Search results for: ammonia emissions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1546

Search results for: ammonia emissions

1276 Role of Baseline Measurements in Assessing Air Quality Impact of Shale Gas Operations

Authors: Paula Costa, Ana Picado, Filomena Pinto, Justina Catarino

Abstract:

Environmental impact associated with large scale shale gas development is of major concern to the public, policy makers and other stakeholders. To assess this impact on the atmosphere, it is important to monitoring ambient air quality prior to and during all shale gas operation stages. Baseline observations can provide a standard of the pre-shale gas development state of the environment. The lack of baseline concentrations was identified as an important knowledge gap to assess the impact of emissions to the air due to shale gas operations. In fact baseline monitoring of air quality are missing in several regions, where there is a strong possibility of future shale gas exploration. This makes it difficult to properly identify, quantify and characterize environmental impacts that may be associated with shale gas development. The implementation of a baseline air monitoring program is imperative to be able to assess the total emissions related with shale gas operations. In fact, any monitoring programme should be designed to provide indicative information on background levels. A baseline air monitoring program should identify and characterize targeted air pollutants, most frequently described from monitoring and emission measurements, as well as those expected from hydraulic fracturing activities, and establish ambient air conditions prior to start-up of potential emission sources from shale gas operations. This program has to be planned for at least one year accounting for ambient variations. In the literature, in addition to GHG emissions of CH4, CO2 and nitrogen oxides (NOx), fugitive emissions from shale gas production can release volatile organic compounds (VOCs), aldehydes (formaldehyde, acetaldehyde) and hazardous air pollutants (HAPs). The VOCs include a.o., benzene, toluene, ethyl benzene, xylenes, hexanes, 2,2,4-trimethylpentane, styrene. The concentrations of six air pollutants (ozone, particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx), sulphur oxides (SOx), and lead) whose regional ambient air levels are regulated by the Environmental Protection Agency (EPA), are often discussed. However, the main concern in the emissions to air associated to shale gas operations, seems to be the leakage of methane. Methane is identified as a compound of major concern due to its strong global warming potential. The identification of methane leakage from shale gas activities is complex due to the existence of several other CH4 sources (e.g. landfill, agricultural activity or gas pipeline/compressor station). An integrated monitoring study of methane emissions may be a suitable mean of distinguishing the contribution of different sources of methane to ambient levels. All data analysis needs to be carefully interpreted taking, also, into account the meteorological conditions of the site. This may require the implementation of a more intensive monitoring programme. So, it is essential the development of a low-cost sampling strategy, suitable for establishing pre-operations baseline data as well as an integrated monitoring program to assess the emissions from shale gas operation sites. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640715.

Keywords: air emissions, baseline, green house gases, shale gas

Procedia PDF Downloads 299
1275 The Mainspring of Controlling of Low Pressure Steam Drum at Lower Pressure than Its Design for Adjusting the Urea Synthesis Pressure

Authors: Reza Behtash, Enayat Enayati

Abstract:

The pool condenser is in principal a horizontal reactor, containing a bundle of U-tubes for heat exchange, coupling to low pressure steam drum. Condensation of gas takes place in a condensed pool around the tubes of the condenser. The heat of condensation is removed by the generation of low pressure steam on the inner tube side of the bundle. A circulation pump transfers ample boiler feed water to these tubes. The pressure of the steam generated influenced the heat flux. Changing the steam pressure means changing the steam condensate temperature and therefore the temperature difference between the tube side and the shell side. 2NH3 + CO2 ↔ NH2COONH4 + Heat. This reaction is exothermic and according to Le Chatelier's Principle if the heat is not removed enough, it will come back to left side and generate of the gas and so the Urea synthesis pressure will rise. The most principal reasons for high Urea synthesis pressure are non proportional of Ammonia/Dioxide Carbon ratio and too high a pressure in low pressure steam drum. Proportional of Ammonia/Dioxide Carbon ratio is 3.0 and normal pressure for low pressure steam drum is 4.5 bar. As regards these conditions were proportional but we could not control the synthesis pressure the plant endangered, therefore we had to control the steam drum pressure at about 3.5 bar. While we opened the pool condenser, we found the partition plate used to divide inlet and outlet boiler feed water to tubes, was broken partially and so amount of boiler feed water bypass the tubes and the heat was not removed totally and it resulted in the generation of gases and high pressure in synthesis.

