Search results for: analyzer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 315

Search results for: analyzer

165 Thermal Analysis and Experimental Procedure of Integrated Phase Change Material in a Storage Tank

Authors: Chargui Ridha, Agrebi Sameh

Abstract:

The integration of phase change materials (PCM) for the storage of thermal energy during the period of sunshine before being released during the night is a complement of free energy to improve the system formed by a solar collector, tank storage, and a heat exchanger. This paper is dedicated to the design of a thermal storage tank based on a PCM-based heat exchanger. The work is divided into two parts: an experimental part using paraffin as PCM was carried out within the Laboratory of Thermal Processes of Borj Cedria in order to improve the performance of the system formed by the coupling of a flat solar collector and a thermal storage tank and to subsequently determine the influence of PCM on the whole system. This phase is based on the measurement instrumentation, namely, a differential scanning calorimeter (DSC) and the thermal analyzer (hot disk: HOT DISK) in order to determine the physical properties of the paraffin (PCM), which has been chosen. The second phase involves the detailed design of the PCM heat exchanger, which is incorporated into a thermal storage tank and coupled with a solar air collector installed at the Research and Technology Centre of Energy (CRTEn). A numerical part based on the TRANSYS and Fluent software, as well as the finite volume method, was carried out for the storage reservoir systems in order to determine the temperature distribution in each chosen system.

Keywords: phase change materials, storage tank, heat exchanger, flat plate collector

Procedia PDF Downloads 68
164 Vitamin D Deficiency and Insufficiency in Postmenopausal Women with Obesity

Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Dzerovych, Roksolana Povoroznyuk, Oksana Ivanyk

Abstract:

Deficiency and insufficiency of Vitamin D is a pandemic of the 21st century. Obesity patients have a lower level of vitamin D, but the literature data are contradictory. The purpose of this study is to investigate deficiency and insufficiency vitamin D in postmenopausal women with obesity. We examined 1007 women aged 50-89 years. Mean age was 65.74±8.61 years; mean height was 1.61±0.07 m; mean weight was 70.65±13.50 kg; mean body mass index was 27.27±4.86 kg/m2, and mean 25(OH) D levels in serum was 26.00±12.00 nmol/l. The women were divided into the following six groups depending on body mass index: I group – 338 women with normal body weight, II group – 16 women with insufficient body weight, III group – 382 women with excessive body weight, IV group – 199 women with obesity of class I, V group – 60 women with obesity of class II, and VI group – 12 women with obesity of class III. Level of 25(OH)D in serum was measured by means of an electrochemiluminescent method - Elecsys 2010 analyzer (Roche Diagnostics, Germany) and cobas test-systems. 34.4% of the examined women have deficiency of vitamin D and 31.4% insufficiency. Women with obesity of class I (23.60±10.24 ng/ml) and obese of class II (22.38±10.34 ng/ml) had significantly lower levels of 25 (OH) D compared to women with normal body weight (28.24±12.99 ng/ml), p=0.00003. In women with obesity, BMI significantly influences vitamin D level, and this influence does not depend on the season.

Keywords: obesity, body mass index, vitamin D deficiency, vitamin D insufficiency, postmenopausal women, age

Procedia PDF Downloads 147
163 Polymorphisms of STAT5A and DGAT1 Genes and Their Associations with Milk Trait in Egyptian Goats

Authors: Othman Elmahdy Othman

Abstract:

The objectives of this study were to identify polymorphisms in the STAT5A using Restriction Fragment Length Polymorphism and DGAT1 using Single-Strand Conformation Polymorphism genes among three Egyptian goat breeds (Barki, Zaraibi, and Damascus) as well as investigate the effect of their genotypes on milk composition traits of Zaraibi goats. One hundred and fifty blood samples were collected for DNA extraction, 60 from Zaraibi, 40 from Damascus and 50 from Barki breeds. Fat, protein and lactose percentages were determined in Zaraibi goat milk using an automatic milk analyzer. Two genotypes, CC and CT (for STAT5A) and C-C- and C-C+ (for DGAT1), were identified in the three Egyptian goat breeds with different frequencies. The associations between these genotypes and milk fat, protein and lactose were determined in Zaraibi breed. The results showed that the STAT5A genotypes had significant effects on milk yield, protein, fat and lactose with the superiority of CT genotype over CC. Regarding DGAT1 polymorphism, the result showed the only association between it with milk fat where the animals with C-C+ genotype had greater milk fat than animals possess C-C- genotype. The association of combined genotypes with milk trait declared that the does with heterozygous genotypes for both genes are preferred than does with homozygous genotypes where the animals with CTC-C+ have more milk yield, fat and protein than those with CCC-C- genotype. In conclusion, the result showed that C/T and C-/C+ SNPs of STAT5A and DGAT1 genes respectively may be useful markers for assisted selection programs to improve goat milk composition

Keywords: DGAT1, genetic polymorphism, milk trait, STAT5A

Procedia PDF Downloads 125
162 Development of High-Performance Conductive Polybenzoxazine/Graphite-Copper Nanoomposite for Electromagnetic Interference Shielding Applications

Authors: Noureddine Ramdani

Abstract:

In recent years, extensive attention has been given to the study of conductive nanocomposites due to their unique properties, which are dependent on their size and shape. The potential applications of these materials include electromagnetic interference shielding, energy storage, photovoltaics, and others. These outstanding properties have led to increased interest and research in this field. In this work, a conductive poly benzoxazine nanocomposite, PBZ/Gr-Cu, was synthesized through a compression molding technique to achieve a high-performance material suitable for electromagnetic interference (EMI) shielding applications. The microstructure of the nanocomposites was analyzed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The thermal stability, electrical conductivity, and EMI shielding properties of the nanocomposites were evaluated using thermogravimetric analysis, a four-point probe, and a VNA analyzer, respectively. The TGA results revealed that the thermal stability and electrical conductivity of the nanocomposites were significantly enhanced by the incorporation of Gr/Cu nanoparticles. The nanocomposites exhibited a low percolation threshold of about 3.5 wt.% and an increase in carrier concentration and mobility of the carriers with increasing hybrid nanofiller content, causing the composites to behave as n-type semiconductors. These nanocomposites also displayed a high dielectric constant and a high dissipation factor in the frequency range of 8-12 GHz, resulting in higher EMI shielding effectiveness (SE) of 25-44 dB. These characteristics make them promising candidates for lightweight EMI shielding materials in aerospace and radar evasion applications.

