Search results for: antimicrobial resistance genes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4401

Search results for: antimicrobial resistance genes

4131 Phytochemical Study and Antimicrobial Activity of Nigella Sativa L. (Renunculaceae) in Algeria

Authors: L. Bendifallah, F.Acheuk, M. Djouabi, M. Oukili, R. Ghezraoui, W. Lakhdari, R. Allouane

Abstract:

Nigella sativa L. (Renunculaceae) native to the Mediterranean region and Western Asia, Black cumin is grown to India, through Sudan and Ethiopia. It is widely cultivated in Egypt, the Middle East, Saudi Arabia, Turkey, Sudan, Afghanistan and Europe. It is among the most important medicinal plants in Algeria that is known for its antifungal and antimicrobial properties. Despite its plethora of uses for treating various diseases, it has garnered very little scientific interest so far, particularly in Algeria. For this study, the seeds of Algerian Nigella sativa L cultivated in the area of Magra (M’sila) in northern Algeria, were collected in summer. In such a propitious context, the aim of this study was to enhance Nigella sativa as a medicinal herb. The phytochemical screening methods are used. For their antimicrobial activity, extracts of tannin and polyphenols were screened against four pathogenic bacterial strains and two pathogenic yeast strains. The phytochemical analysis results showed a remarkable combination of chemical components including a high content in tannins, in flavonoïds, and in alkaloids. The tannins and the polyphenols have strong antimicrobial activity against all the species. The maximum zone of inhibition was noted for polyphenol and tannin extracts against Escerichia coli (14 mm, 12.33 mm) and an antifungic activity against Aspergillus niger (11.66 mm, 9 mm). These results indicate to some benefits of Nigella sativa seeds which can use to treatment the microbial infection.

Keywords: Algeria, antimicrobial activity, Nigella sativa, phytochemistry

Procedia PDF Downloads 538
4130 Synthesis and Pharmaco-Potential Evaluation of Quinoline Hybrids

Authors: Paul Awolade, Parvesh Singh

Abstract:

The global threat of pathogenic resistance to available therapeutic agents has become a menace to clinical practice, public health and man’s existence inconsequential. This has therefore led to an exigency in the development of new molecular scaffolds with profound activity profiles. In this vein, a versatile synthetic tool for accessing new molecules by incorporating two or more pharmacophores into a single entity with the unique ability to be recognized by multiple receptors hence leading to an improved bioactivity, known as molecular hybridization, has been explored with tremendous success. Accordingly, aware of the similarity in pharmacological activity spectrum of quinoline and 1,2,3-triazole pharmacophores such as; anti-Alzheimer, anticancer, anti-HIV, antimalarial and antimicrobial to mention but a few, the present study sets out to synthesize hybrids of quinoline and 1,2,3-triazole. The hybrids were accessed via click chemistry using copper catalysed azide-alkyne 1,3-dipolar cycloaddition reaction. All synthesized compounds were evaluated for their pharmaco-potential in an antimicrobial assay out of which the 3-OH derivative emerged as the most active with MIC value of 4 μg/mL against Cryptococcus neoformans; a value superior to standard Fluconazole and comparable to Amphotericin B. Structures of synthesized hybrids were elucidated using appropriate spectroscopic techniques (1H, 13C and 2D NMR, FT-IR and HRMS).

Keywords: bioisostere, click chemistry, molecular hybridization, quinoline, 1, 2, 3-triazole

Procedia PDF Downloads 99
4129 A Qualitative Exploration of the Strategic Management of Employee Resistance to Organisational Change

Authors: Muneeb Banday, Anukriti Dixit

Abstract:

Change in organizations is viewed as a conversion process of the organizational functioning. One of the crucial elements of this conversion process is the employee resistance to organizational change. The existing literature on change resistance has generally treated resistance as a barrier or an opportunity for successful implementation of change. However, there is little empirical research exploring how resistance to change is managed. This may be partially due to difficulty in getting information on resistance to change. The top management does not divulge such information to avoid negative evaluation whereas employees face huge risk in sharing information related to resistance. The focus of the study is to understand how the organization under study dealt with the employee resistance to change. The conversion process is a story of how the organization went from one stage to another. We used narrative approach to change. Data was collected data through company visits and interviews. The interviews were transcribed, coded, and themes were identified. We focused on the strands that left huge scope for alternative interpretations than the dominant narrative of change prevalent in the organization. The study reveals that the top management strategically uses the legitimacy of leadership, roles of key employees, and rationality of change to manage resistance.

Keywords: employee resistance, legitimacy of leadership, narrative analysis, organisational change

Procedia PDF Downloads 242
4128 Molecular Characterization of Ovine Herpesvirus 2 Strains Based on Selected Glycoprotein and Tegument Genes

Authors: Fulufhelo Amanda Doboro, Kgomotso Sebeko, Stephen Njiro, Moritz Van Vuuren

Abstract:

Ovine herpesvirus 2 (OvHV-2) genome obtained from the lymphopblastoid cell line of a BJ1035 cow was recently sequenced in the United States of America (USA). Information on the sequences of OvHV-2 genes obtained from South African strains from bovine or other African countries and molecular characterization of OvHV-2 is not documented. Present investigation provides information on the nucleotide and derived amino acid sequences and genetic diversity of Ov 7, Ov 8 ex2, ORF 27 and ORF 73 genes, of these genes from OvHV-2 strains circulating in South Africa. Gene-specific primers were designed and used for PCR of DNA extracted from 42 bovine blood samples that previously tested positive for OvHV-2. The expected PCR products of 495 bp, 253 bp, 890 bp and 1632 bp respectively for Ov 7, Ov 8 ex2, ORF 27 and ORF 73 genes were sequenced and multiple sequence analysis done on the selected regions of the sequenced PCR products. Two genotypes for ORF 27 and ORF 73 gene sequences, and three genotypes for Ov 7 and Ov 8 ex2 gene sequences were identified, and similar groupings for the derived amino acid sequences were obtained for each gene. Nucleotide and amino acid sequence variations that led to the identification of the different genotypes included SNPs, deletions and insertions. Sequence analysis of Ov 7 and ORF 27 genes revealed variations that distinguished between sequences from SA and reference OvHV-2 strains. The implication of geographic origin among SA sequences was difficult to evaluate because of random distribution of genotypes in the different provinces, for each gene. However, socio-economic factors such as migration of people with animals, or transportation of animals for agricultural or business use from one province to another are most likely to be responsible for this observation. The sequence variations observed in this study have no impact on the antibody binding activities of glycoproteins encoded by Ov 7, Ov 8 ex2 and ORF 27 genes, as determined by prediction of the presence of B cell epitopes using BepiPred 1.0. The findings of this study will be used for selection of gene candidates for the development of diagnostic assays and vaccine development as well.