Keywords: boiler, pressure, pool condenser, partition plate

Procedia PDF Downloads 352
1274 Environmental Impact of Trade Sector Growth: Evidence from Tanzania

Authors: Mosses E. Lufuke

Abstract:

This paper attempted to investigate whether there is Granger-causality running from trade to environment as evidenced in the changing climatic condition and land degradation. Using Tanzania as the reference, VAR-Granger-causality test was employed to rationalize the conundrum of causal-effect relationship between trade and environment. The changing climatic condition, as the proxy of both nitrous oxide emissions (in thousand metric tons of CO2 equivalent) and land degradation measured by the size of arable land were tested against trade using both exports and imports variables. The result indicated that neither of the trade variables Granger-cause the variability on gas emissions and arable land size. This suggests the possibility that all trade concerns in relation to environment to have been internalized in domestic policies to offset any likely negative consequence.

Keywords: environment, growth, impact, trade

Procedia PDF Downloads 298
1273 Characterization of Emissions from the open burning of Municipal Solid Waste (MSW) under Tropical Environment

Authors: Anju Elizbath Peter, S. M. Shiva Nagendra, Indumathi M.Nambi

Abstract:

The deliberate fires initiated by dump managers and human scavengers to reduce the volume of waste and recovery of valuable metals/materials are common at municipal solid waste (MSW) disposal sites in developed country. A large amount of toxic gases released due to this act is responsible for the deterioration of regional and local air quality, which causes visibility impairment and acute respiratory diseases. The present study was aimed at the characterization of MSW and emission characteristics of burning of MSW in the laboratory. MSW samples were collected directly from the one of the open dumpsite located in Chennai city. Solid waste sampling and laboratory analysis were carried out according to American Society of Testing and Materials (ASTM) standards. Results indicated the values of moisture content, volatile solids (VS) and calorific values of solid waste samples were 16.67%,8%,9.17MJ/kg, respectively. The elemental composition showed that the municipal solid waste contains 25.84% of carbon, 3.69% of hydrogen, 1.57% of nitrogen and 0.26% of sulphur. The calorific value of MSW was found to be 9.17 MJ/Kg which is sufficient to facilitate self-combustion of waste. The characterization of emissions from the burning of 1 kg of MSW in the test chamber showed a total of 90 mg/kg of PM10 and 243 mg/kg of PM2.5. The current research study results will be useful for municipal authorities to formulate guideline and policy structure regarding the MSW management to reduce the impact of air emissions at an open dump site.

Keywords: characterization, MSW, open burning, PM10, PM2.5

Procedia PDF Downloads 314
1272 Analysis of Pavement Lifespan - Cost and Emissions of Greenhouse Gases: A Comparative Study of 10-year vs 30-year Design

Authors: Claudeny Simone Alves Santana, Alexandre Simas De Medeiros, Marcelino Aurélio Vieira Da Silva

Abstract:

The aim of the study was to assess the performance of pavements over time, considering the principles of Life Cycle Assessment (LCA) and the ability to withstand vehicle loads and associated environmental impacts. Within the study boundary, pavement design was conducted using the Mechanistic-Empirical Method, adopting criteria based on pavement cracking and wheel path rutting while also considering factors such as soil characteristics, material thickness, and the distribution of forces exerted by vehicles. The Ecoinvent® 3.6 database and SimaPro® software were employed to calculate emissions, and SICRO 3 information was used to estimate costs. Consequently, the study sought to identify the service that had the greatest impact on greenhouse gas emissions. The results were compared for design life periods of 10 and 30 years, considering structural performance and load-bearing capacity. Additionally, environmental impacts in terms of CO2 emissions per standard axle and construction costs in dollars per standard axle were analyzed. Based on the conducted analyses, it was possible to determine which pavement exhibited superior performance over time, considering technical, environmental, and economic criteria. One of the findings indicated that the mechanical characteristics of the soils used in the pavement layer directly influence the thickness of the pavement and the quantity of greenhouse gases, with a difference of approximately 7000 Kg CO2 Eq. The transportation service was identified as having the most significant negative impact. Other notable observations are that the study can contribute to future project guidelines and assist in decision-making regarding the selection of the most suitable pavement in terms of durability, load-bearing capacity, and sustainability.

