Search results for: time domain reflectometry measurement techinque
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20618

Search results for: time domain reflectometry measurement techinque

20618 Basic Calibration and Normalization Techniques for Time Domain Reflectometry Measurements

Authors: Shagufta Tabassum

Abstract:

The study of dielectric properties in a binary mixture of liquids is very useful to understand the liquid structure, molecular interaction, dynamics, and kinematics of the mixture. Time-domain reflectometry (TDR) is a powerful tool for studying the cooperation and molecular dynamics of the H-bonded system. In this paper, we discuss the basic calibration and normalization procedure for time-domain reflectometry measurements. Our approach is to explain the different types of error occur during TDR measurements and how these errors can be eliminated or minimized.

Keywords: time domain reflectometry measurement techinque, cable and connector loss, oscilloscope loss, and normalization technique

Procedia PDF Downloads 174
20617 Simulation of Reflectometry in Alborz Tokamak

Authors: S. Kohestani, R. Amrollahi, P. Daryabor

Abstract:

Microwave diagnostics such as reflectometry are receiving growing attention in magnetic confinement fusionresearch. In order to obtain the better understanding of plasma confinement physics, more detailed measurements on density profile and its fluctuations might be required. A 2D full-wave simulation of ordinary mode propagation has been written in an effort to model effects seen in reflectometry experiment. The code uses the finite-difference-time-domain method with a perfectly-matched-layer absorption boundary to solve Maxwell’s equations.The code has been used to simulate the reflectometer measurement in Alborz Tokamak.

Keywords: reflectometry, simulation, ordinary mode, tokamak

Procedia PDF Downloads 392
20616 Comparative Dielectric Properties of 1,2-Dichloroethane with n-Methylformamide and n,n-Dimethylformamide Using Time Domain Reflectometry Technique in Microwave Frequency

Authors: Shagufta Tabassum, V. P. Pawar, jr., G. N. Shinde

Abstract:

The study of dielectric relaxation properties of polar liquids in the binary mixture has been carried out at 10, 15, 20 and 25 ºC temperatures for 11 different concentrations using time domain reflectometry technique. The dielectric properties of a solute-solvent mixture of polar liquids in the frequency range of 10 MHz to 30 GHz gives the information regarding formation of monomers and multimers and also an interaction between the molecules of the liquid mixture under study. The dielectric parameters have been obtained by the least squares fit method using the Debye equation characterized by a single relaxation time without relaxation time distribution.

Keywords: excess properties, relaxation time, static dielectric constant, and time domain reflectometry technique

Procedia PDF Downloads 119
20615 Estimation of the Pore Electrical Conductivity Using Dielectric Sensors

Authors: Fethi Bouksila, Magnus Persson, Ronny Berndtsson, Akissa Bahri

Abstract:

Under salinity conditions, we evaluate the performance of Hilhost (2000) model to predict pore electrical conductivity ECp from dielectric permittivity and bulk electrical conductivity (ECa) using Time and Frequency Domain Reflectometry sensors (TDR, FDR). Using FDR_WET sensor, RMSE of ECp was 4.15 dS m-1. By replacing the standard soil parameter (K0) in Hilhost model by K0-ECa relationship, the RMSE of ECp decreased to 0.68 dS m-1. WET sensor could give similar accuracy to estimate ECp than TDR if calibrated values of K0 were used instead of standard values in Hilhost model.

Keywords: hilhost model, soil salinity, time domain reflectometry, frequency domain reflectometry, dielectric methods

Procedia PDF Downloads 102
20614 Microwave Dielectric Relaxation Study of Diethanolamine with Triethanolamine from 10 MHz-20 GHz

Authors: A. V. Patil

Abstract:

The microwave dielectric relaxation study of diethanolamine with triethanolamine binary mixture have been determined over the frequency range of 10 MHz to 20 GHz, at various temperatures using time domain reflectometry (TDR) method for 11 concentrations of the system. The present work reveals molecular interaction between same multi-functional groups [−OH and –NH2] of the alkanolamines (diethanolamine and triethanolamine) using different models such as Debye model, Excess model, and Kirkwood model. The dielectric parameters viz. static dielectric constant (ε0) and relaxation time (τ) have been obtained with Debye equation characterized by a single relaxation time without relaxation time distribution by the least squares fit method.