Keywords: polybenzoxazine matrix, conductive nanocomposites, electrical conductivity, EMI shielding

Procedia PDF Downloads 58
161 Kinetic Modeling of Colour and Textural Properties of Stored Rohu (Labeo rohita) Fish

Authors: Pramod K. Prabhakar, Prem P. Srivastav

Abstract:

Rohu (Labeo rohita) is an Indian major carp and highly relished freshwater food for its unique flavor, texture, and culinary properties. It is highly perishable and, spoilage occurs as a result of series of complicated biochemical changes brought about by enzymes which are the function of time and storage temperature also. The influence of storage temperature (5, 0, and -5 °C) on colour and texture of fish were studied during 14 days storage period in order to analyze kinetics of colour and textural changes. The rate of total colour change was most noticeable at the highest storage temperature (5°C), and these changes were well described by the first order reaction. Texture is an important variable of quality of the fish and is increasing concern to aquaculture industries. Textural parameters such as hardness, toughness and stiffness were evaluated on a texture analyzer for the different day of stored fish. The significant reduction (P ≤ 0.05) in hardness was observed after 2nd, 4th and 8th day for the fish stored at 5, 0, and -5 °C respectively. The textural changes of fish during storage followed a first order kinetic model and fitted well with this model (R2 > 0.95). However, the textural data with respect to time was also fitted to modified Maxwell model and found to be good fit with R2 value ranges from 0.96 to 0.98. Temperature dependence of colour and texture change was adequately modelled with the Arrhenius type equation. This fitted model may be used for the determination of shelf life of Rohu Rohu (Labeo rohita) Fish.

Keywords: first order kinetics, biochemical changes, Maxwell model, colour, texture, Arrhenius type equation

Procedia PDF Downloads 203
160 Platelet Indices among the Cases of Vivax Malaria

Authors: Mirza Sultan Ahmad, Mubashra Ahmad, Ramlah Mehmood, Nazia Mahboob, Waqar Nasir

Abstract:

Objective: To ascertain the prevalence of thrombocytopenia and study changes in MPV and PDW among cases of vivax malaria. Design: Descriptive analytic study. Place and duration of study: Department of pediatrics, Fazle Omar Hospital, from January to December 2012. Methodology: All patients from birth to 16 years age, who presented in Fazle- Omar hospital, Rabwah from January to December 2012 were included in this study. Hundred patients with other febrile illnesses were taken as control. Full blood counts were checked by Madonic CA 620 analyzer. Name, age, sex, weight, platelet counts. MPV, PDW, any evidence of bleeding, outcome of cases included in this study and taken as control were recorded on data sheets. Results: One hundred and forty-two patients were included in this study. There was no incidence of death or active bleeding. Median platelet count was 109000/mm3. Thrombocytopenia was present in 108 (76.1%) patients. Severe thrombocytopenia was present in 10(7%) patients. Minimum count was 27000/mm3 and maximum was 341000/mm3. Platelet counts of control group was significantly more as compared with study group.(p<.001) Median MPV was 8.70. Minimum value was 6.40 and maximum was 11.90. MPV of study group was significantly more than control group.(p<.001) Median PDW was 11.30. Minimum value was 8.5 and maximum was 16.70. There was no difference between PDW of study and control groups (p=0.246). Conclusions: Thrombocytopenia is a common complication among pediatric cases of vivax malaria. MPV of cases of vivax malaria is higher than control group.

Keywords: malaria vivax, platelet, mean platelet volume, thrombocytopenia

Procedia PDF Downloads 370
159 Utilization of Bottom Ash as Catalyst in Biomass Steam Gasification for Hydrogen and Syngas Production: Lab Scale Approach

Authors: Angga Pratama Herman, Muhammad Shahbaz, Suzana Yusup

Abstract:

Bottom ash is a solid waste from thermal power plant and it is usually disposed of into landfills and ash ponds. These disposal methods are not sustainable since new lands need to be acquired as the landfills and ash ponds are fill to its capacity. Bottom ash also classified as hazardous material that makes the disposal methods may have contributed to the environmental effect to the area. Hence, more research needs to be done to explore the potential of recycling the bottom ash as more useful product. The objective of this research is to explore the potential of utilizing bottom ash as catalyst in biomass steam gasification. In this research, bottom ash was used as catalyst in gasification of Palm Kernel Shell (PKS) using Thermo Gravimetric Analyzer coupled with mass spectrometry (TGA/MS). The effects of temperature (650 – 750 °C), particle size (0.5 – 1.0 mm) and bottom ash percentage (2 % - 10 %) were studied with and without steam. The experimental arrays were designed using expert method of Central Composite Design (CCD). Results show maximum yield of hydrogen gas was 34.3 mole % for gasification without steam and 61.4 Mole % with steam. Similar trend was observed for syngas production. The maximum syngas yield was 59.5 mole % for without steam and it reached up to 81.5 mole% with the use of steam. The optimal condition for both product gases was temperature 700 °C, particle size 0.75 mm and cool bottom ash % 0.06. In conclusion, the use of bottom ash as catalyst is possible for biomass steam gasification and the product gases composition are comparable with previous researches, however the results need to be validated for bench or pilot scale study.