Keywords: life cycle assessment, greenhouse gases, urban paving, service cost

Procedia PDF Downloads 40
1271 Assessment Environmental and Economic of Yerba Mate as a Feed Additive on Feedlot Lamb

Authors: Danny Alexander R. Moreno, Gustavo L. Sartorello, Yuli Andrea P. Bermudez, Richard R. Lobo, Ives Claudio S. Bueno, Augusto H. Gameiro

Abstract:

Meat production is a significant sector for Brazil's economy; however, the agricultural segment has suffered censure regarding the negative impacts on the environment, which consequently results in climate change. Therefore, it is essential the implementation of nutritional strategies that can improve the environmental performance of livestock. This research aimed to estimate the environmental impact and profitability of the use of yerba mate extract (Ilex paraguariensis) as an additive in the feeding of feedlot lamb. Thirty-six castrated male lambs (average weight of 23.90 ± 3.67 kg and average age of 75 days) were randomly assigned to four experimental diets with different levels of inclusion of yerba mate extract (0, 1, 2, and 4 %) based on dry matter. The animals were confined for fifty-three days and fed with 60:40 corn silage to concentrate ratio. As an indicator of environmental impact, the carbon footprint (CF) was measured as kg of CO₂ equivalent (CO₂-eq) per kg of body weight produced (BWP). The greenhouse gas (GHG) emissions such as methane (CH₄) generated from enteric fermentation, were calculated using the sulfur hexafluoride gas tracer (SF₆) technique; while the CH₄, nitrous oxide (N₂O - emissions generated by feces and urine), and carbon dioxide (CO₂ - emissions generated by concentrate and silage processing) were estimated using the Intergovernmental Panel on Climate Change (IPCC) methodology. To estimate profitability, the gross margin was used, which is the total revenue minus the total cost; the latter is composed of the purchase of animals and food. The boundaries of this study considered only the lamb fattening system. The enteric CH₄ emission from the lamb was the largest source of on-farm GHG emissions (47%-50%), followed by CH₄ and N₂O emissions from manure (10%-20%) and CO₂ emission from the concentrate, silage, and fossil energy (17%-5%). The treatment that generated the least environmental impact was the group with 4% of yerba mate extract (YME), which showed a 3% reduction in total GHG emissions in relation to the control (1462.5 and 1505.5 kg CO₂-eq, respectively). However, the scenario with 1% YME showed an increase in emissions of 7% compared to the control group. In relation to CF, the treatment with 4% YME had the lowest value (4.1 kg CO₂-eq/kg LW) compared with the other groups. Nevertheless, although the 4% YME inclusion scenario showed the lowest CF, the gross margin decreased by 36% compared to the control group (0% YME), due to the cost of YME as a food additive. The results showed that the extract has the potential for use in reducing GHG. However, the cost of implementing this input as a mitigation strategy increased the production cost. Therefore, it is important to develop political strategies that help reduce the acquisition costs of input that contribute to the search for the environmental and economic benefit of the livestock sector.

Keywords: meat production, natural additives, profitability, sheep

Procedia PDF Downloads 101
1270 Fractional, Component and Morphological Composition of Ambient Air Dust in the Areas of Mining Industry

Authors: S.V. Kleyn, S.Yu. Zagorodnov, А.А. Kokoulina

Abstract:

Technogenic emissions of the mining and processing complex are characterized by a high content of chemical components and solid dust particles. However, each industrial enterprise and the surrounding area have features that require refinement and parameterization. Numerous studies have shown the negative impact of fine dust PM10 and PM2.5 on the health, as well as the possibility of toxic components absorption, including heavy metals by dust particles. The target of the study was the quantitative assessment of the fractional and particle size composition of ambient air dust in the area of impact by primary magnesium production complex. Also, we tried to describe the morphology features of dust particles. Study methods. To identify the dust emission sources, the analysis of the production process has been carried out. The particulate composition of the emissions was measured using laser particle analyzer Microtrac S3500 (covered range of particle size is 20 nm to 2000 km). Particle morphology and the component composition were established by electron microscopy by scanning microscope of high resolution (magnification rate - 5 to 300 000 times) with X-ray fluorescence device S3400N ‘HITACHI’. The chemical composition was identified by X-ray analysis of the samples using an X-ray diffractometer XRD-700 ‘Shimadzu’. Determination of the dust pollution level was carried out using model calculations of emissions in the atmosphere dispersion. The calculations were verified by instrumental studies. Results of the study. The results demonstrated that the dust emissions of different technical processes are heterogeneous and fractional structure is complicated. The percentage of particle sizes up to 2.5 micrometres inclusive was ranged from 0.00 to 56.70%; particle sizes less than 10 microns inclusive – 0.00 - 85.60%; particle sizes greater than 10 microns - 14.40% -100.00%. During microscopy, the presence of nanoscale size particles has been detected. Studied dust particles are round, irregular, cubic and integral shapes. The composition of the dust includes magnesium, sodium, potassium, calcium, iron, chlorine. On the base of obtained results, it was performed the model calculations of dust emissions dispersion and establishment of the areas of fine dust РМ 10 and РМ 2.5 distribution. It was found that the dust emissions of fine powder fractions PM10 and PM2.5 are dispersed over large distances and beyond the border of the industrial site of the enterprise. The population living near the enterprise is exposed to the risk of diseases associated with dust exposure. Data are transferred to the economic entity to make decisions on the measures to minimize the risks. Exposure and risks indicators on the health are used to provide named patient health and preventive care to the citizens living in the area of negative impact of the facility.