Keywords: amino acid, genetic diversity, genes, nucleotide

Procedia PDF Downloads 465
4127 Powerful Bacteriocins Produced by Bacillus thuringiensis Strains Isolated from Soil at Northern of Algeria

Authors: R. Gounina-Allouane, I. Moussaoui, N. Boukahel

Abstract:

Bacillus antimicrobial metabolites, especially those of Bacillus thuringiensis (Bt), are of great interest for research because of health risks generated by the excessive use of chemical additives as well as the propagation of resistant microbial strains, caused by the massive treatment with antibiotics. The objective of this study was the selection of Bt strains producing antimicrobial peptides (bacteriocins), and the partial purification of the most powerful bacteriocins, then the determination of their spectra of antimicrobial action. A collection of twenty one Bt strains isolated from soil at Boumerdès (northern of Algeria) was used for screening strains having an antagonistic activity against phylogenetically closed bacteria. Spectra of antagonistic activity of two selected strains was determined against other Bt strains, Gram positive and Gram negative bacterial strains of clinical origin and others from ATCC collection as well as yeasts isolated in human dermatology. Bacteriocins of these two strains were partially purified and their effect on the kinetics of growth of the most sensitive microbial strains was studied. The bacteriocinogenic strains were biochemically characterized and their sensitivity to antibiotics was studied.

Keywords: antimicrobial peptides, Bacillus thuringiensis, bacteriocin, partial purification

Procedia PDF Downloads 331
4126 Developments and Implementation of Biomaterials in Textile Coating and Finishing

Authors: David De Smet, Myriam Vanneste

Abstract:

There is a constant need for the improvement of materials applied in textile industries. Nowadays there is a tendency for “bio, eco, natural and environmental friendly” consciousness of the consumer resulting in various textile labels. Materials, totally based on CO2-neutral renewable resources (biopolymers), respond very well to this tendency. Proteins and PLA were evaluated as binders for textile coatings. Much attention is paid to the functionalization of textiles, therefore bio-additves are examined to introduce abrasion resistance, antimicrobial and flame retardant properties.

Keywords: biomaterial, textile, coating, finishing

Procedia PDF Downloads 680
4125 Polymer Composites Of MOF-5 For Efficient and Sustained Delivery of Cephalexin and Metronidazole

Authors: Anoff Anim, Lila Mahmoud, Maria Katsikogianni, Sanjit Nayak

Abstract:

Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers, which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs and can be a potential strategy to integrate them in biomedical devices.

Keywords: antimicrobial resistance, biodegradable polymers, cephalexin, drug release metronidazole, MOF-5, PCL, PLGA

Procedia PDF Downloads 103
4124 Biodegradable Polymer Composites of MOF-5 for Efficient and Sustained Delivery of Cephalexin and Metronidazole

Authors: Anoff Anim, Lila A. M. Mahmoud, Maria Katsikogianni, Sanjit Nayak

Abstract:

Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers, which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs and can be a potential strategy to integrate them in biomedical devices.

Keywords: antimicrobial resistance, biodegradable polymers, cephalexin, drug release metronidazole, MOF-5, PCL, PLGA

Procedia PDF Downloads 98
4123 Evaluating Antimicrobial Activity of Selenium Nanoparticles Against Food-Borne Bacteria

Authors: Qunying Yuan, Manjula Bomma, Adrian Rhoden, Zhigang Xiao

Abstract:

Selenium is an essential micronutrient for all mammals and plays an important role in maintaining human physiological functions. The potential applications of selenium as food supplements, cancer-prevention, antimicrobial and anti-inflammatory agents have been investigated in biomedicine and food sciences. Nanoscale of selenium is of particular interest due to its better biocompatibility, higher bioavailability, lower toxicity, more homogeneous distribution, and presumptive controlled release of substances. The objective of this study is to explore whether selenium nanoparticle (SeNP) has the potential to be used as a food preservative to reduce food spoilage. SeNPs were synthesized through ascorbic acid reduction of sodium selenite using the bovine serum albumin (BSA) as capping and stabilizing agent. The chemically synthesized SeNPs had a spherical conformation and a size of 22.8 ± 4.7 nm. FTIR analysis confirmed that the nanoparticles were covered with BSA. We further tested the antimicrobial activity of these SeNPs against common food-borne bacteria. Colony forming unit assay showed that SeNPs exhibited good inhibition on the growth of Listeria Monocytogens (ATCC15313), Staphylococcus epidermidis (ATCC 700583) starting at 0.5µg/mL, but only a moderate inhibitory effect on the growth of Staphylococcus aureus (ATCC12600) and Vibrio alginolyticus (ATCC 33787) at a concentration higher than 10µg/mL and 2.5µg/mL, respectively. There was a mild effect against the growth Salmonella enterica (ATCC19585) when the concentration reached 15µg/mL. No inhibition was observed in the growth of Enterococcus faecalis (ATCC 19433). Surprisingly, SeNPs appeared to promote the growth of Vibrio parahaemolyticus (ATCC43996) and Salmonella enterica (ATCC49284) at 30 µg/mL and above. Our preliminary data suggested that the chemically synthesized SeNPs may be able to inhibit some food-borne bacteria, and SeNP as a food preservative should be used with caution. We will explore the mechanisms of the inhibitory action of chemically synthesized SeNPs on bacterial growth and whether the SeNPs are able to inhibit the development of biofilm and antibiotic resistance.

Keywords: antimicrobial, food-borne bacteria, nanoparticles, selenium

Procedia PDF Downloads 65
4122 The Antimicrobial Activity of the Essential Oil of Salvia officinalis Harvested in Boumerdes

Authors: N. Mezıou-Cheboutı, A. Merabet, N. Behidj, F. Z. Bissaad

Abstract:

The Algeria by its location, offers a rich and diverse vegetation. A large number of aromatic and medicinal plants grow spontaneously. The interest in these plants has continued to grow in recent years. Their particular properties due to the essential oil fraction can be utilized to treat microbial infections. To this end, and in the context of the valuation of the Algerian flora, we became interested in the species of the family Lamiaceae which is one of the most used as a global source of spices and extracts strong families antimicrobial potency. The plant on which we have based our choice is a species of sage "Salvia officinalis" from the Isser localized region within the province of Boumerdes. This work focuses on the study of the antimicrobial activity of essential oil extracted from the leaves of salvia officinalis. The extraction is carried out by HE hydrodistillation and reveals a yield of 1.06℅. The study of the antimicrobial activity of the essential oil by the method of at aromatogramme shown that Gram positive bacteria are most susceptible (Staphylococcus aureus and Bacillus subtilis) with a strong inhibition of growth. The yeast Candida albicans fungus Aspergillus niger and have shown moderately sensitive.