Keywords: diethanolamine, excess properties, kirkwood properties, time domain reflectometry, triethanolamine

Procedia PDF Downloads 269
20613 Structural Properties of Polar Liquids in Binary Mixture Using Microwave Technique

Authors: Shagufta Tabassum, V. P. Pawar

Abstract:

The study of static dielectric properties in a binary mixture of 1,2 dichloroethane (DE) and n,n dimethylformamide (DMF) polar liquids has been carried out in the frequency range of 10 MHz to 30 GHz for 11 different concentration using time domain reflectometry technique at 10ºC temperature. The dielectric relaxation study of solute-solvent mixture at microwave frequencies gives information regarding the creation of monomers and multimers as well as interaction between the molecules of the binary mixture. The least squares fit method is used to determine the values of dielectric parameters such as static dielectric constant (ε0), dielectric constant at high frequency (ε) and relaxation time (τ).

Keywords: shagufta shaikhexcess parameters, relaxation time, static dielectric constant, time domain reflectometry

Procedia PDF Downloads 212
20612 Study of Aqueous Solutions: A Dielectric Spectroscopy Approach

Authors: Kumbharkhane Ashok

Abstract:

The time domain dielectric relaxation spectroscopy (TDRS) probes the interaction of a macroscopic sample with a time-dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the DRS technique covers an extensive dynamical process, its corresponding frequency range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy which yield information on the motions of individual molecules. An experimental set up for Time Domain Reflectometry (TDR) technique from 10 MHz to 30 GHz has been developed for the aqueous solutions. This technique has been very simple and covers a wide band of frequencies in the single measurement. Dielectric Relaxation Spectroscopy is especially sensitive to intermolecular interactions. The complex permittivity spectra of aqueous solutions have been fitted using Cole-Davidson (CD) model to determine static dielectric constants and relaxation times for entire concentrations. The heterogeneous molecular interactions in aqueous solutions have been discussed through Kirkwood correlation factor and excess properties.

Keywords: liquid, aqueous solutions, time domain reflectometry

Procedia PDF Downloads 415
20611 Identification of Soft Faults in Branched Wire Networks by Distributed Reflectometry and Multi-Objective Genetic Algorithm

Authors: Soumaya Sallem, Marc Olivas

Abstract:

This contribution presents a method for detecting, locating, and characterizing soft faults in a complex wired network. The proposed method is based on multi-carrier reflectometry MCTDR (Multi-Carrier Time Domain Reflectometry) combined with a multi-objective genetic algorithm. In order to ensure complete network coverage and eliminate diagnosis ambiguities, the MCTDR test signal is injected at several points on the network, and the data is merged between different reflectometers (sensors) distributed on the network. An adapted multi-objective genetic algorithm is used to merge data in order to obtain more accurate faults location and characterization. The proposed method performances are evaluated from numerical and experimental results.

Keywords: wired network, reflectometry, network distributed diagnosis, multi-objective genetic algorithm

Procedia PDF Downloads 157
20610 Distributed Acoustic Sensing Signal Model under Static Fiber Conditions

Authors: G. Punithavathy

Abstract:

The research proposes a statistical model for the distributed acoustic sensor interrogation units that broadcast a laser pulse into the fiber optics, where interactions within the fiber determine the localized acoustic energy that causes light reflections known as backscatter. The backscattered signal's amplitude and phase can be calculated using explicit equations. The created model makes amplitude signal spectrum and autocorrelation predictions that are confirmed by experimental findings. Phase signal characteristics that are useful for researching optical time domain reflectometry (OTDR) system sensing applications are provided and examined, showing good agreement with the experiment. The experiment was successfully done with the use of Python coding. In this research, we can analyze the entire distributed acoustic sensing (DAS) component parts separately. This model assumes that the fiber is in a static condition, meaning that there is no external force or vibration applied to the cable, that means no external acoustic disturbances present. The backscattered signal consists of a random noise component, which is caused by the intrinsic imperfections of the fiber, and a coherent component, which is due to the laser pulse interacting with the fiber.

