Search results for: apache spark
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 164

Search results for: apache spark

164 A High-Level Co-Evolutionary Hybrid Algorithm for the Multi-Objective Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a hybrid distributed algorithm has been suggested for the multi-objective job shop scheduling problem. Many new approaches are used at design steps of the distributed algorithm. Co-evolutionary structure of the algorithm and competition between different communicated hybrid algorithms, which are executed simultaneously, causes to efficient search. Using several machines for distributing the algorithms, at the iteration and solution levels, increases computational speed. The proposed algorithm is able to find the Pareto solutions of the big problems in shorter time than other algorithm in the literature. Apache Spark and Hadoop platforms have been used for the distribution of the algorithm. The suggested algorithm and implementations have been compared with results of the successful algorithms in the literature. Results prove the efficiency and high speed of the algorithm.

Keywords: distributed algorithms, Apache Spark, Hadoop, job shop scheduling, multi-objective optimization

Procedia PDF Downloads 363
163 A Hybrid Distributed Algorithm for Solving Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a distributed hybrid algorithm is proposed for solving the job shop scheduling problem. The suggested method executes different artificial neural networks, heuristics and meta-heuristics simultaneously on more than one machine. The neural networks are used to control the constraints of the problem while the meta-heuristics search the global space and the heuristics are used to prevent the premature convergence. To attain an efficient distributed intelligent method for solving big and distributed job shop scheduling problems, Apache Spark and Hadoop frameworks are used. In the algorithm implementation and design steps, new approaches are applied. Comparison between the proposed algorithm and other efficient algorithms from the literature shows its efficiency, which is able to solve large size problems in short time.

Keywords: distributed algorithms, Apache Spark, Hadoop, job shop scheduling, neural network

Procedia PDF Downloads 387
162 A Hybrid Distributed Algorithm for Multi-Objective Dynamic Flexible Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a hybrid distributed algorithm has been suggested for multi-objective dynamic flexible job shop scheduling problem. The proposed algorithm is high level, in which several algorithms search the space on different machines simultaneously also it is a hybrid algorithm that takes advantages of the artificial intelligence, evolutionary and optimization methods. Distribution is done at different levels and new approaches are used for design of the algorithm. Apache spark and Hadoop frameworks have been used for the distribution of the algorithm. The Pareto optimality approach is used for solving the multi-objective benchmarks. The suggested algorithm that is able to solve large-size problems in short times has been compared with the successful algorithms of the literature. The results prove high speed and efficiency of the algorithm.

Keywords: distributed algorithms, apache-spark, Hadoop, flexible dynamic job shop scheduling, multi-objective optimization

Procedia PDF Downloads 354
161 RA-Apriori: An Efficient and Faster MapReduce-Based Algorithm for Frequent Itemset Mining on Apache Flink

Authors: Sanjay Rathee, Arti Kashyap

Abstract:

Extraction of useful information from large datasets is one of the most important research problems. Association rule mining is one of the best methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent patterns) is most important part of the association rule mining. There exist many algorithms to find frequent patterns but Apriori algorithm always remains a preferred choice due to its ease of implementation and natural tendency to be parallelized. Many single-machine based Apriori variants exist but massive amount of data available these days is above capacity of a single machine. Therefore, to meet the demands of this ever-growing huge data, there is a need of multiple machines based Apriori algorithm. For these types of distributed applications, MapReduce is a popular fault-tolerant framework. Hadoop is one of the best open-source software frameworks with MapReduce approach for distributed storage and distributed processing of huge datasets using clusters built from commodity hardware. However, heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori makes Hadoop inefficient. A number of MapReduce-based platforms are being developed for parallel computing in recent years. Among them, two platforms, namely, Spark and Flink have attracted a lot of attention because of their inbuilt support to distributed computations. Earlier we proposed a reduced- Apriori algorithm on Spark platform which outperforms parallel Apriori, one because of use of Spark and secondly because of the improvement we proposed in standard Apriori. Therefore, this work is a natural sequel of our work and targets on implementing, testing and benchmarking Apriori and Reduced-Apriori and our new algorithm ReducedAll-Apriori on Apache Flink and compares it with Spark implementation. Flink, a streaming dataflow engine, overcomes disk I/O bottlenecks in MapReduce, providing an ideal platform for distributed Apriori. Flink's pipelining based structure allows starting a next iteration as soon as partial results of earlier iteration are available. Therefore, there is no need to wait for all reducers result to start a next iteration. We conduct in-depth experiments to gain insight into the effectiveness, efficiency and scalability of the Apriori and RA-Apriori algorithm on Flink.