Keywords: Salvia officinalis, steam distillation, essential oil, aromatogram, anti-microbial activity

Procedia PDF Downloads 284
4121 Evaluation of Antimicrobial Properties of Lactic Acid Bacteria of Enterococcus Genus

Authors: Kristina Karapetyan, Flora Tkhruni, Tsovinar Balabekyan, Arevik Israyelyan, Tatyana Khachatryan

Abstract:

The ability of the lactic acid bacteria (LAB) to prevent and cure a variety of diseases, their protective role against infections and colonization of pathogenic microorganisms in the digestive tract, has lead to the coining of the term probiotics or pro-life. LAB inhibiting the growth of pathogenic and food spoilage microorganisms, maintaining the nutritive quality and improving the shelf life of foods. They have also been used as flavor and texture producers. Enterococcus strains have been used for treatment of diseases such as diarrhea or antibiotic associated diarrhea, inflammatory pathologies that affect colon such as irritable bowel syndrome, or immune regulation, diarrhea caused by antibiotic treatments. The obtaining and investigation of biological properties of proteinoceous antibiotics, on the basis of probiotic LAB shown, that bacteriocins, metabiotics, and peptides of LAB represent bactericides have a broad range of activity and are excellent candidates for development of new prophylactic and therapeutic substances to complement or replace conventional antibiotics. The genotyping by 16S rRNA sequencing for LAB were used. Cell free culture broth (CFC) broth was purified by the Gel filtration method on the Sephadex Superfine G 25 resin. Antimicrobial activity was determined by spot-on-lawn method and expressed in arbitrary units (AU/ml). The diversity of multidrug-resistance (MDR) of pathogenic strains to antibiotics, most widely used for treatment of human diseases in the Republics of Armenia and Nagorno Karabakh were examined. It was shown, that difference of resistance of pathogens to antibiotics depends on their isolation sources. The influences of partially purified antimicrobial preparations (AMP), obtained from the different strains of Enterococcus genus on the growth of MDR pathogenic bacteria were investigated. It was shown, that bacteriocin containing partially purified preparations, obtained from different strains of Enterococcus faecium and durans species, possess bactericidal or bacteriostatic activity against antibiotic resistant intestinal, spoilage and food-borne pathogens such as Listeria monocytogenes, Staphylococcus aureus, E. coli, and Salmonella. Endemic strains of LAB, isolated from Matsoni made from donkey, buffalo and goat milk, shown broad spectrum of activity against food spoiling microorganisms, moulds and fungi, such as Salmonella sp., Esherichia coli, Aspergillus and Penicillium species. Highest activity against MDR pathogens shown bacteria, isolated from goat milk products. High stability of the investigated strains of the genus Enerococcus, isolated from samples of matsun from different regions of Nagorno-Karabakh (NKR) to the antibiotics was shown. The obtained data show high stability of the investigated different strains of the genus Enerococcus. The high genetic diversity in Enterococcus group suggests adaptations for specific mutations in different environments. Thus, endemic strains of LAB are able to produce bacteriocins with high and different inhibitory activity against broad spectrum of microorganisms isolated from different sources and belong to different taxonomic group. Prospect of the use of certain antimicrobial preparations against pathogenic strains is obvious. These AMP can be applied for long term use against different etiology antibiotic resistant pathogens for prevention or treatment of infectional diseases as an alternative to antibiotics.

Keywords: antimicrobial biopreparation, endemic lactic acid bacteria, intra-species diversity, multidrug resistance of pathogens

Procedia PDF Downloads 287
4120 Intended Use of Genetically Modified Organisms, Advantages and Disadvantages

Authors: Pakize Ozlem Kurt Polat

Abstract:

GMO (genetically modified organism) is the result of a laboratory process where genes from the DNA of one species are extracted and artificially forced into the genes of an unrelated plant or animal. This technology includes; nucleic acid hybridization, recombinant DNA, RNA, PCR, cell culture and gene cloning techniques. The studies are divided into three groups of properties transferred to the transgenic plant. Up to 59% herbicide resistance characteristic of the transfer, 28% resistance to insects and the virus seems to be related to quality characteristics of 13%. Transgenic crops are not included in the commercial production of each product; mostly commercial plant is soybean, maize, canola, and cotton. Day by day increasing GMO interest can be listed as follows; Use in the health area (Organ transplantation, gene therapy, vaccines and drug), Use in the industrial area (vitamins, monoclonal antibodies, vaccines, anti-cancer compounds, anti -oxidants, plastics, fibers, polyethers, human blood proteins, and are used to produce carotenoids, emulsifiers, sweeteners, enzymes , food preservatives structure is used as a flavor enhancer or color changer),Use in agriculture (Herbicide resistance, Resistance to insects, Viruses, bacteria, fungi resistance to disease, Extend shelf life, Improving quality, Drought , salinity, resistance to extreme conditions such as frost, Improve the nutritional value and quality), we explain all this methods step by step in this research. GMO has advantages and disadvantages, which we explain all of them clearly in full text, because of this topic, worldwide researchers have divided into two. Some researchers thought that the GMO has lots of disadvantages and not to be in use, some of the researchers has opposite thought. If we look the countries law about GMO, we should know Biosafety law for each country and union. For this Biosecurity reasons, the problems caused by the transgenic plants, including Turkey, to minimize 130 countries on 24 May 2000, ‘the United Nations Biosafety Protocol’ signed nudes. This protocol has been prepared in addition to Cartagena Biosafety Protocol entered into force on September 11, 2003. This protocol GMOs in general use by addressing the risks to human health, biodiversity and sustainable transboundary movement of all GMOs that may affect the prevention, transit covers were dealt and used. Under this protocol we have to know the, ‘US Regulations GMO’, ‘European Union Regulations GMO’, ‘Turkey Regulations GMO’. These three different protocols have different applications and rules. World population increasing day by day and agricultural fields getting smaller for this reason feeding human and animal we should improve agricultural product yield and quality. Scientists trying to solve this problem and one solution way is molecular biotechnology which is including the methods of GMO too. Before decide to support or against the GMO, should know the GMO protocols and it effects.