Keywords: distributed acoustic sensing, optical fiber devices, optical time domain reflectometry, Rayleigh scattering

Procedia PDF Downloads 37
20609 Time Domain Dielectric Relaxation Microwave Spectroscopy

Authors: A. C. Kumbharkhane

Abstract:

Time domain dielectric relaxation microwave spectroscopy (TDRMS) is a term used to describe a technique of observing the time dependant response of a sample after application of time dependant electromagnetic field. A TDRMS probes the interaction of a macroscopic sample with a time dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the TDRS technique covers an extensive dynamical process. The corresponding frequencies range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy, which yield information on the motions of individual molecules. Recently, we have developed and established the TDR technique in laboratory that provides information regarding dielectric permittivity in the frequency range 10 MHz to 30 GHz. The TDR method involves the generation of step pulse with rise time of 20 pico-seconds in a coaxial line system and monitoring the change in pulse shape after reflection from the sample placed at the end of the coaxial line. There is a great interest to study the dielectric relaxation behaviour in liquid systems to understand the role of hydrogen bond in liquid system. The intermolecular interaction through hydrogen bonds in molecular liquids results in peculiar dynamical properties. The dynamics of hydrogen-bonded liquids have been studied. The theoretical model to explain the experimental results will be discussed.

Keywords: microwave, time domain reflectometry (TDR), dielectric measurement, relaxation time

Procedia PDF Downloads 312
20608 The Effects of Signal Level of the Microwave Generator on the Brillouin Gain Spectrum in BOTDA and BOTDR

Authors: Murat Yucel, Murat Yucel, Nail Ferhat Ozturk, Halim Haldun Goktas, Cemal Gemci, Fatih Vehbi Celebi

Abstract:

In this study, Brillouin gain spectrum (BGS) is experimentally analyzed in the Brillouin optical time domain reflectometry (BOTDR) and Brillouin optical time domain analyzer (BOTDA). For this purpose, the signal level of the microwave generator is varied and the effects of BGS are investigated. In the setups, 20 km conventional single mode fiber is used to both setups and laser wavelengths are selected around 1550 nm. To achieve best results, it can be used between 5 dBm to 15 dBm signal level of microwave generator for BOTDA and BOTDR setups.

Keywords: microwave signal level, Brillouin gain spectrum, BOTDA, BOTDR

Procedia PDF Downloads 656
20607 Comparison of Frequency-Domain Contention Schemes in Wireless LANs

Authors: Li Feng

Abstract:

In IEEE 802.11 networks, it is well known that the traditional time-domain contention often leads to low channel utilization. The first frequency-domain contention scheme, the time to frequency (T2F), has recently been proposed to improve the channel utilization and has attracted a great deal of attention. In this paper, we survey the latest research progress on the weighed frequency-domain contention. We present the basic ideas, work principles of these related schemes and point out their differences. This paper is very useful for further study on frequency-domain contention.

Keywords: 802.11, wireless LANs, frequency-domain contention, T2F

Procedia PDF Downloads 415
20606 Detection of Parkinsonian Freezing of Gait

Authors: Sang-Hoon Park, Yeji Ho, Gwang-Moon Eom

Abstract:

Fast and accurate detection of Freezing of Gait (FOG) is desirable for appropriate application of cueing which has been shown to ameliorate FOG. Utilization of frequency spectrum of leg acceleration to derive the freeze index requires much calculation and it would lead to delayed cueing. We hypothesized that FOG can be reasonably detected from the time domain amplitude of foot acceleration. A time instant was recognized as FOG if the mean amplitude of the acceleration in the time window surrounding the time instant was in the specific FOG range. Parameters required in the FOG detection was optimized by simulated annealing. The suggested time domain methods showed performances comparable to those of frequency domain methods.