Keywords: apriori, apache flink, Mapreduce, spark, Hadoop, R-Apriori, frequent itemset mining

Procedia PDF Downloads 294
160 Researching Apache Hama: A Pure BSP Computing Framework

Authors: Kamran Siddique, Yangwoo Kim, Zahid Akhtar

Abstract:

In recent years, the technological advancements have led to a deluge of data from distinctive domains and the need for development of solutions based on parallel and distributed computing has still long way to go. That is why, the research and development of massive computing frameworks is continuously growing. At this particular stage, highlighting a potential research area along with key insights could be an asset for researchers in the field. Therefore, this paper explores one of the emerging distributed computing frameworks, Apache Hama. It is a Top Level Project under the Apache Software Foundation, based on Bulk Synchronous Processing (BSP). We present an unbiased and critical interrogation session about Apache Hama and conclude research directions in order to assist interested researchers.

Keywords: apache hama, bulk synchronous parallel, BSP, distributed computing

Procedia PDF Downloads 250
159 Tracking and Classifying Client Interactions with Personal Coaches

Authors: Kartik Thakore, Anna-Roza Tamas, Adam Cole

Abstract:

The world health organization (WHO) reports that by 2030 more than 23.7 million deaths annually will be caused by Cardiovascular Diseases (CVDs); with a 2008 economic impact of $3.76 T. Metabolic syndrome is a disorder of multiple metabolic risk factors strongly indicated in the development of cardiovascular diseases. Guided lifestyle intervention driven by live coaching has been shown to have a positive impact on metabolic risk factors. Individuals’ path to improved (decreased) metabolic risk factors are driven by personal motivation and personalized messages delivered by coaches and augmented by technology. Using interactions captured between 400 individuals and 3 coaches over a program period of 500 days, a preliminary model was designed. A novel real time event tracking system was created to track and classify clients based on their genetic profile, baseline questionnaires and usage of a mobile application with live coaching sessions. Classification of clients and coaches was done using a support vector machines application build on Apache Spark, Stanford Natural Language Processing Library (SNLPL) and decision-modeling.

Keywords: guided lifestyle intervention, metabolic risk factors, personal coaching, support vector machines application, Apache Spark, natural language processing

Procedia PDF Downloads 433
158 Power Iteration Clustering Based on Deflation Technique on Large Scale Graphs

Authors: Taysir Soliman

Abstract:

One of the current popular clustering techniques is Spectral Clustering (SC) because of its advantages over conventional approaches such as hierarchical clustering, k-means, etc. and other techniques as well. However, one of the disadvantages of SC is the time consuming process because it requires computing the eigenvectors. In the past to overcome this disadvantage, a number of attempts have been proposed such as the Power Iteration Clustering (PIC) technique, which is one of versions from SC; some of PIC advantages are: 1) its scalability and efficiency, 2) finding one pseudo-eigenvectors instead of computing eigenvectors, and 3) linear combination of the eigenvectors in linear time. However, its worst disadvantage is an inter-class collision problem because it used only one pseudo-eigenvectors which is not enough. Previous researchers developed Deflation-based Power Iteration Clustering (DPIC) to overcome problems of PIC technique on inter-class collision with the same efficiency of PIC. In this paper, we developed Parallel DPIC (PDPIC) to improve the time and memory complexity which is run on apache spark framework using sparse matrix. To test the performance of PDPIC, we compared it to SC, ESCG, ESCALG algorithms on four small graph benchmark datasets and nine large graph benchmark datasets, where PDPIC proved higher accuracy and better time consuming than other compared algorithms.

Keywords: spectral clustering, power iteration clustering, deflation-based power iteration clustering, Apache spark, large graph

Procedia PDF Downloads 190
157 Numerical Investigation of the Effect of the Spark Plug Gap on Engine-Like Conditions

Authors: Fernanda Pinheiro Martins, Pedro Teixeira Lacava

Abstract:

The objective of this research is to analyze the effects of different spark plug conditions in engine-like conditions by applying computational fluid dynamics analysis. The 3D models applied consist of 3-Zones Extended Coherent Flame (ECFM-3Z) and Imposed Stretch Spark Ignition Model (ISSIM), respectively, for the combustion and the spark plug modelling. For this study, it was applied direct injection fuel system in a single cylinder engine operating with E0. The application of realistic operating conditions (load and speed) to the different cases studied will provide a deeper understanding of the effects of the spark plug gap, a result of parts outwearing in most of the cases, to the development of the combustion in engine-like conditions.