Keywords: biotechnology, GMO (genetically modified organism), molecular marker

Procedia PDF Downloads 209
4119 Investigate the Side Effects of Patients With Severe COVID-19 and Choose the Appropriate Medication Regimens to Deal With Them

Authors: Rasha Ahmadi

Abstract:

In December 2019, a coronavirus, currently identified as SARS-CoV-2, produced a series of acute atypical respiratory illnesses in Wuhan, Hubei Province, China. The sickness induced by this virus was named COVID-19. The virus is transmittable between humans and has caused pandemics worldwide. The number of death tolls continues to climb and a huge number of countries have been obliged to perform social isolation and lockdown. Lack of focused therapy continues to be a problem. Epidemiological research showed that senior patients were more susceptible to severe diseases, whereas children tend to have milder symptoms. In this study, we focus on other possible side effects of COVID-19 and more detailed treatment strategies. Using bioinformatics analysis, we first isolated the gene expression profile of patients with severe COVID-19 from the GEO database. Patients' blood samples were used in the GSE183071 dataset. We then categorized the genes with high and low expression. In the next step, we uploaded the genes separately to the Enrichr database and evaluated our data for signs and symptoms as well as related medication regimens. The results showed that 138 genes with high expression and 108 genes with low expression were observed differentially in the severe COVID-19 VS control group. Symptoms and diseases such as embolism and thrombosis of the abdominal aorta, ankylosing spondylitis, suicidal ideation or attempt, regional enteritis were observed in genes with high expression and in genes with low expression of acute and subacute forms of ischemic heart, CNS infection and poliomyelitis, synovitis and tenosynovitis. Following the detection of diseases and possible signs and symptoms, Carmustine, Bithionol, Leflunomide were evaluated more significantly for high-expression genes and Chlorambucil, Ifosfamide, Hydroxyurea, Bisphenol for low-expression genes. In general, examining the different and invisible aspects of COVID-19 and identifying possible treatments can help us significantly in the emergency and hospitalization of patients.

Keywords: phenotypes, drug regimens, gene expression profiles, bioinformatics analysis, severe COVID-19

Procedia PDF Downloads 112
4118 Differentially Expressed Genes in Atopic Dermatitis: Bioinformatics Analysis Of Pooled Microarray Gene Expression Datasets In Gene Expression Omnibus

Authors: Danna Jia, Bin Li

Abstract:

Background: Atopic dermatitis (AD) is a chronic and refractory inflammatory skin disease characterized by relapsing eczematous and pruritic skin lesions. The global prevalence of AD ranges from 1~ 20%, and its incidence rates are increasing. It affects individuals from infancy to adulthood, significantly impacting their daily lives and social activities. Despite its major health burden, the precise mechanisms underlying AD remain unknown. Understanding the genetic differences associated with AD is crucial for advancing diagnosis and targeted treatment development. This study aims to identify candidate genes of AD by using bioinformatics analysis. Methods: We conducted a comprehensive analysis of four pooled transcriptomic datasets (GSE16161, GSE32924, GSE130588, and GSE120721) obtained from the Gene Expression Omnibus (GEO) database. Differential gene expression analysis was performed using the R statistical language. The differentially expressed genes (DEGs) between AD patients and normal individuals were functionally analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Furthermore, a protein-protein interaction (PPI) network was constructed to identify candidate genes. Results: Among the patient-level gene expression datasets, we identified 114 shared DEGs, consisting of 53 upregulated genes and 61 downregulated genes. Functional analysis using GO and KEGG revealed that the DEGs were mainly associated with the negative regulation of transcription from RNA polymerase II promoter, membrane-related functions, protein binding, and the Human papillomavirus infection pathway. Through the PPI network analysis, we identified eight core genes: CD44, STAT1, HMMR, AURKA, MKI67, and SMARCA4. Conclusion: This study elucidates key genes associated with AD, providing potential targets for diagnosis and treatment. The identified genes have the potential to contribute to the understanding and management of AD. The bioinformatics analysis conducted in this study offers new insights and directions for further research on AD. Future studies can focus on validating the functional roles of these genes and exploring their therapeutic potential in AD. While these findings will require further verification as achieved with experiments involving in vivo and in vitro models, these results provided some initial insights into dysfunctional inflammatory and immune responses associated with AD. Such information offers the potential to develop novel therapeutic targets for use in preventing and treating AD.

Keywords: atopic dermatitis, bioinformatics, biomarkers, genes

Procedia PDF Downloads 51
4117 Antimicrobial Activity of Functionalized Alpaca Fabrics with Silver Nanoparticles

Authors: Gina Zavaleta-Espejo, Segundo R. Jáuregui-Rosas, Fanny V. Samanamud-Moreno, José Saldaña Jiménez, Anibal Felix-Quintero, Víctor Montero-Del Aguila, Elsi Mejía-Uriarte

Abstract:

Vicugnapacos "alpaca" fabrics are considered special for their finesse, and the garments in the textile market are very luxurious. It has many special characteristics such as antiallergic, soft, hygroscopic, among others. In this sense, the research aimed to evaluate the antimicrobial activity of alpaca fabrics functionalized with silver nanoparticles on the bacteria Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. For the functionalization of the fabrics, AgNO3 and different concentrations of trisodium citrate (TSC) 2, 6, and 10 mg. Tissue characterization was performed using Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The determination of the antimicrobial activity of the alpaca tissues was made by the Kirby-Bauer method with alpaca tissue discs functionalized with silver nanoparticles, an experimental design was made in completely randomized blocks with three treatments and a negative control with three repetitions. The results showed that inhibition halos were formed for both bacteria, therefore, the functionalized tissues have a high antimicrobial activity, whose mechanism of action is attributed to the free radicals (ROS) generated by the nanoparticles that cause oxidative damage to the bacteria. proteins and lipids of the bacterial cell wall.