Keywords: freezing of gait, detection, Parkinson's disease, time-domain method

Procedia PDF Downloads 411
20605 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: collapsible soil, dielectric permittivity, moisture content, relative subsidence

Procedia PDF Downloads 324
20604 Attenuation Scale Calibration of an Optical Time Domain Reflectometer

Authors: Osama Terra, Hatem Hussein

Abstract:

Calibration of Optical Time Domain Reflectometer (OTDR) is crucial for the accurate determination of loss budget for long optical fiber links. In this paper, the calibration of the attenuation scale of an OTDR using two different techniques is discussed and implemented. The first technique is the external modulation method (EM). A setup is proposed to calibrate an OTDR over a dynamic range of around 15 dB based on the EM method. Afterwards, the OTDR is calibrated using two standard reference fibers (SRF). Both SRF are calibrated using cut-back technique; one of them is calibrated at our home institute (the National Institute of Standards – NIS) while the other at the National Physical Laboratory (NPL) of the United Kingdom to confirm our results. In addition, the parameters contributing the calibration uncertainty are thoroughly investigated. Although the EM method has several advantages over the SRF method, the uncertainties in the SRF method is found to surpass that of the EM method.

Keywords: optical time domain reflectometer, fiber attenuation measurement, OTDR calibration, external source method

Procedia PDF Downloads 435
20603 The Lubrication Regimes Recognition of a Pressure-Fed Journal Bearing by Time and Frequency Domain Analysis of Acoustic Emission Signals

Authors: S. Hosseini, M. Ahmadi Najafabadi, M. Akhlaghi

Abstract:

The health of the journal bearings is very important in preventing unforeseen breakdowns in rotary machines, and poor lubrication is one of the most important factors for producing the bearing failures. Hydrodynamic lubrication (HL), mixed lubrication (ML), and boundary lubrication (BL) are three regimes of a journal bearing lubrication. This paper uses acoustic emission (AE) measurement technique to correlate features of the AE signals to the three lubrication regimes. The transitions from HL to ML based on operating factors such as rotating speed, load, inlet oil pressure by time domain and time-frequency domain signal analysis techniques are detected, and then metal-to-metal contacts between sliding surfaces of the journal and bearing are identified. It is found that there is a significant difference between theoretical and experimental operating values that are obtained for defining the lubrication regions.

Keywords: acoustic emission technique, pressure fed journal bearing, time and frequency signal analysis, metal-to-metal contact

Procedia PDF Downloads 121
20602 Distributed Optical Fiber Vibration Sensing Using Phase Generated Carrier Demodulation Algorithm

Authors: Zhihua Yu, Qi Zhang, Mingyu Zhang, Haolong Dai

Abstract:

Distributed fiber-optic vibration sensors are gaining extensive attention, for the advantages of high sensitivity, accurate location, light weight, large-scale monitoring, good concealment, and etc. In this paper, a novel optical fiber distributed vibration sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson Interferometry (MI) to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000m sensing fiber and demodulated correctly. Experiments show that the spatial resolution of is 10 m, and the noise level of the Φ-OTDR system is about 10-3 rad/√Hz, and the signal to noise ratio (SNR) is about 30.34dB. This vibration measurement scheme can be applied at surface, seabed or downhole for vibration measurements or distributed acoustic sensing (DAS).

Keywords: fiber optics sensors, Michelson interferometry, MI, phase-sensitive optical time domain reflectometry, Φ-OTDR, phase generated carrier, PGC

Procedia PDF Downloads 159
20601 Vibrations of Springboards: Mode Shape and Time Domain Analysis

Authors: Stefano Frassinelli, Alessandro Niccolai, Riccardo E. Zich

Abstract:

Diving is an important Olympic sport. In this sport, the effective performance of the athlete is related to his capability to interact correctly with the springboard. In fact, the elevation of the jump and the correctness of the dive are influenced by the vibrations of the board. In this paper, the vibrations of the springboard will be analyzed by means of typical tools for vibration analysis: Firstly, a modal analysis will be done on two different models of the springboard, then, these two model and another one will be analyzed with a time analysis, done integrating the equations of motion od deformable bodies. All these analyses will be compared with experimental data measured on a real springboard by means of a 6-axis accelerometer; these measurements are aimed to assess the models proposed. The acquired data will be analyzed both in frequency domain and in time domain.