Keywords: bottom ash, biomass steam gasification, catalyst, lab scale

Procedia PDF Downloads 265
158 Design and Development of Compact 1KW Floating Battery Discharge Regulator

Authors: A. Sreedevi, G. Anantaramu

Abstract:

The present space research organizations are striving towards the development of lighter, smaller, more efficient, low cost, and highly reliable power supply. Switch mode power supplies (SMPS) overcome the demerits of linear power supplies such as low efficiency, difficulties in thermal management, and in boosting the output voltage. Space applications require a constant DC voltage to supply its load. As the load varies, the battery terminal voltage tends to vary accordingly. To avoid this variation in the load terminal voltage, a DC-DC regulator is required. The conventional regulator for space applications is isolated boost topology. The proposed topology uses an interleaved push-pull converter with a current doubler secondary to reduce the EMI issues and increase efficiency. The proposed topology uses a floating technique where the converter derives power from the battery and generates only the voltage that is required to fill the gap between the bus and the battery voltage. The direct voltage sense and current loop provide tight regulation of output and better stability. Converter is designed with 50 kHz switching frequency using UC 1825 PWM controller employing both voltage and peak current mode control. Experimental tests have been carried out on the converter under different input and load conditions to validate the design. The experimental results showed that the efficiency was greater than 91%. Stability analysis is done using venable stability analyzer.

Keywords: push pull converter, current doubler, converter, PWM control

Procedia PDF Downloads 73
157 Accentuation Moods of Blaming Utterances in Egyptian Arabic: A Pragmatic Study of Prosodic Focus

Authors: Reda A. H. Mahmoud

Abstract:

This paper investigates the pragmatic meaning of prosodic focus through four accentuation moods of blaming utterances in Egyptian Arabic. Prosodic focus results in various pragmatic meanings when the speaker utters the same blaming expression in different emotional moods: the angry, the mocking, the frustrated, and the informative moods. The main objective of this study is to interpret the meanings of these four accentuation moods in relation to their illocutionary forces and pre-locutionary effects, the integrated features of prosodic focus (e.g., tone movement distributions, pitch accents, lengthening of vowels, deaccentuation of certain syllables/words, and tempo), and the consonance between the former prosodic features and certain lexico-grammatical components to communicate the intentions of the speaker. The data on blaming utterances has been collected via elicitation and pre-recorded material, and the selection of blaming utterances is based on the criteria of lexical and prosodic regularity to be processed and verified by three computer programs, Praat, Speech Analyzer, and Spectrogram Freeware. A dual pragmatic approach is established to interpret expressive blaming utterance and their lexico-grammatical distributions into intonational focus structure units. The pragmatic component of this approach explains the variable psychological attitudes through the expressions of blaming and their effects whereas the analysis of prosodic focus structure is used to describe the intonational contours of blaming utterances and other prosodic features. The study concludes that every accentuation mood has its different prosodic configuration which influences the listener’s interpretation of the pragmatic meanings of blaming utterances.

Keywords: pragmatics, pragmatic interpretation, prosody, prosodic focus

Procedia PDF Downloads 125
156 Relationship between Right Brain and Left Brain Dominance and Intonation Learning

Authors: Mohammad Hadi Mahmoodi, Soroor Zekrati

Abstract:

The aim of this study was to investigate the relationship between hemispheric dominance and intonation learning of Iranian EFL students. In order to gain this goal, 52 female students from three levels of beginner, elementary and intermediate in Paradise Institute, and 18 male university students at Bu-Ali Sina University constituted the sample. In order to assist students learn the correct way of applying intonation to their everyday speech, the study proposed an interactive approach and provided students with visual aid through which they were able to see the intonation pattern on computer screen using 'Speech Analyzer' software. This software was also used to record subjects’ voice and compare them with the original intonation pattern. Edinburg Handedness Questionnaire (EHD), which ranges from –100 for strong left-handedness to +100 for strong right-handedness was used to indicate the hemispheric dominance of each student. The result of an independent sample t-test indicated that girls learned intonation pattern better than boys, and that right brained students significantly outperformed the left brained ones. Using one-way ANOVA, a significant difference between three proficiency levels was also found. The posthoc Scheffer test showed that the exact difference was between intermediate and elementary, and intermediate and beginner levels, but no significant difference was observed between elementary and beginner levels. The findings of the study might provide researchers with some helpful implications and useful directions for future investigation into the domain of the relationship between mind and second language learning.

Keywords: intonation, hemispheric dominance, visual aid, language learning, second language learning

Procedia PDF Downloads 495
155 Hemolytic Anemia Monitored After Post-COVID-19 Infection: Changes Related to General Blood Parameters

Authors: Akbarov Elbek Elmurodovich

Abstract:

Introduction: We are analyzing the topic of hemolytic anemia observed in patients after COVID-19 infection. The purpose of this research is to investigate the development of hemolytic anemia, identify its causes, and study treatment methods. Objective and Task: The goal of our research is to analyze the changes in blood occurring after COVID-19 infection and study the development of hemolytic anemia. Our main task is to analyze the results and assess subsequent changes in patients. Materials and Methods: The study was conducted among patients treated with a diagnosis of COVID-19 in the Department of Infectious Diseases at the TTA 1-Multiprofile Clinic from March to August 2023. Out of the 32 patients included, 16 were female, and 16 were male. Monitoring Blood Coagulation in Patients: The hemoglobin level of patients upon admission was initially measured using the URITEST-150 analyzer. The average for women was 110 g/l, and for men was 120 g/l. Over the course of 3 months, a decrease was observed: an average of 72 g/l in women (a decrease of up to 35%) and 84 g/l in men (a decrease of up to 30%). In the next 2 months, the positive dynamics of hemoglobin levels were observed, with an average increase to 93 g/l in women (>28%) and 112 g/l in men (>25%). Research Results: Hemolytic anemia developed in men within 5 months, reaching up to 112 g/l. In women, this process required a longer period, with the last month of observation (6 months) showing that women reached levels of up to 112 g/l, similar to men. Conclusion: Hemolytic anemia observed in patients after COVID-19 infection was monitored for 6 months (5 months in men, 6 months in women), reaching up to 112 g/l. The first 3 months after contracting COVID showed the period of development of anemia, and the subsequent 3 months indicated a stabilization period in patients.