Keywords: engine, CFD, direct injection, combustion, spark plug

Procedia PDF Downloads 130
156 Intrusion Detection Based on Graph Oriented Big Data Analytics

Authors: Ahlem Abid, Farah Jemili

Abstract:

Intrusion detection has been the subject of numerous studies in industry and academia, but cyber security analysts always want greater precision and global threat analysis to secure their systems in cyberspace. To improve intrusion detection system, the visualisation of the security events in form of graphs and diagrams is important to improve the accuracy of alerts. In this paper, we propose an approach of an IDS based on cloud computing, big data technique and using a machine learning graph algorithm which can detect in real time different attacks as early as possible. We use the MAWILab intrusion detection dataset . We choose Microsoft Azure as a unified cloud environment to load our dataset on. We implement the k2 algorithm which is a graphical machine learning algorithm to classify attacks. Our system showed a good performance due to the graphical machine learning algorithm and spark structured streaming engine.

Keywords: Apache Spark Streaming, Graph, Intrusion detection, k2 algorithm, Machine Learning, MAWILab, Microsoft Azure Cloud

Procedia PDF Downloads 149
155 A Second Spark Ignition Timing for the High Power Aircraft Radial Engine Using a CFD Transient Modeling

Authors: Tytus Tulwin, Adam Majczak

Abstract:

In aviation most important systems that impact the aircraft flight safety are duplicated. The ASz-62IR aircraft radial engine consists of two spark plugs powered by two separate magnetos. The relative difference in spark timing has an influence on the combustion process. The retardation of the second spark relative to the first spark was analyzed. The CFD simulation was developed as a multicycle transient model. Two independent spark sources imitate two flame fronts after an ignition period. It makes the combustion process shorter but only for certain range of second spark retardation. The model was validated by the in-cylinder pressure comparison. Combustion parameters were analyzed for different second spark retardation values. It was found that the most advantageous ignition timing in means of performance is simultaneous ignition. Nevertheless, for this engine the ignition time of the second spark plug is greatly retarded eliminating the advantageous performance influence. The reason behind this is maintaining high ignition certainty for all engine running conditions and for whole operating rpm range. In aviation the engine reliability is more important than its performance. Introducing electronic ignition system can yield from simultaneous ignition timing by increasing the engine performance and providing good reliability for all flight conditions. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: CFD, combustion, ignition, simulation, timing

Procedia PDF Downloads 384
154 Performance Comparison of Thread-Based and Event-Based Web Servers

Authors: Aikaterini Kentroti, Theodore H. Kaskalis

Abstract:

Today, web servers are expected to serve thousands of client requests concurrently within stringent response time limits. In this paper, we evaluate experimentally and compare the performance as well as the resource utilization of popular web servers, which differ in their approach to handle concurrency. More specifically, Central Processing Unit (CPU)- and I/O intensive tests were conducted against the thread-based Apache and Go as well as the event-based Nginx and Node.js under increasing concurrent load. The tests involved concurrent users requesting a term of the Fibonacci sequence (the 10th, 20th, 30th) and the content of a table from the database. The results show that Go achieved the best performance in all benchmark tests. For example, Go reached two times higher throughput than Node.js and five times higher than Apache and Nginx in the 20th Fibonacci term test. In addition, Go had the smallest memory footprint and demonstrated the most efficient resource utilization, in terms of CPU usage. Instead, Node.js had by far the largest memory footprint, consuming up to 90% more memory than Nginx and Apache. Regarding the performance of Apache and Nginx, our findings indicate that Hypertext Preprocessor (PHP) becomes a bottleneck when the servers are requested to respond by performing CPU-intensive tasks under increasing concurrent load.

Keywords: apache, Go, Nginx, node.js, web server benchmarking

Procedia PDF Downloads 98
153 Outcome of Obstetric Admission to General Intensive Care over a Period of 3 Years

Authors: Kamel Abdelaziz Mohamed

Abstract:

Intoduction:Inadequate knowledge about obstetric admission and infrequent dealing with the obstetric patients in ICU results in high mortality and morbidity. Aim of the work:To evaluate the indications, course, severity of illness, and outcome of obstetric patients admitted to the intensive care unit (ICU). Patients and Methods: We collected baseline data and acute physiology and chronic health evaluation II (APACHE II) scores. ICU mortality was the primary outcome. Results: Seventy obstetric patients were admitted to the ICU over 3 years, 36 of these patients (51.4 %) were admitted during the antepartum period. The primary obstetric indication for ICU admission was pregnancy-induced hypertension (22 patients, 31.4%), followed by sepsis (8 patients, 11.4%) as the leading non-obstetric admission. The mean APACHE II score was 19.6. The predicted mortality rate based on the APACHE II score was 22%, however, only 4 maternal deaths (5.7%) were among the obstetric patients admitted to the ICU. Conclusion: Evaluation of obstetric patients by (APACHE II) scores showed higher predicted mortality rate, however the overall mortality was lower. Regular follow up, together with early detection of complications and prompt ICU admission necessitating proper management by specialized team can improve mortality.

