mixture by weight. We report on the physical and electrochemical properties of the individual ILs and their binary mixtures.

Keywords: ionic liquid, silica nanoparticle, energy storage, electrochemical properties

Procedia PDF Downloads 178
9594 Analysis Thermal of Composite Material in Cold Systems

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, Rubens Maribondo do Nascimento, José Ubiragi de Lima Mendes

Abstract:

Given the unquestionable need of environmental preservation of discarded industrial residues, The scrape of tires have been seen as a salutary alternative for addictive in concrete, asphalt production and of other composites materials. In this work, grew a composite the base of scrape of tire as reinforcement and latex as matrix, to be used as insulating thermal in "cold" systems (0º). Analyzed the acting of the material was what plays the thermal conservation when submitted the flow of heat. Verified the temperature profiles in the internal surfaces and it expresses of the composite as well as the temperature gradient in the same. As a consequence, in function of the answers of the system, conclusions were reached.

Keywords: cold system, latex, flow of heat, asphalt production

Procedia PDF Downloads 438
9593 Improving Swelling Performance Using Industrial Waste Products

Authors: Mohieldin Elmashad, Salwa Yassin

Abstract:

Expansive soils regarded as one of the most problematic unsaturated formations in the Egyptian arid zones and present a great challenge in civil engineering, in general, and geotechnical engineering, in particular. Severe geotechnical complications and consequent structural damages have been arising due to an excessive and differential volumetric change upon wetting and change in water content. Different studies have been carried out concerning the swelling performance of the expansive soils using different additives including phospho-gypsum as an industrial waste product. However, this paper describes the results of a comprehensive testing programme that was carried out to investigate the effect of phospho-gypsum (PG) and sodium chloride (NaCl), as an additive mixture, on the swelling performance of constituent samples of swelling soils. The constituent samples comprise commercial bentonite collected from a natural site, mixed with different percentages of PG-NaCl mixture. The testing programme had been scoped to cover the physical and chemical properties of the constituent samples. In addition, a mineralogical study using x-ray diffraction (XRD) was performed on the collected bentonite and the mixed bentonite with PG-NaCl mixture samples. The obtained results of this study showed significant improvement in the swelling performance of the tested samples with the increase of the proposed PG-NaCl mixture content.

Keywords: expansive soils, industrial waste, mineralogical study, swelling performance, X-ray diffraction

Procedia PDF Downloads 245
9592 Use of FWD in Determination of Bonding Condition of Semi-Rigid Asphalt Pavement

Authors: Nonde Lushinga, Jiang Xin, Danstan Chiponde, Lawrence P. Mutale

Abstract:

In this paper, falling weight deflectometer (FWD) was used to determine the bonding condition of a newly constructed semi-rigid base pavement. Using Evercal back-calculation computer programme, it was possible to quickly and accurately determine the structural condition of the pavement system of FWD test data. The bonding condition of the pavement layers was determined from calculated shear stresses and strains (relative horizontal displacements) on the interface of pavement layers from BISAR 3.0 pavement computer programmes. Thus, by using non-linear layered elastic theory, a pavement structure is analysed in the same way as other civil engineering structures. From non-destructive FWD testing, the required bonding condition of pavement layers was quantified from soundly based principles of Goodman’s constitutive models shown in equation 2, thereby producing the shear reaction modulus (Ks) which gives an indication of bonding state of pavement layers. Furthermore, a Tack coat failure Ratio (TFR) which has long being used in the USA in pavement evaluation was also used in the study in order to give validity to the study. According to research [39], the interface between two asphalt layers is determined by use of Tack Coat failure Ratio (TFR) which is the ratio of the stiffness of top layer asphalt layers over the stiffness of the second asphalt layer (E1/E2) in a slipped pavement. TFR gives an indication of the strength of the tack coat which is the main determinants of interlayer slipping. The criteria is that if the interface was in the state full bond, TFR would be greater or equals to 1 and that if the TFR was 0, meant full slip. Results of the calculations showed that TFR value was 1.81 which re-affirmed the position that the pavement under study was in the state of full bond because the value was greater than 1. It was concluded that FWD can be used to determine bonding condition of existing and newly constructed pavements.

Keywords: falling weight deflectometer (FWD), backcaluclation, semi-rigid base pavement, shear reaction modulus

Procedia PDF Downloads 487
9591 The Influence of Mineraliser Granulometry on Dense Silica Brick Microstructure

Authors: L. Nevrivova, K. Lang, M. Kotoucek, D. Vsiansky

Abstract:

This entry concerned with dense silica microstructure was produced as a part of a project within the Technology Agency of the Czech Republic which is being implemented in cooperation of the biggest producer of refractories the P-D Refractories CZ company with the research organisation Brno University of Technology. The paper is focused on the influence of mixture homogenisation and the influence of grain size of the mineraliser on the resulting utility properties of the material as well as its microstructure. It has a decisive influence on the durability of the material in a building structure. This paper is a continuation of a previously published study dealing with the suitability of various types of mineralising agents in terms of density, strength and mineral composition of silica. The entry describes the influence of the method of mixture homogenisation and the influence of granulometry of the applied Fe-mineralising agent on the resulting silica microstructure. Porosity, density, phase composition and microstructure of the experimentally prepared silica samples were examined and the results were discussed in context with the technology of homogenisation and firing temperature used. The properties of silica brick samples were compared to the sample without any Fe-mineraliser.