Keywords: COVID, anemia, hemoglobin, tma, virus, viral infrection

Procedia PDF Downloads 37
154 Dielectric Properties of Thalium Selenide Thin Films at Radio Wave Frequencies

Authors: Onur Potok, Deniz Deger, Kemal Ulutas, Sahin Yakut, Deniz Bozoglu

Abstract:

Thalium Selenide (TlSe) is used for optoelectronic devices, pressure sensitive detectors, and gamma-ray detectors. The TlSe samples were grown as large single crystals using the Stockbarger-Bridgman method. The thin films, in the form of Al/TlSe/Al, were deposited on the microscope slide in different thicknesses (300-3000 Å) using thermal evaporation technique at 10-5 Torr. The dielectric properties of (TlSe) thin films, capacitance (C) and dielectric loss factor (tanδ), were measured in a frequency range of 10-105 Hz, and temperatures between 213K and 393K via Broadband Dielectric Spectroscopy analyzer. The dielectric constant (ε’) and the dielectric loss (ε’’) of the thin films were derived from measured parameters (C and tanδ). These results showed that the dielectric properties of TlSe thin films are frequency and temperature dependent. The capacitance and the dielectric constant decrease with increasing frequency and decreasing temperature. The dielectric loss of TlSe thin films decreases with increasing frequency, on the other hand, they increase with increasing temperature and increasing thicknesses. There is two relaxation region in the investigated frequency and temperature interval. These regions can be called as low and high-frequency dispersion regions. Low-frequency dispersion region can be attributed to the polarization of the main part of the chain structure of TlSe while high-frequency dispersion region can be attributed to the polarization of side parts of the structure.

Keywords: thin films, thallium selenide, dielectric spectroscopy, binary compounds

Procedia PDF Downloads 127
153 Synthesis, Characterization, Theoretical Crystal Structures and Antitubercular Activity Study of (E)-N'-(2,4-Dihydroxybenzylidene) Nicotinohydrazide and Some of Its Metal Complexes

Authors: Ogunniran Kehinde Olurotimi, Adekoya Joseph, Ehi-Eromosele Cyril, Mehdi Shihab, Mesubi Adediran, Tadigoppula Narender

Abstract:

Nicotinic acid hydrazide and 2,4-dihydoxylbenzaldehyde were condensed at 20°C to form an acylhydrazone (H3L) with ONO coordination pattern. The structure of the acylhydrazone was elucidated by using CHN analyzer, ESI mass spectrometry, IR, 1H NMR, 13C NMR and 2D NMR such as COSY and HSQC. Thereafter, five novel metal complexes [Mn(II), Fe(II), Pt(II) Zn(II) and Pd(II)] of the hydrazone ligand were synthesized and their structural characterization were achieved by several physicochemical methods, namely elemental analysis, electronic spectra, infrared, EPR, molar conductivity and powder X-ray diffraction studies. Structural geometries of some of the compounds were supported by using Hyper Chem-8 program for the molecular mechanics and semi-empirical calculations. The stability energy (E) and electron potentials (eV) for the frontier molecules were calculated by using PM3 method. An octahedral geometry was suggested for both Pd(II) and Zn(II) complexes while both Mn(II) and Fe(II) complexes conformed with tetrahedral pyramidal. However, Pt(II) complex agreed with tetrahedral geometry. In vitro antitubercular activity study of the ligand and the metal complexes were evaluated against Mycobacterium tuberculosis, H37Rv, by using micro-diluted method. The results obtained revealed that (PtL1) (MIC = 0.56 µg/mL), (ZnL1) (MIC = 0.61 µg/mL), (MnL1) (MIC = 0.71 µg/mL) and (FeL1) (MIC = 0.82 µg/mL), exhibited a significant activity when compared with first line drugs such as isoniazid (INH) (MIC = 0.9 µg/mL). H3L1 exhibited lesser antitubercular activity with MIC value of 1.02 µg/mL. However, the metal complexes displayed higher cytoxicity but were found to be non-significant different (P ˂ 0.05) to isoniazid drug.

Keywords: hydrazones, electron spin resonance, thermogravimetric, powder X-ray diffraction, antitubercular agents

Procedia PDF Downloads 238
152 In-situ Monitoring of Residual Stress Behavior-Temperature Profiles in Transparent Polyimide/Tetrapod Zinc Oxide Whisker Composites

Authors: Ki-Ho Nam, Haksoo Han

Abstract:

Tetrapod zinc oxide whiskers (TZnO-Ws) were successfully synthesized by a thermal oxidation method. A series of transparent polyimide (PI)/TZnO-W composites were successfully synthesized via a solution-blending method. The structural and morphological features of TZnO-Ws and PI/TZnO-W composites were characterized by Fourier transform infrared spectroscopy (FT-IR), wide-angle X-Ray diffraction (WAXD), and field emission scanning electron microscope (FE-SEM). Dynamic stress behaviors were investigated in-situ during thermal imidization of the soft-baked PI/TZnO-W composite precursor and thermally cured composite films using a thin film stress analyzer (TFSA) by wafer bending technique. The PI/TZnO-W composite films exhibited an optical transparency greater than 80% at 550 nm (≤ 0.5 wt% TZnO-W content), a low coefficient of thermal expansion (CTE), and enhanced glass transition temperature. However, the thermal decomposition temperature decreased as the TZnO-W content increased. The water diffusion coefficient and water uptake of the PI/TZNO-W composite films were obtained by best fits to a Fickian diffusion model. The water resistance capacity of PI was greatly enhanced and moisture diffusion in the pure PI was retarded by incorporating the TZnO-W. The PI composite films based on TZNO-W resultantly may have potential applications in optoelectronic manufacturing processes as a flexible transparent substrate.

Keywords: polyimide (PI), tetrapod ZnO whisker (TZnO-W), transparent, dynamic stress behavior, water resistance

Procedia PDF Downloads 501
151 Fungicidal Action of the Mycogenic Silver Nanoparticles Against Aspergillus niger Inciting Collar Rot Disease in Groundnut (Arachis hypogaea L.)