Keywords: obstetric, complication, postpartum, sepsis

Procedia PDF Downloads 307
152 Digital Forensics Compute Cluster: A High Speed Distributed Computing Capability for Digital Forensics

Authors: Daniel Gonzales, Zev Winkelman, Trung Tran, Ricardo Sanchez, Dulani Woods, John Hollywood

Abstract:

We have developed a distributed computing capability, Digital Forensics Compute Cluster (DFORC2) to speed up the ingestion and processing of digital evidence that is resident on computer hard drives. DFORC2 parallelizes evidence ingestion and file processing steps. It can be run on a standalone computer cluster or in the Amazon Web Services (AWS) cloud. When running in a virtualized computing environment, its cluster resources can be dynamically scaled up or down using Kubernetes. DFORC2 is an open source project that uses Autopsy, Apache Spark and Kafka, and other open source software packages. It extends the proven open source digital forensics capabilities of Autopsy to compute clusters and cloud architectures, so digital forensics tasks can be accomplished efficiently by a scalable array of cluster compute nodes. In this paper, we describe DFORC2 and compare it with a standalone version of Autopsy when both are used to process evidence from hard drives of different sizes.

Keywords: digital forensics, cloud computing, cyber security, spark, Kubernetes, Kafka

Procedia PDF Downloads 394
151 The Effects of Spark Plasma on Infectious Wound Healing

Authors: Erfan Ghasemi, Mohammadreza Khani, Hamidreza Mahmoudi, Mohammad Ali Nilforoushzadeh, Babak Shokri, Pouria Akbartehrani

Abstract:

Given the global significance of treating infectious wounds, the goal of this study is to use spark plasma as a new treatment for infectious wounds. To generate spark plasma, a high-voltage (7 kV) and high-frequency (75 kHz) source was used. Infectious wounds in the peritoneum of mice were divided into control and plasma-treated groups at random. The plasma-treated animals received plasma radiation every 4 days for 12 days, for 60 seconds each time. On the 15th day after the first session, the wound in the plasma-treated group had completely healed. The spectra of spark plasma emission and tissue properties were studied. The mechanical resistance of the wound healed in the plasma treatment group was considerably higher than in the control group (p<0.05), according to the findings. Furthermore, histological evidence suggests that wound re-epithelialization is faster in comparison to controls. Angiogenesis and fibrosis (collagen production) were also dramatically boosted in the plasma-treated group, whereas the stage of wound healing inflammation was significantly reduced. Plasma therapy accelerated wound healing by causing considerable wound constriction. The results of this investigation show that spark plasma has an influence on the treatment of infectious wounds.

Keywords: infectious wounds, mice, spark plasma, treatment

Procedia PDF Downloads 295
150 Mechanical Properties of Spark Plasma Sintered 2024 AA Reinforced with TiB₂ and Nano Yttrium

Authors: Suresh Vidyasagar Chevuri, D. B. Karunakar Chevuri

Abstract:

The main advantages of 'Metal Matrix Nano Composites (MMNCs)' include excellent mechanical performance, good wear resistance, low creep rate, etc. The method of fabrication of MMNCs is quite a challenge, which includes processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminum based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% keeping 1 wt% TiB2 constant are fabricated by Spark Plasma Sintering (SPS). The mechanical property like hardness is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM) and X-Ray Diffraction (XRD). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with that of the composite developed. It is found that the yttrium addition increases the above-mentioned properties to some extent and then decreases gradually when yttrium wt% increases beyond a point between 0.3 and 0.4 wt%. High density is achieved in the samples fabricated by spark plasma sintering when compared to any other fabrication route, and uniform distribution of yttrium is observed.

Keywords: spark plasma sintering, 2024 AA, yttrium addition, microstructure characterization, mechanical properties

Procedia PDF Downloads 224
149 Flame Kernel Growth and Related Effects of Spark Plug Electrodes: Fluid Motion Interaction in an Optically Accessible DISI Engine

Authors: A. Schirru, A. Irimescu, S. Merola, A. d’Adamo, S. Fontanesi

Abstract:

One of the aspects that are usually neglected during the design phase of an engine is the effect of the spark plug on the flow field inside the combustion chamber. Because of the difficulties in the experimental investigation of the mutual interaction between flow alteration and early flame kernel convection effect inside the engine combustion chamber, CFD-3D simulation is usually exploited in such cases. Experimentally speaking, a particular type of engine has to be used in order to directly observe the flame propagation process. In this study, a double electrode spark plug was fitted into an optically accessible engine and a high-speed camera was used to capture the initial stages of the combustion process. Both the arc and the kernel phases were observed. Then, a morphologic analysis was carried out and the position of the center of mass of the flame, relative to the spark plug position, was calculated. The crossflow orientation was chosen for the spark plug and the kernel growth process was observed for different air-fuel ratios. It was observed that during a normal cycle the flow field between the electrodes tends to transport the arc deforming it. Because of that, the kernel growth phase takes place away from the electrodes and the flame propagates with a preferential direction dictated by the flow field.