Keywords: silica bricks, Fe-mineraliser, mineralogical composition, new developed silica material

Procedia PDF Downloads 299
9590 OLED Encapsulation Process Using Low Melting Point Alloy and Epoxy Mixture by Instantaneous Discharge

Authors: Kyung Min Park, Cheol Hee Moon

Abstract:

In this study we are to develop a sealing process using a mixture of a LMPA and an epoxy for the atmospheric OLED sealing process as a substitute for the thin-film process. Electrode lines were formed on the substrates, which were covered with insulating layers and sacrificial layers. A mixture of a LMPA and an epoxy was screen printed between the two electrodes. In order to generate a heat for the melting of the mixture, Joule heating method was used. Were used instantaneous discharge process for generating Joule heating. Experimental conditions such as voltage, time and constituent of the electrode were varied to optimize the heating conditions. As a result, the mixture structure of this study showed a great potential for a low-cost, low-temperature, atmospheric OLED sealing process as a substitute for the thin-film process.

Keywords: organic light emitting diode, encapsulation, low melting point alloy, joule heat

Procedia PDF Downloads 515
9589 Nano-Structured Hydrophobic Silica Membrane for Gas Separation

Authors: Sajid Shah, Yoshimitsu Uemura, Katsuki Kusakabe

Abstract:

Sol-gel derived hydrophobic silica membranes with pore sizes less than 1 nm are quite attractive for gas separation in a wide range of temperatures. A nano-structured hydrophobic membrane was prepared by sol-gel technique on a porous α–Al₂O₃ tubular support with yttria stabilized zirconia (YSZ) as an intermediate layer. Bistriethoxysilylethane (BTESE) derived sol was modified by adding phenyltriethoxysilylethane (PhTES) as an organic template. Six times dip coated modified silica membrane having a thickness of about 782 nm was characterized by field emission scanning electron microscopy. Thermogravimetric analysis, together along contact angle and Fourier transform infrared spectroscopy, showed that hydrophobic properties were improved by increasing the PhTES content. The contact angle of water droplet increased from 37° for pure to 111.5° for the modified membrane. The permeance of single gas H₂ was higher than H₂:CO₂ ratio of 75:25 binary feed mixtures. However, the permeance of H₂ for 60:40 H₂:CO₂ was found lower than single and binary mixture 75:25 H₂:CO₂. The binary selectivity values for 75:25 H₂:CO₂ were 24.75, 44, and 57, respectively. Selectivity had an inverse relation with PhTES content. Hydrophobicity properties were improved by increasing PhTES content in the silica matrix. The system exhibits proper three layers adhesion or integration, and smoothness. Membrane system suitable in steam environment and high-temperature separation. It was concluded that the hydrophobic silica membrane is highly promising for the separation of H₂/CO₂ mixture from various H₂-containing process streams.

Keywords: gas separation, hydrophobic properties, silica membrane, sol–gel method

Procedia PDF Downloads 98
9588 Microstructure and Tribological Properties of AlSi5Cu2/SiC Composite

Authors: Magdalena Suśniak, Joanna Karwan-Baczewska

Abstract:

Microstructure and tribological properties of AlSi5Cu2 matrix composite reinforced with SiC have been studied by microscopic examination and basic tribological properties. Composite material was produced by the mechanical alloying and spark plasma sintering (SPS) technique. The mixture of AlSi5Cu2 chips with 0, 10, 15 wt. % of SiC powder were placed in 250 ml mixing jar and milled 40 hours. To prevent the extreme cold welding the 1 wt. % of stearic acid was added to the powder mixture as a process control agent. Mechanical alloying provide to obtain composites powder with uniform distribution of SiC in matrix. Composite powders were poured into a graphite and a pulsed electric current was passed through powder under vacuum to consolidate material. Processing conditions were: sintering temperature 450°C, uniaxial pressure 32MPa, time of sintering 5 minutes. After SPS process composite samples indicate higher hardness values, lower weight loss, and lower coefficient of friction as compared with the unreinforced alloy. Light microscope micrograph of the worn surfaces and wear debris revealed that in the unreinforced alloy the prominent wear mechanism was the adhesive wear. In the AlSi5Cu2/SiC composites, by increasing of SiC the wear mechanism changed from adhesive and micro-cutting to abrasive and delamination for composite with 20 SiC wt. %. In all the AlSi5Cu2/SiC composites, abrasive wear was the main wear mechanism.