Authors: R. Sarada Jayalakshmi Devi B. Bhaskar, S. Khayum Ahammed, T. N. V. K. V. Prasad

Abstract:

Use of bioagents and biofungicides is safe to manage the plant diseases and to avoid human health hazards which improves food security. Myconanotechnology is the study of nanoparticles synthesis using fungi and their applications. The present work reports on preparation, characterization and antifungal activity of biogenic silver nanoparticles produced by the fungus Trichoderma sp. which was collected from groundnut rhizosphere. The culture filtrate of Trichoderma sp. was used for the reduction of silver ions (Ag+) in AgNO3 solution to the silver (Ag0) nanoparticles. The different ages (4 days, 6 days, 8 days, 12 days, and 15 days) of culture filtrates were screened for the synthesis of silver nanoparticles. Synthesized silver nanoparticles were characterized using UV-Vis spectrophotometer, particle size and zeta potential analyzer, Fourier Transform Infrared Spectrophotometer (FTIR) and Transmission Electron Microscopy. Among all the treatments the silver nitrate solution treated with six days aged culture filtrate of Trichoderma sp. showed the UV absorption peak at 440 nm with maximum intensity (0.59) after 24 hrs incubation. The TEM micrographs showed the spherical shaped silver nanoparticles with an average size of 30 nm. The antifungal activity of silver nanoparticles against Aspergillus niger causing collar rot disease in groundnut and aspergillosis in humans showed the highest per cent inhibition at 100 ppm concentration (74.8%). The results points to the usage of these mycogenic AgNPs in agriculture to control plant diseases.

Keywords: groundnut rhizosphere, Trichoderma sp., silver nanoparticles synthesis, antifungal activity

Procedia PDF Downloads 473
150 Ecological Implication of Air Pollution From Quarrying and Stone Cutting Industries on Agriculture and Plant Biodiversity Around Quarry Sites in Mpape, Bwari Area Council, FCT, Abuja

Authors: Muhammed Rabiu, Moses S. Oluyomi, Joshua Olorundare

Abstract:

Quarry activities are important to modern day life and the socio-economic development of local communities. Unfortunately, this industry is usually associated with air pollution. To assess the impact of quarry dust on plant biodiversity and agriculture, PM2.5, PM10 and some meteorological parameters were measured using Gas analyzer, handheld thermometer and Multifunction Anemometer (PCE-EM 888) as well as taking a social survey. High amount of particulate matters that exceeded the international standard were recorded at the study locations which include the Julius Berger Quarry and 1km away from the quarry site which serve as the base for the farmlands. The correlation coefficient between the particulate matters with the meteorological parameters of the locations all show a strong relationship with temperature recording a stronger value of 0.952 and 0.931 for PM2.5 and PM10 respectively. Similarly, the coefficient of determination 0.906 and 0.866 shows that temperature has the highest meteorological percentage variation on PM2.5 and PM10. Furthermore, a notable negative impact of quarrying on plant biodiversity and local farm crops are also revealed based on respondents’ results where wide range of local plants were affected with Maize and Azadiracta indica (Neem) been the most with respondent of 31.5% and 27.5%. According to the obtained results, it is highly recommended to develop green belt surrounding the quarrying using pollutant-tolerant trees (usually with broad leaves) in order to restrict spreading of quarrying dust via intercepting, filtering and absorbing pollutants.

Keywords: agriculture, air pollution, biodiversity, quarry

Procedia PDF Downloads 46
149 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network

Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar

Abstract:

Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.

Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network

Procedia PDF Downloads 83
148 Aluminum Based Hexaferrite and Reduced Graphene Oxide a Suitable Microwave Absorber for Microwave Application

Authors: Sanghamitra Acharya, Suwarna Datar

Abstract:

Extensive use of digital and smart communication createsprolong expose of unwanted electromagnetic (EM) radiations. This harmful radiation creates not only malfunctioning of nearby electronic gadgets but also severely affects a human being. So, a suitable microwave absorbing material (MAM) becomes a necessary urge in the field of stealth and radar technology. Initially, Aluminum based hexa ferrite was prepared by sol-gel technique and for carbon derived composite was prepared by the simple one port chemical reduction method. Finally, composite films of Poly (Vinylidene) Fluoride (PVDF) are prepared by simple gel casting technique. Present work demands that aluminum-based hexaferrite phase conjugated with graphene in PVDF matrix becomes a suitable candidate both in commercially important X and Ku band. The structural and morphological nature was characterized by X-Ray diffraction (XRD), Field emission-scanning electron microscope (FESEM) and Raman spectra which conforms that 30-40 nm particles are well decorated over graphene sheet. Magnetic force microscopy (MFM) and conducting force microscopy (CFM) study further conforms the magnetic and conducting nature of composite. Finally, shielding effectiveness (SE) of the composite film was studied by using Vector network analyzer (VNA) both in X band and Ku band frequency range and found to be more than 30 dB and 40 dB, respectively. As prepared composite films are excellent microwave absorbers.

Keywords: carbon nanocomposite, microwave absorbing material, electromagnetic shielding, hexaferrite

Procedia PDF Downloads 153
147 Effect of Temperature and CuO Nanoparticle Concentration on Thermal Conductivity and Viscosity of a Phase Change Material

Authors: V. Bastian Aguila, C. Diego Vasco, P. Paula Galvez, R. Paula Zapata

Abstract:

The main results of an experimental study of the effect of temperature and nanoparticle concentration on thermal conductivity and viscosity of a nanofluid are shown. The nanofluid was made by using octadecane as a base fluid and CuO spherical nanoparticles of 75 nm (MkNano). Since the base fluid is a phase change material (PCM) to be used in thermal storage applications, the engineered nanofluid is referred as nanoPCM. Three nanoPCM were prepared through the two-step method (2.5, 5.0 and 10.0%wv). In order to increase the stability of the nanoPCM, the surface of the CuO nanoparticles was modified with sodium oleate, and it was verified by IR analysis. The modified CuO nanoparticles were dispersed by using an ultrasonic horn (Hielscher UP50H) during one hour (amplitude of 180 μm at 50 W). The thermal conductivity was measured by using a thermal properties analyzer (KD2-Pro) in the temperature range of 30ºC to 40ºC. The viscosity was measured by using a Brookfield DV2T-LV viscosimeter to 30 RPM in the temperature range of 30ºC to 55ºC. The obtained results for the nanoPCM showed that thermal conductivity is almost constant in the analyzed temperature range, and the viscosity decreases non-linearly with temperature. Respect to the effect of the nanoparticle concentration, both thermal conductivity and viscosity increased with nanoparticle concentration. The thermal conductivity raised up to 9% respect to the base fluid, and the viscosity increases up to 60%, in both cases for the higher concentration. Finally, the viscosity measurements for different rotation speeds (30 RPM - 80 RPM) exhibited that the addition of nanoparticles modifies the rheological behavior of the base fluid, from a Newtonian to a viscoplastic (Bingham) or shear thinning (power-law) non-Newtonian behavior.

Keywords: NanoPCM, thermal conductivity, viscosity, non-Newtonian fluid

Procedia PDF Downloads 392
146 Sorption Properties of Biological Waste for Lead Ions from Aqueous Solutions

Authors: Lucia Rozumová, Ivo Šafařík, Jana Seidlerová, Pavel Kůs

Abstract:

Biosorption by biological waste materials from agriculture industry could be a cost-effective technique for removing metal ions from wastewater. The performance of new biosorbent systems, consisting of the waste matrixes which were magnetically modified by iron oxide nanoparticles, for the removal of lead ions from an aqueous solution was tested. The use of low-cost and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods. This article deals with the removal of metal ions from aqueous solutions by modified waste products - orange peels, sawdust, peanuts husks, used tea leaves and ground coffee sediment. Magnetically modified waste materials were suspended in methanol and then was added ferrofluid (magnetic iron oxide nanoparticles). This modification process gives the predictions for the formation of the smart materials with new properties. Prepared material was characterized by using scanning electron microscopy, specific surface area and pore size analyzer. Studies were focused on the sorption and desorption properties. The changes of iron content in magnetically modified materials after treatment were observed as well. Adsorption process has been modelled by adsorption isotherms. The results show that magnetically modified materials during the dynamic sorption and desorption are stable at the high adsorbed amount of lead ions. The results of this study indicate that the biological waste materials as sorbent with new properties are highly effective for the treatment of wastewater.

Keywords: biological waste, sorption, metal ions, ferrofluid

Procedia PDF Downloads 110
145 Photocatalytic Degradation of Nd₂O₃@SiO₂ Core-Shell Nanocomposites Under UV Irradiation Against Methylene Blue and Rhodamine B Dyes

Authors: S. Divya, M. Jose

Abstract:

Over the past years, industrial dyes have emerged as a significant threat to aquatic life, extensively detected in drinking water and groundwater, thus contributing to water pollution due to their improper and excessive use. To address this issue, the utilization of core-shell structures has been prioritized as it demonstrates remarkable efficiency in utilizing light energy for catalytic reactions and exhibiting excellent photocatalytic activity despite the availability of various photocatalysts. This work focuses on the photocatalytic degradation of Nd₂O₃@SiO₂ CSNs under UV light irradiation against MB and RhB dyes. Different characterization techniques, including XRD, FTIR, and TEM analyses, were employed to reveal the material's structure, functional groups, and morphological features. VSM and XPS analyses confirmed the soft, paramagnetic nature and chemical states with respective atomic percentages, respectively. Optical band gaps, determined using the Tauc plot model, indicated 4.24 eV and 4.13 eV for Nd₂O₃ NPs and Nd₂O₃@SiO₂ CSNs, respectively. The reduced bandgap energy of Nd₂O₃@SiO₂ CSNs enhances light absorption in the UV range, potentially leading to improved photocatalytic efficiency. The Nd₂O₃@SiO₂ CSNs exhibited greater degradation efficiency, reaching 95% and 96% against MB and RhB dyes, while Nd₂O₃ NPs showed 90% and 92%, respectively. The enhanced efficiency of Nd₂O₃@SiO₂ CSNs can be attributed to the larger specific surface area provided by the SiO₂ shell, as confirmed by surface area analysis using the BET surface area analyzer through N₂ adsorption-desorption.

Keywords: core shell nanocomposites, rare earth oxides, photocatalysis, advanced oxidation process

Procedia PDF Downloads 29
144 Dielectric, Electrical and Magnetic Properties of Elastomer Filled with in situ Thermally Reduced Graphene Oxide and Spinel Ferrite NiFe₂O₄ Nanoparticles

Authors: Raghvendra Singh Yadav, Ivo Kuritka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, David Skoda, Milan Masar

Abstract:

The elastomer nanocomposites were synthesized by solution mixing method with an elastomer as a matrix and in situ thermally reduced graphene oxide (RGO) and spinel ferrite NiFe₂O₄ nanoparticles as filler. Spinel ferrite NiFe₂O₄ nanoparticles were prepared by the starch-assisted sol-gel auto-combustion method. The influence of filler on the microstructure, morphology, dielectric, electrical and magnetic properties of Reduced Graphene Oxide-Nickel Ferrite-Elastomer nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, the Dielectric Impedance analyzer, and vibrating sample magnetometer. Scanning electron microscopy study revealed that the fillers were incorporated in elastomer matrix homogeneously. The dielectric constant and dielectric tangent loss of nanocomposites was decreased with the increase of frequency, whereas, the dielectric constant increases with the addition of filler. Further, AC conductivity was increased with the increase of frequency and addition of fillers. Furthermore, the prepared nanocomposites exhibited ferromagnetic behavior. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: polymer-matrix composites, nanoparticles as filler, dielectric property, magnetic property

Procedia PDF Downloads 144
143 Design and Radio Frequency Characterization of Radial Reentrant Narrow Gap Cavity for the Inductive Output Tube

Authors: Meenu Kaushik, Ayon K. Bandhoyadhayay, Lalit M. Joshi

Abstract:

Inductive output tubes (IOTs) are widely used as microwave power amplifiers for broadcast and scientific applications. It is capable of amplifying radio frequency (RF) power with very good efficiency. Its compactness, reliability, high efficiency, high linearity and low operating cost make this device suitable for various applications. The device consists of an integrated structure of electron gun and RF cavity, collector and focusing structure. The working principle of IOT is a combination of triode and klystron. The cathode lies in the electron gun produces a stream of electrons. A control grid is placed in close proximity to the cathode. Basically, the input part of IOT is the integrated structure of gridded electron gun which acts as an input cavity thereby providing the interaction gap where the input RF signal is applied to make it interact with the produced electron beam for supporting the amplification phenomena. The paper presents the design, fabrication and testing of a radial re-entrant cavity for implementing in the input structure of IOT at 350 MHz operating frequency. The model’s suitability has been discussed and a generalized mathematical relation has been introduced for getting the proper transverse magnetic (TM) resonating mode in the radial narrow gap RF cavities. The structural modeling has been carried out in CST and SUPERFISH codes. The cavity is fabricated with the Aluminum material and the RF characterization is done using vector network analyzer (VNA) and the results are presented for the resonant frequency peaks obtained in VNA.

Keywords: inductive output tubes, IOT, radial cavity, coaxial cavity, particle accelerators

Procedia PDF Downloads 92
142 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps

Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li

Abstract:

With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.

Keywords: mobile computing, deep learning apps, sensitive information, static analysis

Procedia PDF Downloads 127
141 Photoelastic Analysis and Finite Elements Analysis of a Stress Field Developed in a Double Edge Notched Specimen

Authors: A. Bilek, M. Beldi, T. Cherfi, S. Djebali, S. Larbi

Abstract:

Finite elements analysis and photoelasticity are used to determine the stress field developed in a double edge notched specimen loaded in tension. The specimen is cut in a birefringent plate. Experimental isochromatic fringes are obtained with circularly polarized light on the analyzer of a regular polariscope. The fringes represent the loci of points of equal maximum shear stress. In order to obtain the stress values corresponding to the fringe orders recorded in the notched specimen, particularly in the neighborhood of the notches, a calibrating disc made of the same material is loaded in compression along its diameter in order to determine the photoelastic fringe value. This fringe value is also used in the finite elements solution in order to obtain the simulated photoelastic fringes, the isochromatics as well as the isoclinics. A color scale is used by the software to represent the simulated fringes on the whole model. The stress concentration factor can be readily obtained at the notches. Good agreements are obtained between the experimental and the simulated fringe patterns and between the graphs of the shear stress particularly in the neighborhood of the notches. The purpose in this paper is to show that one can obtain rapidly and accurately, by the finite element analysis, the isochromatic and the isoclinic fringe patterns in a stressed model as the experimental procedure can be time consuming. Stress fields can therefore be analyzed in three dimensional models as long as the meshing and the limit conditions are properly set in the program.

Keywords: isochromatic fringe, isoclinic fringe, photoelasticity, stress concentration factor

Procedia PDF Downloads 206
140 Chitosan Coated Liposome Incorporated Cyanobacterial Pigment for Nasal Administration in the Brain Stroke

Authors: Kyou Hee Shim, Hwa Sung Shin

Abstract:

When a thrombolysis agent is administered to treat ischemic stroke, excessive reactive oxygen species are generated due to a sudden provision of oxygen and occurs secondary damage cell necrosis. Thus, it is necessary to administrate adjuvant as well as thrombolysis agent to protect and reduce damaged tissue. As cerebral blood vessels have specific structure called blood-brain barrier (BBB), it is not easy to transfer substances from blood to tissue. Therefore, development of a drug carrier is required to increase drug delivery efficiency to brain tissue. In this study, cyanobacterial pigment from the blue-green algae known for having neuroprotective effect as well as antioxidant effect was nasally administrated for bypassing BBB. In order to deliver cyanobacterial pigment efficiently, the nano-sized liposome was used as a carrier. Liposomes were coated with a positive charge of chitosan since negative residues are present at the nasal mucosa the first gateway of nasal administration. Characteristics of liposome including morphology, size and zeta potential were analyzed by transmission electron microscope (TEM) and zeta analyzer. As a result of cytotoxic test, the liposomes were not harmful. Also, being administered a drug to the ischemic stroke animal model, we could confirm that the pharmacological effect of the pigment delivered by chitosan coated liposome was enhanced compared to that of non-coated liposome. Consequently, chitosan coated liposome could be considered as an optimized drug delivery system for the treatment of acute ischemic stroke.

Keywords: ischemic stroke, cyanobacterial pigment, liposome, chitosan, nasal administration

Procedia PDF Downloads 207
139 Interface Engineering of Short- and Ultrashort Period W-Based Multilayers for Soft X-Rays

Authors: A. E. Yakshin, D. Ijpes, J. M. Sturm, I. A. Makhotkin, M. D. Ackermann

Abstract:

Applications like synchrotron optics, soft X-ray microscopy, X-ray astronomy, and wavelength dispersive X-ray fluorescence (WD-XRF) rely heavily on short- and ultra-short-period multilayer (ML) structures. In WD-XRF, ML serves as an analyzer crystal to disperse emission lines of light elements. The key requirement for the ML is to be highly reflective while also providing sufficient angular dispersion to resolve specific XRF lines. For these reasons, MLs with periods ranging from 1.0 to 2.5 nm are of great interest in this field. Due to the short period, the reflectance of such MLs is extremely sensitive to interface imperfections such as roughness and interdiffusion. Moreover, the thickness of the individual layers is only a few angstroms, which is close to the limit of materials to grow a continuous film. MLs with a period between 2.5 nm and 1.0 nm, combining tungsten (W) reflector with B₄C, Si, and Al spacers, were created and examined. These combinations show high theoretical reflectance in the full range from C-Kα (4.48nm) down to S-Kα (0.54nm). However, the formation of optically unfavorable compounds, intermixing, and interface roughness result in limited reflectance. A variety of techniques, including diffusion barriers, seed layers, and ion polishing for sputter-deposited MLs, were used to address these issues. Diffuse scattering measurements, photo-electron spectroscopy analysis, and X-ray reflectivity measurements showed a noticeable reduction of compound formation, intermixing, and interface roughness. This also resulted in a substantial increase in soft X-ray reflectance for W/Si, W/B4C, and W/Al MLs. In particular, the reflectivity of 1 nm period W/Si multilayers at the wavelength of 0.84 nm increased more than 3-fold – propelling forward the applicability of such multilayers for shorter wavelengths.