Keywords: Combustion, Optically Accessible Engine, Spark-Ignition Engine, Sparl Orientation, Kernel Growth

Procedia PDF Downloads 142
148 The Effect of Spark Physical Program (Sports, Play and Active Recreation for Kids) on Quality of Life and Spirometry in 6-18-Year-Old Children with Cystic Fibrosis

Authors: Saeedeh Eshkil, Seyedeh Farnaz Mousavi, Hamid Reza Kianifar, Seyed Java Sayyedi, Mehdi Sohrabi, Elham Bakhtiari, Morteza Mashoughi, Ezzat Khodashenas

Abstract:

Background: The effect of the SPARK physical education program on lung function in cystic fibrosis patients is not yet determined.).SPARK is Sports, play and active recreation for kids, including moving skills, aerobic games, jogging or walking, aerobic dance and jump rope. Regarding the high prevalence of cystic fibrosis and its destructive effects on the lungs, the aim of this study is to evaluate lung function and quality of life before and after undergoing the SPARK physical education program in children with cystic fibrosis. Method: In this quasi-experimental study, all patients with cystic fibrosis aged 6-18 years referred to the cystic fibrosis clinic of Dr. Sheikh Hospital were enrolled. The patients went under 12 weeks of SPARK training program (3 sessions per week, each session 45 minutes). The quality of life questionnaire ( Cystic Fibrosis Questionnaire includes self-examination, parental ) for patients with cystic fibrosis and spirometry indices (FEV1, FVC, FEV1/FVC, FEF25-75) was filled out before and after intervention for all patients. Results The mean and standard deviation of patients' age were 9.85±2.67 years, and 65% of patients were female. The FEV1 was significantly different before and after the SPARK physical education program (P=0.03), and the respiratory component of quality of life significantly increased after intervention (P=0.002). The overall score of quality of life from parents’ point of view was 2.87 ± 0.38, which increased to 2.99 ± 0.38 after the intervention. Conclusion: The SPARK training program may improve the spirometric parameters in children with cystic fibrosis. It also had a significant effect on improving the quality of life of patients, especially in the respiratory component.

Keywords: cystic fibrosis, pediatrics, SPARK motor program, spirometry

Procedia PDF Downloads 22
147 Self Tuning Controller for Reducing Cycle to Cycle Variations in SI Engine

Authors: Alirıza Kaleli, M. Akif Ceviz, Erdoğan Güner, Köksal Erentürk

Abstract:

The cyclic variations in spark ignition engines occurring especially under specific engine operating conditions make the maximum pressure variable for successive in-cylinder pressure cycles. Minimization of cyclic variations has a great importance in effectively operating near to lean limit, or at low speed and load. The cyclic variations may reduce the power output of the engine, lead to operational instabilities, and result in undesirable engine vibrations and noise. In this study, spark timing is controlled in order to reduce the cyclic variations in spark ignition engines. Firstly, an ARMAX model has developed between spark timing and maximum pressure using system identification techniques. By using this model, the maximum pressure of the next cycle has been predicted. Then, self-tuning minimum variance controller has been designed to change the spark timing for consecutive cycles of the first cylinder of test engine to regulate the in-cylinder maximum pressure. The performance of the proposed controller is illustrated in real time and experimental results show that the controller has a reliable effect on cycle to cycle variations of maximum cylinder pressure when the engine works under low speed conditions.

Keywords: cyclic variations, cylinder pressure, SI engines, self tuning controller

Procedia PDF Downloads 481
146 Modeling and Optimization of Performance of Four Stroke Spark Ignition Injector Engine

Authors: A. A. Okafor, C. H. Achebe, J. L. Chukwuneke, C. G. Ozoegwu

Abstract:

The performance of an engine whose basic design parameters are known can be predicted with the assistance of simulation programs into the less time, cost and near value of actual. This paper presents a comprehensive mathematical model of the performance parameters of four stroke spark ignition engine. The essence of this research work is to develop a mathematical model for the analysis of engine performance parameters of four stroke spark ignition engine before embarking on full scale construction, this will ensure that only optimal parameters are in the design and development of an engine and also allow to check and develop the design of the engine and it’s operation alternatives in an inexpensive way and less time, instead of using experimental method which requires costly research test beds. To achieve this, equations were derived which describe the performance parameters (sfc, thermal efficiency, mep and A/F). The equations were used to simulate and optimize the engine performance of the model for various engine speeds. The optimal values obtained for the developed bivariate mathematical models are: sfc is 0.2833kg/kwh, efficiency is 28.77% and a/f is 20.75.