Keywords: antimicrobial, animal fibers, fabrics, functionalization, trisodium citrate

Procedia PDF Downloads 108
4116 Insulin Resistance in Children and Adolescents in Relation to Body Mass Index, Waist Circumference and Body Fat Weight

Authors: E. Vlachopapadopoulou, E. Dikaiakou, E. Anagnostou, I. Panagiotopoulos, E. Kaloumenou, M. Kafetzi, A. Fotinou, S. Michalacos

Abstract:

Aim: To investigate the relation and impact of Body Mass Index (BMI), Waist Circumference (WC) and Body Fat Weight (BFW) on insulin resistance (MATSUDA INDEX < 2.5) in children and adolescents. Methods: Data from 95 overweight and obese children (47 boys and 48 girls) with mean age 10.7 ± 2.2 years were analyzed. ROC analysis was used to investigate the predictive ability of BMI, WC and BFW for insulin resistance and find the optimal cut-offs. The overall performance of the ROC analysis was quantified by computing area under the curve (AUC). Results: ROC curve analysis indicated that the optimal-cut off of WC for the prediction of insulin resistance was 97 cm with sensitivity equal to 75% and specificity equal to 73.1%. AUC was 0.78 (95% CI: 0.63-0.92, p=0.001). The sensitivity and specificity of obesity for the discrimination of participants with insulin resistance from those without insulin resistance were equal to 58.3% and 75%, respectively (AUC=0.67). BFW had a borderline predictive ability for insulin resistance (AUC=0.58, 95% CI: 0.43-0.74, p=0.101). The predictive ability of WC was equivalent with the correspondence predictive ability of BMI (p=0.891). Obese subjects had 4.2 times greater odds for having insulin resistance (95% CI: 1.71-10.30, p < 0.001), while subjects with WC more than 97 had 8.1 times greater odds for having insulin resistance (95% CI: 2.14-30.86, p=0.002). Conclusion: BMI and WC are important clinical factors that have significant clinical relation with insulin resistance in children and adolescents. The cut off of 97 cm for WC can identify children with greater likelihood for insulin resistance.

Keywords: body fat weight, body mass index, insulin resistance, obese children, waist circumference

Procedia PDF Downloads 285
4115 Antimicrobial Activity of Ethnobotanically Selected Medicinal Plants Used in the Treatment of Sexually Transmitted Diseases

Authors: Thilivhali Emmanuel Tshikalange, Phiwokuhle Mamba

Abstract:

Ten medicinal plants used traditionally in the treatment of sexually transmitted diseases (STDs) and urinary tract infections (UTIs) were selected from an ethnobotanical database developed in Mpumalanga. The plants were investigated for their antimicrobial activity against five bacterial strains (Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Neisseria gonorrhoeae and Staphylococcus aureus) and one fungal strain (Candida albicans). Eight of the plants inhibited the growth of all microorganisms at a concentration range of 0.4 mg/ml to 12.5 mg/ml. Acacia karroo showed the most promising antimicrobial activity, with a minimum inhibitory concentration (MIC) of 0.4 mg/ml on Staphylococcus aureus and 0.8 mg/ml on Neisseria gonorrhoeae. All ten plants were further investigated for their antioxidant activities using the DPPH scavenging method. Acacia karroo and Rhoicissus tridentata subsp. cuneifolia showed good antioxidant activity with IC50 values of 0.83 mg/ml and 0.06 mg/ml, respectively. The toxicity of plants was determined using the XTT reduction method against Vero cells. None of the ten plants showed toxicity on the cells. The obtained results confirmed that Acacia karroo and possibly Rhoicissus tridentata subsp. cuneifolia have the potential of being used as antimicrobial agents in the treatment of STDs and UTIs. These results support and validate traditional use of medicinal plants studied.

Keywords: antimicrobial, antioxidant, Neisseria gonorrhoeae, sexually transmitted diseases

Procedia PDF Downloads 305
4114 The Effect of Resistance and Progressive Training on Hsp 70 and Glucose

Authors: F. Nameni, H. Poursadra

Abstract:

The present study investigated resistance and progressive training alters the expression of chaperone proteins. These proteins function to maintain homeostasis, facilitate repair from injury, and provide protection. Nineteen training female in 2 groups taking part in the intervention volunteered to give blood samples. Levels of chaperone proteins were measured in response to resistance and progressive training. Hsp 70 levels were increased immediately after 2 h progressive training but decreased after resistance training. The data showed that human skeletal muscle responds to the stress of a single period of progressive training by up-regulating and resistance training by down-regulating expression of HSP70. Physical exercise can elevate core temperature and muscle temperatures and the expression pattern of HSP70 due to training status may be attributed to adaptive mechanisms.

Keywords: resistance training, heat shock proteins, leukocytes, Hsp 70

Procedia PDF Downloads 424
4113 Antimicrobial Activity of Some Alimentary and Medicinal Plants

Authors: Akrpoum Souad, Lalaoui Korrichi

Abstract:

Vicia faba L.,Vaccinium macrocarpon, Punica granatum, Lavandula officinalis, Artemisia absinthium, Linum capitatum and Camellia sinensis were frequently used in our alimentation. In this study, we have tested the antimicrobial activity of their ethanolic and methanolic extracts on some pathogen bacteria, then their ability to in vivo inhibit the growth of Strepcoccus pneumonia. The phytochemical screening has given the composition of the most active extracts. According to the obtained results, the ethanolic extract of Lavendula. officinalis and A absinthium has shown an inhibition of all the tested strains of becteria3. The ethanolic extract of L. officinalis has given the highest activity against S. pneumoniae, followed by the methanolic extract of C. sinensis 1, 2 and P. granatum. The phytochemical screening showed that the most active extracts contained mainly naturels compounds.

Keywords: plants, extracts, antimicrobial activity, streptococcus pneumoniae, phytochemical screening

Procedia PDF Downloads 477
4112 Genomic Imprinting as a Possible Epigenetic Cause of Esophageal Atresia

Authors: M. Błoch, P. Karpiński, P. Gasperowicz, R. Płoski, A. Lebioda, P. Skiba, A. Rozensztrauch, D. Patkowski, R. Śmigiel

Abstract:

Introduction: The cause of the isolated form of esophageal atresia has been yet unknown. Objectives: The primary objective of this study was to indicate epigenetic factors which may play an important role in the etiopathogenesis of esophageal atresia. Methods: We recruited a group of 6 pairs of twins, among whom one of the twins developed EA. The selection of such a group for testing allows for excluding external factors (e.g., infections, drugs, toxins) as the cause of the birth defect. The analyzes were performed with the use of genetic material isolated from the whole blood and esophagus tissue of a patient with EA. The reduced representation bisulphite sequencing (RRBS) technique was used to study the change in the genomic imprinting -a change in the expression of genes, which may be the epigenetic cause of EA. Results: In the course of the analyzes, significant hypomethylation and hypermethylation regions were identified. 65 genes with probably increased expression and 65 with decreased expression were selected. These genes have not been marked in literature as possibly pathogenic in esophageal atresia. However, their participation in the pathogenesis of esophageal atresia cannot be clearly excluded. Conclusion: We suggest a role of hypomethylation or hypermethylation of selected genes as one of the possible epigenetic factors in EA pathogenesis. The use of the RRBS technique in the search for the cause of EA is pioneer research; therefore, it seems necessary to extend the research group to new patients with EA. Acknowledgment: The work was supported by the National Science Centre, Poland, under research project 2016/21/N/NZ5/01927.