Keywords: interface engineering, reflectance, short period multilayer structures, x-ray optics

Procedia PDF Downloads 24
138 Mudlogging, a Key Tool in Effective Well Delivery: A Case Study of Bisas Field Niger Delta, Nigeria

Authors: Segun Steven Bodunde

Abstract:

Mudlogging is the continuous analysis of rock cuttings and drilling fluids to ascertain the presence or absence of oil and gas from the formation penetrated by the drilling bit. This research highlighted a case study of Well BSS-99ST from ‘Bisas Field’, Niger Delta, with depth extending from 1950m to 3640m (Measured Depth). It was focused on identifying the lithologies encountered at specified depth intervals and to accurately delineate the targeted potential reservoir on the field and prepare the lithology and Master log. Equipment such as the Microscope, Fluoroscope, spin drier, oven, and chemicals, which includes: hydrochloric acid, chloroethene, and phenolphthalein, were used to check the cuttings for their calcareous nature, for oil show and for the presence of Cement respectively. Gas analysis was done using the gas chromatograph and the Flame Ionization Detector, which was connected to the Total Hydrocarbon Analyzer (THA). Drilling Parameters and Gas concentration logs were used alongside the lithology log to predict and accurately delineate the targeted reservoir on the field. The result showed continuous intercalation of sand and shale, with the presence of small quantities of siltstone at a depth of 2300m. The lithology log was generated using Log Plot software. The targeted reservoir was identified between 3478m to 3510m after inspection of the gas analysis, lithology log, electric logs, and the drilling parameters. Total gas of about 345 units and five Alkane Gas components were identified in the specific depth range. A comparative check with the Gamma ray log from the well further confirmed the lithologic sequence and the accurate delineation of the targeted potential reservoir using mudlogging.

Keywords: mudlogging, chromatograph, drilling fluids, calcareous

Procedia PDF Downloads 122
137 Determination of Alkali Treatment Conditions Effects That Influence the Variability of Kenaf Fiber Mean Cross-Sectional Area

Authors: Mohd Yussni Hashim, Mohd Nazrul Roslan, Shahruddin Mahzan Mohd Zin, Saparudin Ariffin

Abstract:

Fiber cross-sectional area value is a crucial factor in determining the strength properties of natural fiber. Furthermore, unlike synthetic fiber, a diameter and cross-sectional area of natural fiber has a large variation along and between the fibers. This study aims to determine the main and interaction effects of alkali treatment conditions that influence kenaf bast fiber mean cross-sectional area. Three alkali treatment conditions at two different levels were selected. The conditions setting were alkali concentrations at two and ten w/v %; fiber immersed temperature at room temperature and 1000C; and fiber immersed duration for 30 and 480 minute. Untreated kenaf fiber was used as a control unit. Kenaf bast fiber bundle mounting tab was prepared according to ASTM C1557-03. The cross-sectional area was measured using a Leica video analyzer. The study result showed that kenaf fiber bundle mean cross-sectional area was reduced 6.77% to 29.88% after alkali treatment. From the analysis of variance, it shows that the interaction of alkali concentration and immersed time has a higher magnitude at 0.1619 compared to alkali concentration and immersed temperature interaction that was 0.0896. For the main effect, alkali concentration factor contributes to the higher magnitude at 0.1372 which indicated the decrease pattern of variability when the level changed from lower to the higher level. Then, it was followed by immersed temperature at 0.1261 and immersed time at 0.0696 magnitudes.

Keywords: natural fiber, kenaf bast fiber bundles, alkali treatment, cross-sectional area

Procedia PDF Downloads 402
136 Evaluation of Synthesis and Structure Elucidation of Some Benzimidazoles as Antimicrobial Agents

Authors: Ozlem Temiz Arpaci, Meryem Tasci, Hakan Goker

Abstract:

Benzimidazole, a structural isostere of indol and purine nuclei that can interact with biopolymers, can be identified as master key. So that benzimidazole compounds are important fragments in medicinal chemistry because of their wide range of biological activities including antimicrobial activity. We planned to synthesize some benzimidazole compounds for developing new antimicrobial drug candidates. In this study, we put some heterocyclic rings on second position and an amidine group on the fifth position of benzimidazole ring and synthesized them using a multiple step procedure. For the synthesis of the compounds, as the first step, 4-chloro-3-nitrobenzonitrile was reacted with cyclohexylamine in dimethyl formamide. Imidate esters (compound 2) were then prepared with absolute ethanol saturated with dry HCl gas. These imidate esters which were not too stable were converted to compound 3 by passing ammonia gas through ethanol. At the Pd / C catalyst, the nitro group is reduced to the amine group (compound 4). Finally, various aldehyde derivatives were reacted with sodium metabisulfite addition products to give compound 5-20. Melting points were determined on a Buchi B-540 melting point apparatus in open capillary tubes and are uncorrected. Elemental analyses were done a Leco CHNS 932 elemental analyzer. 1H-NMR and 13C-NMR spectra were recorded on a Varian Mercury 400 MHz spectrometer using DMSO-d6. Mass spectra were acquired on a Waters Micromass ZQ using the ESI(+) method. The structures of them were supported by spectral data. The 1H-NMR, 13C NMR and mass spectra and elemental analysis results agree with those of the proposed structures. Antimicrobial activity studies of the synthesized compounds are under the investigation.

Keywords: benzimidazoles, synthesis, structure elucidation, antimicrobial

Procedia PDF Downloads 133