Keywords: bivariate models, engine performance, injector engine, optimization, performance parameters, simulation, spark ignition

Procedia PDF Downloads 326
145 Comparative Parametric and Emission Characteristics of Single Cylinder Spark Ignition Engine Using Gasoline, Ethanol, and H₂O as Micro Emulsion Fuels

Authors: Ufaith Qadri, M Marouf Wani

Abstract:

In this paper, the performance and emission characteristics of a Single Cylinder Spark Ignition engine have been investigated. The research is based on micro emulsion application as fuel in a gasoline engine. We have analyzed many micro emulsion compositions in various proportions, for predicting the performance of the Spark Ignition engine. This new technology of fuel modifications is emerging very rapidly as lot of research is going on in the field of micro emulsion fuels in Compression Ignition engines, but the micro emulsion fuel used in a Gasoline engine is very rare. The use of micro emulsion as fuel in a Spark Ignition engine is virtually unexplored. So, our main goal is to see the performance and emission characteristics of micro emulsions as fuel, in Spark Ignition engines, and finding which composition is more efficient. In this research, we have used various micro emulsion fuels whose composition varies for all the three blends, and their performance and emission characteristic were predicted in AVL Boost software. Conventional Gasoline fuel 90%, 80% and 85% were blended with co-surfactant Ethanol in different compositions, and water was used as an additive for making it crystal clear transparent micro emulsion fuel, which is thermodynamically stable. By comparing the performances of engines, the power has shown similarity for micro emulsion fuel and conventional Gasoline fuel. On the other hand, Torque and BMEP shows increase for all the micro emulsion fuels. Micro emulsion fuel shows higher thermal efficiency and lower Specific Fuel Consumption for all the compositions as compared to the Gasoline fuel. Carbon monoxide and Hydro carbon emissions were also measured. The result shows that emissions decrease for all the composition of micro emulsion fuels, and proved to be the most efficient fuel both in terms of performance and emission characteristics.

Keywords: AVL Boost, emissions, microemulsions, performance, Spark Ignition (SI) engine

Procedia PDF Downloads 264
144 BFDD-S: Big Data Framework to Detect and Mitigate DDoS Attack in SDN Network

Authors: Amirreza Fazely Hamedani, Muzzamil Aziz, Philipp Wieder, Ramin Yahyapour

Abstract:

Software-defined networking in recent years came into the sight of so many network designers as a successor to the traditional networking. Unlike traditional networks where control and data planes engage together within a single device in the network infrastructure such as switches and routers, the two planes are kept separated in software-defined networks (SDNs). All critical decisions about packet routing are made on the network controller, and the data level devices forward the packets based on these decisions. This type of network is vulnerable to DDoS attacks, degrading the overall functioning and performance of the network by continuously injecting the fake flows into it. This increases substantial burden on the controller side, and the result ultimately leads to the inaccessibility of the controller and the lack of network service to the legitimate users. Thus, the protection of this novel network architecture against denial of service attacks is essential. In the world of cybersecurity, attacks and new threats emerge every day. It is essential to have tools capable of managing and analyzing all this new information to detect possible attacks in real-time. These tools should provide a comprehensive solution to automatically detect, predict and prevent abnormalities in the network. Big data encompasses a wide range of studies, but it mainly refers to the massive amounts of structured and unstructured data that organizations deal with on a regular basis. On the other hand, it regards not only the volume of the data; but also that how data-driven information can be used to enhance decision-making processes, security, and the overall efficiency of a business. This paper presents an intelligent big data framework as a solution to handle illegitimate traffic burden on the SDN network created by the numerous DDoS attacks. The framework entails an efficient defence and monitoring mechanism against DDoS attacks by employing the state of the art machine learning techniques.

Keywords: apache spark, apache kafka, big data, DDoS attack, machine learning, SDN network

Procedia PDF Downloads 169
143 Bug Localization on Single-Line Bugs of Apache Commons Math Library

Authors: Cherry Oo, Hnin Min Oo

Abstract:

Software bug localization is one of the most costly tasks in program repair technique. Therefore, there is a high claim for automated bug localization techniques that can monitor programmers to the locations of bugs, with slight human arbitration. Spectrum-based bug localization aims to help software developers to discover bugs rapidly by investigating abstractions of the program traces to make a ranking list of most possible buggy modules. Using the Apache Commons Math library project, we study the diagnostic accuracy using our spectrum-based bug localization metric. Our outcomes show that the greater performance of a specific similarity coefficient, used to inspect the program spectra, is mostly effective on localizing of single line bugs.