Keywords: esophageal atresia, epigenetics, embryonic development, surgery, genes expression, twins

Procedia PDF Downloads 48
4111 Characterization of Mycoplasma Pneumoniae Causing Exacerbation of Asthma: A Prototypical Finding from Sri Lanka

Authors: Lakmini Wijesooriya, Vicki Chalker, Jessica Day, Priyantha Perera, N. P. Sunil-Chandra

Abstract:

M. pneumoniae has been identified as an etiology for exacerbation of asthma (EQA), although viruses play a major role in EOA. M. pneumoniae infection is treated empirically with macrolides, and its antibiotic sensitivity is not detected routinely. Characterization of the organism by genotyping and determination of macrolide resistance is important epidemiologically as it guides the empiric antibiotic treatment. To date, there is no such characterization of M. pneumoniae performed in Sri Lanka. The present study describes the characterization of M. pneumoniae detected from a child with EOA following a screening of 100 children with EOA. Of the hundred children with EOA, M. pneumoniae was identified only in one child by Real-Time polymerase chain reaction (PCR) test for identifying the community-acquired respiratory distress syndrome (CARDS) toxin nucleotide sequences. The M. pneumoniae identified from this patient underwent detection of macrolide resistance via conventional PCR, amplifying and sequencing the region of the 23S rDNA gene that contains single nucleotide polymorphisms that confer resistance. Genotyping of the isolate was performed via nested Multilocus Sequence Typing (MLST) in which eight (8) housekeeping genes (ppa, pgm, gyrB, gmk, glyA, atpA, arcC, and adk) were amplified via nested PCR followed by gene sequencing and analysis. As per MLST analysis, the M. pneumoniae was identified as sequence type 14 (ST14), and no mutations that confer resistance were detected. Resistance to macrolides in M. pneumoniae is an increasing problem globally. Establishing surveillance systems is the key to informing local prescriptions. In the absence of local surveillance data, antibiotics are started empirically. If the relevant microbiological samples are not obtained before antibiotic therapy, as in most occasions in children, the course of antibiotic is completed without a microbiological diagnosis. This happens more frequently in therapy for M. pneumoniae which is treated with a macrolide in most patients. Hence, it is important to understand the macrolide sensitivity of M. pneumoniae in the setting. The M. pneumoniae detected in the present study was macrolide sensitive. Further studies are needed to examine a larger dataset in Sri Lanka to determine macrolide resistance levels to inform the use of macrolides in children with EOA. The MLST type varies in different geographical settings, and it also provides a clue to the existence of macrolide resistance. The present study enhances the database of the global distribution of different genotypes of M. pneumoniae as this is the first such characterization performed with the increased number of samples to determine macrolide resistance level in Sri Lanka. M. pneumoniae detected from a child with exacerbation of asthma in Sri Lanka was characterized as ST14 by MLST and no mutations that confer resistance were detected.

Keywords: mycoplasma pneumoniae, Sri Lanka, characterization, macrolide resistance

Procedia PDF Downloads 154
4110 The Importance of including All Data in a Linear Model for the Analysis of RNAseq Data

Authors: Roxane A. Legaie, Kjiana E. Schwab, Caroline E. Gargett

Abstract:

Studies looking at the changes in gene expression from RNAseq data often make use of linear models. It is also common practice to focus on a subset of data for a comparison of interest, leaving aside the samples not involved in this particular comparison. This work shows the importance of including all observations in the modeling process to better estimate variance parameters, even when the samples included are not directly used in the comparison under test. The human endometrium is a dynamic tissue, which undergoes cycles of growth and regression with each menstrual cycle. The mesenchymal stem cells (MSCs) present in the endometrium are likely responsible for this remarkable regenerative capacity. However recent studies suggest that MSCs also plays a role in the pathogenesis of endometriosis, one of the most common medical conditions affecting the lower abdomen in women in which the endometrial tissue grows outside the womb. In this study we compared gene expression profiles between MSCs and non-stem cell counterparts (‘non-MSC’) obtained from women with (‘E’) or without (‘noE’) endometriosis from RNAseq. Raw read counts were used for differential expression analysis using a linear model with the limma-voom R package, including either all samples in the study or only the samples belonging to the subset of interest (e.g. for the comparison ‘E vs noE in MSC cells’, including only MSC samples from E and noE patients but not the non-MSC ones). Using the full dataset we identified about 100 differentially expressed (DE) genes between E and noE samples in MSC samples (adj.p-val < 0.05 and |logFC|>1) while only 9 DE genes were identified when using only the subset of data (MSC samples only). Important genes known to be involved in endometriosis such as KLF9 and RND3 were missed in the latter case. When looking at the MSC vs non-MSC cells comparison, the linear model including all samples identified 260 genes for noE samples (including the stem cell marker SUSD2) while the subset analysis did not identify any DE genes. When looking at E samples, 12 genes were identified with the first approach and only 1 with the subset approach. Although the stem cell marker RGS5 was found in both cases, the subset test missed important genes involved in stem cell differentiation such as NOTCH3 and other potentially related genes to be used for further investigation and pathway analysis.

Keywords: differential expression, endometriosis, linear model, RNAseq

Procedia PDF Downloads 404
4109 The Resistance Reader Program Based on Image Processing

Authors: Janpen Srijan, Nahathai Tanmang, Thanit Purathanang, Anun Dowchern, Saksit Summart, Seangduan Kampimpa

Abstract:

This paper presents the resistance reader program based on image processing by using MATLAB. The proposed program is divided into six parts; the first part is the web camera; the second part is a watt selection before shooting the resistor; the third part is a part of finding the position of the color on the mid-point of resistor; the fourth part is a part of identifying color code of the resistor; the fifth part is a part of taking the number of values for each color for resistance calculation and the last part is a part of displaying result of resistance value. The experimental result of the resistance reader program based on image processing was able to display the resistance value of resistor. The accuracy of proposed program is 85 percent for 1 watt resistor. It has 15 percent of reading error because a problem with the color code of some resistor was too bright.