Keywords: springboard analysis, modal analysis, time domain analysis, vibrations

Procedia PDF Downloads 426
20600 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry

Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard

Abstract:

Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.

Keywords: wetting, acoustic reflectometry, gigahertz, semiconductor

Procedia PDF Downloads 301
20599 Single Carrier Frequency Domain Equalization Design to Cope with Narrow Band Jammer

Authors: So-Young Ju, Sung-Mi Jo, Eui-Rim Jeong

Abstract:

In this paper, based on the conventional single carrier frequency domain equalization (SC-FDE) structure, we propose a new SC-FDE structure to cope with narrowband jammer. In the conventional SC-FDE structure, channel estimation is performed in the time domain. When a narrowband jammer exists, time-domain channel estimation is very difficult due to high power jamming interference, which degrades receiver performance. To relieve from this problem, a new SC-FDE frame is proposed to enable channel estimation under narrow band jamming environments. In this paper, we proposed a modified SC-FDE structure that can perform channel estimation in the frequency domain and verified the performance via computer simulation.

Keywords: channel estimation, jammer, pilot, SC-FDE

Procedia PDF Downloads 442
20598 Robust Medical Image Watermarking Using Frequency Domain and Least Significant Bits Algorithms

Authors: Volkan Kaya, Ersin Elbasi

Abstract:

Watermarking and stenography are getting importance recently because of copyright protection and authentication. In watermarking we embed stamp, logo, noise or image to multimedia elements such as image, video, audio, animation and text. There are several works have been done in watermarking for different purposes. In this research work, we used watermarking techniques to embed patient information into the medical magnetic resonance (MR) images. There are two methods have been used; frequency domain (Digital Wavelet Transform-DWT, Digital Cosine Transform-DCT, and Digital Fourier Transform-DFT) and spatial domain (Least Significant Bits-LSB) domain. Experimental results show that embedding in frequency domains resist against one type of attacks, and embedding in spatial domain is resist against another group of attacks. Peak Signal Noise Ratio (PSNR) and Similarity Ratio (SR) values are two measurement values for testing. These two values give very promising result for information hiding in medical MR images.

Keywords: watermarking, medical image, frequency domain, least significant bits, security

Procedia PDF Downloads 256
20597 Identifying Unknown Dynamic Forces Applied on Two Dimensional Frames

Authors: H. Katkhuda

Abstract:

A time domain approach is used in this paper to identify unknown dynamic forces applied on two dimensional frames using the measured dynamic structural responses for a sub-structure in the two dimensional frame. In this paper a sub-structure finite element model with short length of measurement from only three or four accelerometers is required, and an iterative least-square algorithm is used to identify the unknown dynamic force applied on the structure. Validity of the method is demonstrated with numerical examples using noise-free and noise-contaminated structural responses. Both harmonic and impulsive forces are studied. The results show that the proposed approach can identify unknown dynamic forces within very limited iterations with high accuracy and shows its robustness even noise- polluted dynamic response measurements are utilized.