Keywords: software testing, bug localization, program spectra, bug

Procedia PDF Downloads 143
142 Sensor Data Analysis for a Large Mining Major

Authors: Sudipto Shanker Dasgupta

Abstract:

One of the largest mining companies wanted to look at health analytics for their driverless trucks. These trucks were the key to their supply chain logistics. The automated trucks had multi-level sub-assemblies which would send out sensor information. The use case that was worked on was to capture the sensor signal from the truck subcomponents and analyze the health of the trucks from repair and replacement purview. Open source software was used to stream the data into a clustered Hadoop setup in Amazon Web Services cloud and Apache Spark SQL was used to analyze the data. All of this was achieved through a 10 node amazon 32 core, 64 GB RAM setup real-time analytics was achieved on ‘300 million records’. To check the scalability of the system, the cluster was increased to 100 node setup. This talk will highlight how Open Source software was used to achieve the above use case and the insights on the high data throughput on a cloud set up.

Keywords: streaming analytics, data science, big data, Hadoop, high throughput, sensor data

Procedia PDF Downloads 404
141 Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles

Authors: B. Z. Manuel, H. D. Esmeralda, H. S. Felipe, D. R. Héctor, D. de la Torre Sebastián, R. L. Diego

Abstract:

Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution.

Keywords: aluminum matrix composites, intermetallics, spark plasma sintering, nanocrystalline

Procedia PDF Downloads 452
140 Novel Ti/Al-Cr-Fe Metal Matrix Composites Prepared by Spark Plasma Sintering with Excellent Wear Properties

Authors: Ruitao Li, Zhili Dong, Nay Win Khun, Khiam Aik Khor

Abstract:

In this study, microstructure and sintering mechanism as well as wear resistance properties of Ti/Al-Cr-Fe metal matrix composites (MMCs) fabricated by spark plasma sintering (SPS) with Ti as matrix and Al-Cr-Fe as reinforcement were investigated. Phases and microstructure of the sintered samples were analyzed using X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). Wear resistance properties were tested by ball-on-disk method. An Al3Ti ring forms around each Al-Cr-Fe particle as the bonding layer between Ti and Al-Cr-Fe particles. The Al content in Al-Cr-Fe particles experiences a decrease from 70 at.% to 60 at.% in the sintering process. And these particles consist of quasicrystalline icosahedral AlCrFe and quasicrystal approximants γ-brass Al8(Cr,Fe)5 and Al9(Cr,Fe)4 in the sintered compact. The addition of Al-Cr-Fe particles into the Ti matrix can improve the microhardness by about 40% and the wear resistance is improved by more than 50% due to the increase in the microhardness and the change of wear mechanism.

Keywords: metal matrix composites, spark plasma sintering, phase transformation, wear

Procedia PDF Downloads 421
139 Performance and Emission Characteristics of Spark Ignition Engine Running with Gasoline, Blends of Ethanol, and Blends of Ethiopian Arekie

Authors: Mengistu Gizaw Gawo, Bisrat Yoseph Gebrehiwot

Abstract:

Petroleum fuels have become a threat to the world because of their toxic emissions. Besides, it is unknown how long they will last. The only known fact is that they are depleting rapidly and will not last long. So the world’s concern about finding environmentally friendly alternative fuels has increased recently. Hence alcohol fuels are found to be the most convenient alternatives to use in internal combustion engines. This research intends to introduce Ethiopian locally produced alcohol as an alternative in the blended form with gasoline to use in spark ignition engines. The traditionally distilled Arekie was purchased from a local producer and purified using fractional distillation. Then five Arekie-gasoline blends were prepared with the proportion of 5,10,15,20 and 25%v/v (A5, A10, A15, A20, and A25, respectively). Also, absolute ethanol was purchased from a local supplier, and ethanol-gasoline blends were prepared with a similar proportion as Arekie-gasoline blends (E5, E10, E15, E20, and E25). Then an experiment was conducted on a single-cylinder, 4-stroke, spark-ignition engine running at a constant speed of 2500 rpm and variable loads to investigate the performance and emission characteristics. Results showed that the performance and emission parameters are significantly improved as the ratio of Arekie and ethanol in gasoline increases at all loads. Among all tested fuels, E20 exhibited better performance, and E25 exhibited better emission. A20 provided a slightly lower performance than E20 but was much improved compared to pure gasoline. A25 provided comparable emissions with E25 and was much better than pure gasoline. Generally, adding up to 20%v/v Ethiopian Arekie in gasoline could make a better, renewable alternative to spark ignition engines.