Keywords: resistance reader program, image processing, resistor, MATLAB

Procedia PDF Downloads 347
4108 Computer Based Identification of Possible Molecular Targets for Induction of Drug Resistance Reversion in Multidrug Resistant Mycobacterium Tuberculosis

Authors: Oleg Reva, Ilya Korotetskiy, Marina Lankina, Murat Kulmanov, Aleksandr Ilin

Abstract:

Molecular docking approaches are widely used for design of new antibiotics and modeling of antibacterial activities of numerous ligands which bind specifically to active centers of indispensable enzymes and/or key signaling proteins of pathogens. Widespread drug resistance among pathogenic microorganisms calls for development of new antibiotics specifically targeting important metabolic and information pathways. A generally recognized problem is that almost all molecular targets have been identified already and it is getting more and more difficult to design innovative antibacterial compounds to combat the drug resistance. A promising way to overcome the drug resistance problem is an induction of reversion of drug resistance by supplementary medicines to improve the efficacy of the conventional antibiotics. In contrast to well established computer-based drug design, modeling of drug resistance reversion still is in its infancy. In this work, we proposed an approach to identification of compensatory genetic variants reducing the fitness cost associated with the acquisition of drug resistance by pathogenic bacteria. The approach was based on an analysis of the population genetic of Mycobacterium tuberculosis and on results of experimental modeling of the drug resistance reversion induced by a new anti-tuberculosis drug FS-1. The latter drug is an iodine-containing nanomolecular complex that passed clinical trials and was admitted as a new medicine against MDR-TB in Kazakhstan. Isolates of M. tuberculosis obtained on different stages of the clinical trials and also from laboratory animals infected with MDR-TB strain were characterized by antibiotic resistance, and their genomes were sequenced by the paired-end Illumina HiSeq 2000 technology. A steady increase in sensitivity to conventional anti-tuberculosis antibiotics in series of isolated treated with FS-1 was registered despite the fact that the canonical drug resistance mutations identified in the genomes of these isolates remained intact. It was hypothesized that the drug resistance phenotype in M. tuberculosis requires an adjustment of activities of many genes to compensate the fitness cost of the drug resistance mutations. FS-1 cased an aggravation of the fitness cost and removal of the drug-resistant variants of M. tuberculosis from the population. This process caused a significant increase in genetic heterogeneity of the Mtb population that was not observed in the positive and negative controls (infected laboratory animals left untreated and treated solely with the antibiotics). A large-scale search for linkage disequilibrium associations between the drug resistance mutations and genetic variants in other genomic loci allowed identification of target proteins, which could be influenced by supplementary drugs to increase the fitness cost of the drug resistance and deprive the drug-resistant bacterial variants of their competitiveness in the population. The approach will be used to improve the efficacy of FS-1 and also for computer-based design of new drugs to combat drug-resistant infections.

Keywords: complete genome sequencing, computational modeling, drug resistance reversion, Mycobacterium tuberculosis

Procedia PDF Downloads 236
4107 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes

Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani

Abstract:

The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.

Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning

Procedia PDF Downloads 375
4106 Probiotic Potential and Antimicrobial Activity of Enterococcus faecium Isolated from Chicken Caecal and Fecal Samples

Authors: Salma H. Abu Hafsa, A. Mendonca, B. Brehm-Stecher, A. A. Hassan, S. A. Ibrahim

Abstract:

Enterococci are important inhabitants of the animal intestine and are widely used in probiotic products. A probiotic strain is expected to possess several desirable properties in order to exert beneficial effects. Therefore, the objective of this study was to isolate and characterize strains of Enterococcus sp. from chicken cecal and fecal samples to determine potential probiotic properties. Enterococci were isolated from thirty one chicken cecal and fecal samples collected from a local farm. In vitro studies were performed to assess antibacterial activity (using agar well diffusion and cell free supernatant broth technique against Salmonella enterica serotype Enteritidis), susceptibility to antibiotics (amoxycillin, cotrimoxazole, chloramphenicol, cefuroxime, ceftriaxone, ciprofloxacin, and nalidixic acid), survival in acidic conditions, resistance to bile salts, and their survival during simulated gastric juice conditions at pH 2.5. Isolates were identified using biochemical and molecular assays (API 50 CHL, and API ZYM kits followed by 16S rDNA gene sequence analysis). Two strains were identified, of which, Enteroccocus faecium was capable of inhibiting the growth of S. enteritidis and was susceptible to a wide range of antibiotics. In addition, the isolated strain exhibited significant resistance under highly acidic conditions (pH=2.5) for 8 hours and survived well in bile salt at 0.2% for 24 hours and showing ability to survive in the presence of simulated gastric juice at pH 2.5. Based on these results, the E. faecium isolate fulfills some of the criteria to be considered as a probiotic strain and therefore, could be used as a feed additive with good potential for controlling S. enteritidis in chickens. However, in vivo studies are needed to determine the safety of the strain.

Keywords: acid tolerance, antimicrobial activity, Enterococcus faecium, probiotic

Procedia PDF Downloads 375
4105 Loss of Function of Only One of Two CPR5 Paralogs Causes Resistance Against Rice Yellow Mottle Virus

Authors: Yugander Arra, Florence Auguy, Melissa Stiebner, Sophie Chéron, Michael M. Wudick, Van Schepler-Luu, Sébastien Cunnac, Wolf B. Frommer, Laurence Albar

Abstract:

Rice yellow mottle virus (RYMV) is one of the most important diseases affecting rice in Africa. The most promising strategy to reduce yield losses is the use of highly resistant varieties. The resistance gene RYMV2 is homolog of the Arabidopsis constitutive expression of pathogenesis related protein-5 (AtCPR5) nucleoporin gene. Resistance alleles are originating from African cultivated rice Oryza glaberrima, rarely cultivated, and are characterized by frameshifts or early stop codons, leading to a non-functional or truncated protein. Rice possesses two paralogs of CPR5 and function of these genes are unclear. Here, we evaluated the role of the two rice candidate nucleoporin paralogs OsCPR5.1 (pathogenesis-related gene 5; RYMV2) and OsCPR5.2 by CRISPR/Cas9 genome editing. Despite striking sequence and structural similarity, only loss-of-function of OsCPR5.1 led to full resistance, while loss-of-function oscpr5.2 mutants remained susceptible. Short N-terminal deletions in OsCPR5.1 also did not lead to resistance. In contrast to Atcpr5 mutants, neither OsCPR5.1 nor OsCPR5.2 knock out mutants showed substantial growth defects. Taken together, the candidate nucleoporin OsCPR5.1, but not its close homolog OsCPR5.2, plays a specific role for the susceptibility to RYMV, possibly by impairing the import of viral RNA or protein into the nucleus. Whereas gene introgression from O. glaberrima to high yielding O. sativa varieties is impaired by strong sterility barriers and the negative impact of linkage drag, genome editing of OsCPR5.1, while maintaining OsCPR5.2 activity, thus provides a promising strategy to generate O. sativa elite lines that are resistant to RYMV.