Keywords: dynamic force identification, dynamic responses, sub-structure, time domain

Procedia PDF Downloads 319
20596 Parallelizing the Hybrid Pseudo-Spectral Time Domain/Finite Difference Time Domain Algorithms for the Large-Scale Electromagnetic Simulations Using Massage Passing Interface Library

Authors: Donggun Lee, Q-Han Park

Abstract:

Due to its coarse grid, the Pseudo-Spectral Time Domain (PSTD) method has advantages against the Finite Difference Time Domain (FDTD) method in terms of memory requirement and operation time. However, since the efficiency of parallelization is much lower than that of FDTD, PSTD is not a useful method for a large-scale electromagnetic simulation in a parallel platform. In this paper, we propose the parallelization technique of the hybrid PSTD-FDTD (HPF) method which simultaneously possesses the efficient parallelizability of FDTD and the quick speed and low memory requirement of PSTD. Parallelization cost of the HPF method is exactly the same as the parallel FDTD, but still, it occupies much less memory space and has faster operation speed than the parallel FDTD. Experiments in distributed memory systems have shown that the parallel HPF method saves up to 96% of the operation time and reduces 84% of the memory requirement. Also, by combining the OpenMP library to the MPI library, we further reduced the operation time of the parallel HPF method by 50%.

Keywords: FDTD, hybrid, MPI, OpenMP, PSTD, parallelization

Procedia PDF Downloads 109
20595 Study on Sharp V-Notch Problem under Dynamic Loading Condition Using Symplectic Analytical Singular Element

Authors: Xiaofei Hu, Zhiyu Cai, Weian Yao

Abstract:

V-notch problem under dynamic loading condition is considered in this paper. In the time domain, the precise time domain expanding algorithm is employed, in which a self-adaptive technique is carried out to improve computing accuracy. By expanding variables in each time interval, the recursive finite element formulas are derived. In the space domain, a Symplectic Analytical Singular Element (SASE) for V-notch problem is constructed addressing the stress singularity of the notch tip. Combining with the conventional finite elements, the proposed SASE can be used to solve the dynamic stress intensity factors (DSIFs) in a simple way. Numerical results show that the proposed SASE for V-notch problem subjected to dynamic loading condition is effective and efficient.

Keywords: V-notch, dynamic stress intensity factor, finite element method, precise time domain expanding algorithm

Procedia PDF Downloads 145
20594 Visualization of Energy Waves via Airy Functions in Time-Domain

Authors: E. Sener, O. Isik, E. Eroglu, U. Sahin

Abstract:

The main idea is to solve the system of Maxwell’s equations in accordance with the causality principle to get the energy quantities via Airy functions in a hollow rectangular waveguide. We used the evolutionary approach to electromagnetics that is an analytical time-domain method. The boundary-value problem for the system of Maxwell’s equations is reformulated in transverse and longitudinal coordinates. A self-adjoint operator is obtained and the complete set of Eigen vectors of the operator initiates an orthonormal basis of the solution space. Hence, the sought electromagnetic field can be presented in terms of this basis. Within the presentation, the scalar coefficients are governed by Klein-Gordon equation. Ultimately, in this study, time-domain waveguide problem is solved analytically in accordance with the causality principle. Moreover, the graphical results are visualized for the case when the energy and surplus of the energy for the time-domain waveguide modes are represented via airy functions.

Keywords: airy functions, Klein-Gordon Equation, Maxwell’s equations, Surplus of energy, wave boundary operators

Procedia PDF Downloads 327
20593 Time-Domain Analysis of Pulse Parameters Effects on Crosstalk in High-Speed Circuits

Authors: Loubna Tani, Nabih Elouzzani

Abstract:

Crosstalk among interconnects and printed-circuit board (PCB) traces is a major limiting factor of signal quality in high-speed digital and communication equipments especially when fast data buses are involved. Such a bus is considered as a planar multiconductor transmission line. This paper will demonstrate how the finite difference time domain (FDTD) method provides an exact solution of the transmission-line equations to analyze the near end and the far end crosstalk. In addition, this study makes it possible to analyze the rise time effect on the near and far end voltages of the victim conductor. The paper also discusses a statistical analysis, based upon a set of several simulations. Such analysis leads to a better understanding of the phenomenon and yields useful information.