Keywords: alcohol fuels, alternative fuels, pollutant emissions, spark-ignition engine, Arekie-gasoline blends

Procedia PDF Downloads 119
138 A Dual Spark Ignition Timing Influence for the High Power Aircraft Radial Engine Using a CFD Transient Modeling

Authors: Tytus Tulwin, Ksenia Siadkowska, Rafał Sochaczewski

Abstract:

A high power radial reciprocating engine is characterized by a large displacement volume of a combustion chamber. Choosing the right moment for ignition is important for a high performance or high reliability and ignition certainty. This work shows methods of simulating ignition process and its impact on engine parameters. For given conditions a flame speed is limited when a deflagration combustion takes place. Therefore, a larger length scale of the combustion chamber compared to a standard size automotive engine makes combustion take longer time to propagate. In order to speed up the mixture burn-up time the second spark is introduced. The transient Computational Fluid Dynamics model capable of simulating multicycle engine processes was developed. The CFD model consists of ECFM-3Z combustion and species transport models. A relative ignition timing difference for the both spark sources is constant. The temperature distribution on engine walls was calculated in the separate conjugate heat transfer simulation. The in-cylinder pressure validation was performed for take-off power flight conditions. The influence of ignition timing on parameters like in-cylinder temperature or rate of heat release was analyzed. The most advantageous spark timing for the highest power output was chosen. The conditions around the spark plug locations for the pre-ignition period were analyzed. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: CFD, combustion, ignition, simulation, timing

Procedia PDF Downloads 296
137 [Keynote]: No-Trust-Zone Architecture for Securing Supervisory Control and Data Acquisition

Authors: Michael Okeke, Andrew Blyth

Abstract:

Supervisory Control And Data Acquisition (SCADA) as the state of the art Industrial Control Systems (ICS) are used in many different critical infrastructures, from smart home to energy systems and from locomotives train system to planes. Security of SCADA systems is vital since many lives depend on it for daily activities and deviation from normal operation could be disastrous to the environment as well as lives. This paper describes how No-Trust-Zone (NTZ) architecture could be incorporated into SCADA Systems in order to reduce the chances of malicious intent. The architecture is made up of two distinctive parts which are; the field devices such as; sensors, PLCs pumps, and actuators. The second part of the architecture is designed following lambda architecture, which is made up of a detection algorithm based on Particle Swarm Optimization (PSO) and Hadoop framework for data processing and storage. Apache Spark will be a part of the lambda architecture for real-time analysis of packets for anomalies detection.

Keywords: industrial control system (ics, no-trust-zone (ntz), particle swarm optimisation (pso), supervisory control and data acquisition (scada), swarm intelligence (SI)

Procedia PDF Downloads 345
136 Genodata: The Human Genome Variation Using BigData

Authors: Surabhi Maiti, Prajakta Tamhankar, Prachi Uttam Mehta

Abstract:

Since the accomplishment of the Human Genome Project, there has been an unparalled escalation in the sequencing of genomic data. This project has been the first major vault in the field of medical research, especially in genomics. This project won accolades by using a concept called Bigdata which was earlier, extensively used to gain value for business. Bigdata makes use of data sets which are generally in the form of files of size terabytes, petabytes, or exabytes and these data sets were traditionally used and managed using excel sheets and RDBMS. The voluminous data made the process tedious and time consuming and hence a stronger framework called Hadoop was introduced in the field of genetic sciences to make data processing faster and efficient. This paper focuses on using SPARK which is gaining momentum with the advancement of BigData technologies. Cloud Storage is an effective medium for storage of large data sets which is generated from the genetic research and the resultant sets produced from SPARK analysis.

Keywords: human genome project, Bigdata, genomic data, SPARK, cloud storage, Hadoop

Procedia PDF Downloads 259
135 The Analysis of Exhaust Emission from Single Cylinder Non-Mobile Spark Ignition Engine Using Ethanol-Gasoline Blend as Fuel

Authors: Iyiola Olusola Oluwaleye, Ogbevire Umukoro

Abstract:

In view of the prevailing pollution problems and its consequences on the environment, efforts are being made to lower the concentration of toxic components in combustion products and decreasing fossil fuel consumption by using renewable alternative fuels. In this work, the impact of ethanol-gasoline blend on the exhaust emission of a single cylinder non-mobile spark ignition engine was investigated. Gasoline was blended with 5 – 20% of ethanol sourced from the open market (bought off the shelf) in an interval of 5%. The results of the emission characteristics of the exhaust gas from the combustion of the ethanol-gasoline blends showed that increasing the percentage of ethanol in the blend decreased CO emission by between 2.12% and 52.29% and HC emissions by between12.14% and 53.24%, but increased CO2 and NOx emissions by between 25% to 56% and 59% to 60% respectively. E15 blend is preferred above other blends at no-load and across all the load variations. However its NOx emission was the highest when compared with other samples. This will negatively affect human health and the environment but this drawback can be remedied by adequate treatment with appropriate additives.

Keywords: blends, emission, ethanol, gasoline, spark ignition engine

Procedia PDF Downloads 197