Keywords: aluminum matrix composite, mechanical alloying, spark plasma sintering, AlSi5Cu2/SiC composite

Procedia PDF Downloads 359
9587 Mechanical Properties of Kenaf Fibre Reinforced Epoxy Composites

Authors: C. Tezara, H. Y. Lim, M. H. Yazdi, J. W. Lim, J. P. Siregar

Abstract:

Natural fibre has become an element in human lives. A lot of researchers have conducted research about natural fibre reinforced polymer. Malaysian government has spent a lot of money on the research funding for researchers and academician especially research on kenaf fibre due to exclusion of tobacco from AFTA (Asean Free Trade Area) list. This work is to investigate the mechanical properties of kenaf fiber reinforced epoxy composite where short kenaf fibre was applied and the mechanical properties of 5%, 10% and 15% wt. of kenaf fibre were added into the mixture of epoxy resin. Hand lay-up process was selected in the fabrication of the specimen for testing. The tensile, flexural and impact test were conducted following ASTM D3039, ASTM D790 and ASTM D256 accordingly. From the experiment result, the effect of different fiber loading of the specimen on its mechanical properties would be analyzed and compared in the result and discussion.

Keywords: Kenaf fibre, epoxy, composite, fibre

Procedia PDF Downloads 260
9586 The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite

Authors: M. Bahgat, F. M. Awan, H. A. Hanafy

Abstract:

The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000°C and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated.The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure.

Keywords: hard magnetic materials, ceramic route, strontium ferrite, magnetic properties

Procedia PDF Downloads 660
9585 A Fundamental Study on the Molecular Chemistry of Agarwood Water Mixture

Authors: Fatmawati Adam, Saidatul Syaima Mat Tari, Saiful Nizam Tajuddin, Nurul Salwa Azliyana Hamzah

Abstract:

Essential oil of agarwood or known as Gaharu in Malay is highly prized for its value as luxury fragrances and incense. However, the complexities of the chemical composition of agarwood itself is the main challenge for establishment of an effective recovery method, which is able to ensure uniform qualities and standard for each batch of essential oil production. Agarwood markers are actually a blend of volatile and non-volatile compounds. While volatile molecules could be easily retrieved by the present distillation technique, the high solubility properties are the limiting factor for the latter. With regard to this, an elementary chemistry resolution study had been performed on commercial agarwood essential oil-water mixture, by the application of preparative HPLC and FTIR. Interpretation of the results leads to the theoretical postulation that, agarwood water mixture comprise of agarospirol, jinkohol, jinkoh eremol and khusenol. This study provides a pinpoint on the chemical characteristics of water soluble (non-volatile) agarwood compounds, therefore, will be an insight for researchers to develop a more strategic technique for their extraction. Thereafter the optimum quality of this essential oil could be controlled in a more improved way.

Keywords: Agarwood, Aquillaria Malaccensis, agarospirol, jinkohol, jinkoh eremol, khusenol

Procedia PDF Downloads 525
9584 Experimental Study of Sand-Silt Mixtures with Torsional and Flexural Resonant Column Tests

Authors: Meghdad Payan, Kostas Senetakis, Arman Khoshghalb, Nasser Khalili

Abstract:

Dynamic properties of soils, especially at the range of very small strains, are of particular interest in geotechnical engineering practice for characterization of the behavior of geo-structures subjected to a variety of stress states. This study reports on the small-strain dynamic properties of sand-silt mixtures with particular emphasis on the effect of non-plastic fines content on the small strain shear modulus (Gmax), Young’s Modulus (Emax), material damping (Ds,min) and Poisson’s Ratio (v). Several clean sands with a wide range of grain size characteristics and particle shape are mixed with variable percentages of a silica non-plastic silt as fines content. Prepared specimens of sand-silt mixtures at different initial void ratios are subjected to sequential torsional and flexural resonant column tests with elastic dynamic properties measured along an isotropic stress path up to 800 kPa. It is shown that while at low percentages of fines content, there is a significant difference between the dynamic properties of the various samples due to the different characteristics of the sand portion of the mixtures, this variance diminishes as the fines content increases and the soil behavior becomes mainly silt-dominant, rendering no significant influence of sand properties on the elastic dynamic parameters. Indeed, beyond a specific portion of fines content, around 20% to 30% typically denoted as threshold fines content, silt is controlling the behavior of the mixture. Using the experimental results, new expressions for the prediction of small-strain dynamic properties of sand-silt mixtures are developed accounting for the percentage of silt and the characteristics of the sand portion. These expressions are general in nature and are capable of evaluating the elastic dynamic properties of sand-silt mixtures with any types of parent sand in the whole range of silt percentage. The inefficiency of skeleton void ratio concept in the estimation of small-strain stiffness of sand-silt mixtures is also illustrated.

Keywords: damping ratio, Poisson’s ratio, resonant column, sand-silt mixture, shear modulus, Young’s modulus

Procedia PDF Downloads 229