Keywords: multiconductor transmission line, crosstalk, finite difference time domain (FDTD), printed-circuit board (PCB), rise time, statistical analysis

Procedia PDF Downloads 398
20592 Relative Navigation with Laser-Based Intermittent Measurement for Formation Flying Satellites

Authors: Jongwoo Lee, Dae-Eun Kang, Sang-Young Park

Abstract:

This study presents a precise relative navigational method for satellites flying in formation using laser-based intermittent measurement data. The measurement data for the relative navigation between two satellites consist of a relative distance measured by a laser instrument and relative attitude angles measured by attitude determination. The relative navigation solutions are estimated by both the Extended Kalman filter (EKF) and unscented Kalman filter (UKF). The solutions estimated by the EKF may become inaccurate or even diverge as measurement outage time gets longer because the EKF utilizes a linearization approach. However, this study shows that the UKF with the appropriate scaling parameters provides a stable and accurate relative navigation solutions despite the long measurement outage time and large initial error as compared to the relative navigation solutions of the EKF. Various navigation results have been analyzed by adjusting the scaling parameters of the UKF.

Keywords: satellite relative navigation, laser-based measurement, intermittent measurement, unscented Kalman filter

Procedia PDF Downloads 322
20591 Virtual Assessment of Measurement Error in the Fractional Flow Reserve

Authors: Keltoum Chahour, Mickael Binois

Abstract:

Due to a lack of standardization during the invasive fractional flow reserve (FFR) procedure, the index is subject to many sources of uncertainties. In this paper, we investigate -through simulation- the effect of the (FFR) device position and configuration on the obtained value of the (FFR) fraction. For this purpose, we use computational fluid dynamics (CFD) in a 3D domain corresponding to a diseased arterial portion. The (FFR) pressure captor is introduced inside it with a given length and coefficient of bending to capture the (FFR) value. To get over the computational limitations, basically, the time of the simulation is about 2h 15min for one (FFR) value; we generate a Gaussian Process (GP) model for (FFR) prediction. The (GP) model indicates good accuracy and demonstrates the effective error in the measurement created by the random configuration of the pressure captor.

Keywords: fractional flow reserve, Gaussian processes, computational fluid dynamics, drift

Procedia PDF Downloads 94
20590 On Transferring of Transient Signals along Hollow Waveguide

Authors: E. Eroglu, S. Semsit, E. Sener, U.S. Sener

Abstract:

In Electromagnetics, there are three canonical boundary value problem with given initial conditions for the electromagnetic field sought, namely: Cavity Problem, Waveguide Problem, and External Problem. The Cavity Problem and Waveguide Problem were rigorously studied and new results were arised at original works in the past decades. In based on studies of an analytical time domain method Evolutionary Approach to Electromagnetics (EAE), electromagnetic field strength vectors produced by a time dependent source function are sought. The fields are took place in L2 Hilbert space. The source function that performs signal transferring, energy and surplus of energy has been demonstrated with all clarity. Depth of the method and ease of applications are emerged needs of gathering obtained results. Main discussion is about perfect electric conductor and hollow waveguide. Even if well studied time-domain modes problems are mentioned, specifically, the modes which have a hollow (i.e., medium-free) cross-section domain are considered.

Keywords: evolutionary approach to electromagnetics, time-domain waveguide mode, Neumann problem, Dirichlet boundary value problem, Klein-Gordon

Procedia PDF Downloads 293
20589 User Experience Measurement of User Interfaces

Authors: Mohammad Hashemi, John Herbert

Abstract:

Quantifying and measuring Quality of Experience (QoE) are important and difficult concerns in Human Computer Interaction (HCI). Quality of Service (QoS) and the actual User Interface (UI) of the application are both important contributors to the QoE of a user. This paper describes a framework that measures accurately the way a user uses the UI in order to model users' behaviours and profiles. It monitors the use of the mouse and use of UI elements with accurate time measurement. It does this in real-time and does so unobtrusively and efficiently allowing the user to work as normal with the application. This real-time accurate measurement of the user's interaction provides valuable data and insight into the use of the UI, and is also the basis for analysis of the user's QoE.

Keywords: user modelling, user interface experience, quality of experience, user experience, human and computer interaction

Procedia PDF Downloads 467