Keywords: CRISPR Cas9, genome editing, knock out mutant, recessive resistance, rice yellow mottle virus

Procedia PDF Downloads 86
4104 Time-Course Lipid Accumulation and Transcript Analyses of Lipid Biosynthesis Gene of Chlorella sp.3 under Nitrogen Limited Condition

Authors: Jyoti Singh, Swati Dubey, Mukta Singh, R. P. Singh

Abstract:

The freshwater microalgae Chlorella sp. is alluring considerable interest as a source for biofuel production due to its fast growth rate and high lipid content. Under nitrogen limited conditions, they can accumulate significant amounts of lipids. Thus, it is important to gain insight into the molecular mechanism of their lipid metabolism. In this study under nitrogen limited conditions, regular pattern of growth characteristics lipid accumulation and gene expression analysis of key regulatory genes of lipid biosynthetic pathway were carried out in microalgae Chlorella sp 3. Our results indicated that under nitrogen limited conditions there is a significant increase in the lipid content and lipid productivity, achieving 44.21±2.64 % and 39.34±0.66 mg/l/d at the end of the cultivation, respectively. Time-course transcript patterns of lipid biosynthesis genes i.e. acetyl coA carboxylase (accD) and diacylglycerol acyltransferase (dgat) showed that during late log phase of microalgae Chlorella sp.3 both the genes were significantly up regulated as compared to early log phase. Moreover, the transcript level of the dgat gene is two-fold higher than the accD gene. The results suggested that both the genes responded sensitively to the nitrogen limited conditions during the late log stage, which proposed their close relevance to lipid biosynthesis. Further, this transcriptome data will be useful for engineering microalgae species by targeting these genes for genetic modification to improve microalgal biofuel quality and production.

Keywords: biofuel, gene, lipid, microalgae

Procedia PDF Downloads 272
4103 A Prospective Study on the Pattern of Antibiotics Use and Prevalence of Multidrug Resistant Escherichia Coli in Poultry Chickens and Its Correlation with Urinary Tract Infection

Authors: Stelvin Sebastian, Andriya Annie Tom, Joyalanna Babu, Merin Joshy

Abstract:

Introduction: The worldwide increase in the use of antibiotics in poultry and livestock industry to treat and prevent bacterial diseases and as growth promoters in feeds has led to the problem of development of antibiotic resistance both in animals and human population. Aim: To study the pattern of antibiotic use and prevalence of multidrug-resistant Escherichia coli in poultry chickens in selected farms in Muvattupuzha and to compare the spread of multidrug-resistant bacteria from poultry environment to UTI patients. Methodology: Two farms from each of 6 localities in Muvattupuzha were selected. A questionnaire on the pattern of antibiotic use and various farming practices were surveyed from farms. From each farm, 60samples of fresh fecal matter, litter from inside, litter from the outside shed, agricultural soil and control soil were collected, and antimicrobial susceptibility testing of E. coli was done. Antibiogram of UTI patients was collected from the secondary care hospital included in the study, and those were compared with resistance patterns of poultry samples. Results: From survey response antibiotics such as ofloxacin, enrofloxacin, levofloxacin, ciprofloxacin, colistin, ceftriaxone, neomycin, cephalexin, and oxytetracycline were used for treatment and prevention of infections in poultry. 31of 48 samples (51.66%) showed E. coli growth. 7 of 15 antibiotics (46.6%) showed resistance. Ampicillin, amoxicillin, meropenem, tetracycline showed 100% resistance to all samples. Statistical analysis confirmed similar resistance pattern in the poultry environment and UTI patients for antibiotics such as ampicillin, amoxicillin, amikacin, and ofloxacin. Conclusion: E. coli were resistant not only to extended-spectrum beta-lactams but also to carbapenems, which may be disseminated to the environment where litter was used as manure. This may due to irrational use of antibiotics in chicken or from their use in poultry feed as growth promoters. The study concludes the presence of multidrug-resistant E.coli in poultry and its spread to environment and humans, which may cause potentially serious implications for human health.

Keywords: multidrug resistance, escherichia coli, urinary tract infection, poultry

Procedia PDF Downloads 124
4102 Identification of New Familial Breast Cancer Susceptibility Genes: Are We There Yet?

Authors: Ian Campbell, Gillian Mitchell, Paul James, Na Li, Ella Thompson

Abstract:

The genetic cause of the majority of multiple-case breast cancer families remains unresolved. Next generation sequencing has emerged as an efficient strategy for identifying predisposing mutations in individuals with inherited cancer. We are conducting whole exome sequence analysis of germ line DNA from multiple affected relatives from breast cancer families, with the aim of identifying rare protein truncating and non-synonymous variants that are likely to include novel cancer predisposing mutations. Data from more than 200 exomes show that on average each individual carries 30-50 protein truncating mutations and 300-400 rare non-synonymous variants. Heterogeneity among our exome data strongly suggest that numerous moderate penetrance genes remain to be discovered, with each gene individually accounting for only a small fraction of families (~0.5%). This scenario marks validation of candidate breast cancer predisposing genes in large case-control studies as the rate-limiting step in resolving the missing heritability of breast cancer. The aim of this study is to screen genes that are recurrently mutated among our exome data in a larger cohort of cases and controls to assess the prevalence of inactivating mutations that may be associated with breast cancer risk. We are using the Agilent HaloPlex Target Enrichment System to screen the coding regions of 168 genes in 1,000 BRCA1/2 mutation-negative familial breast cancer cases and 1,000 cancer-naive controls. To date, our interim analysis has identified 21 genes which carry an excess of truncating mutations in multiple breast cancer families versus controls. Established breast cancer susceptibility gene PALB2 is the most frequently mutated gene (13/998 cases versus 0/1009 controls), but other interesting candidates include NPSR1, GSN, POLD2, and TOX3. These and other genes are being validated in a second cohort of 1,000 cases and controls. Our experience demonstrates that beyond PALB2, the prevalence of mutations in the remaining breast cancer predisposition genes is likely to be very low making definitive validation exceptionally challenging.

Keywords: predisposition, familial, exome sequencing, breast cancer

Procedia PDF Downloads 464