Keywords: dust emissions, еxposure assessment, PM 10, PM 2.5

Procedia PDF Downloads 235
1269 Efficacy and Safety of Probiotic Treatment in Patients with Liver Cirrhosis: A Systematic Review and Meta-Analysis

Authors: Samir Malhotra, Rajan K. Khandotra, Rakesh K. Dhiman, Neelam Chadha

Abstract:

There is paucity of data about safety and efficacy of probiotic treatment on patient outcomes in cirrhosis. Specifically, it is important to know whether probiotics can improve mortality, hepatic encephalopathy (HE), number of hospitalizations, ammonia levels, quality of life, and adverse events. Probiotics may improve outcomes in patients with acute or chronic HE. However, it is also important to know whether probiotics can prevent development of HE, even in situations where patients do not have acute HE at the time of administration. It is also important to know if probiotics are useful as primary prophylaxis of HE. We aimed to conduct an updated systematic review and meta-analysis to evaluate the safety and efficacy of probiotics in patients with cirrhosis. We searched PubMed, Cochrane library, Embase, Scopus, SCI, Google Scholar, conference proceedings, and references of included studies till June 2017 to identify randomised clinical trials comparing probiotics with other treatments in cirrhotics. Data was analyzed using MedCalc. Probiotics had no effect on mortality but significantly reduced HE (14 trials, 1073 patients, OR 0.371; 95% CI 0.282 to 0.489). There was not enough data to conduct a meta-analysis on outcomes like hospitalizations and quality of life. The effect on plasma ammonia levels was not significant (SMD -0.429; 95%CI -1.034 – 0.177). There was no difference in adverse events. To conclude, although the included studies had a high risk of bias, the available evidence does suggest a beneficial effect on HE. Larger studies with longer periods of follow-up are needed to determine if probiotics can reduce all-cause mortality.

Keywords: cirrhosis, hepatic encephalopathy, meta-analysis, probiotic

Procedia PDF Downloads 178
1268 An Equitable Strategy to Amend Zero-Emission Vehicles Incentives for Travelers: A Policy Review

Authors: Marie Louis

Abstract:

Even though many stakeholders are doing their very best to promote public transportation around the world, many areas are still public transportation non-accessible. With travelers purchasing and driving their private vehicles can be considered as a threat to all three aspects of the sustainability (e.g., economical, social, environmental). However, most studies that considered simultaneously all three aspects of the sustainability concept when planning and designing public transportation for a corridor have found tradeoffs among the said three aspects.One of the tradeoffs was identified by looking at tipping points of the travel demands to question whether transit agencies/and or transportation policymakers should either operate smaller buses or provide incentives to purchase Leadership in Energy and Environmental Design (LEED)-Qualified low-emission vehicles or greener vehicles (e.g., hybrid). However, how and when do the department of environmental protection (DEP) and the department of revenue (DOR) figure out how much incentives to give to each traveler who lives in a zoning that is considered as public transportation inaccessible or accessible? To answer this policy question, this study aims to compare the greenhouse gases (GHGs) emissions when hybrid and conventional cars are used to access public transportation stops/stations. Additionally, this study also intends to review previous states that have already adopted low-emissions vehicle (LEVs) or Zero-Emissions Vehicles (ZEVs) to diminish the daily GHGs pollutants.

Keywords: LEED-qualified vehicles, public transit accessibility, hybrid vehicles incentives, sustainability trade-offs

Procedia PDF Downloads 170
1267 Cleaner Technology for Stone Crushers

Authors: S. M. Ahuja

Abstract:

There are about 12000 stone crusher units in India and are located in clusters around urban areas to the stone quarries. These crushers create lot of fugitive dust emissions and noise pollution which is a major health hazard for the people working in the crushers and also living in its vicinity. Ambient air monitoring was carried out near various stone crushers and it has been observed that fugitive emission varied from 300 to 8000 mg/Nm3. A number of stone crushers were thoroughly studied and their existing pollution control devices were examined. Limitations in the existing technology were also studied. A technology consisting of minimal effective spray nozzles to reduce the emissions at source followed by a containment cum control system having modular cyclones as air pollution control device has been conceived. Besides preliminary energy audit has also been carried out in some of the stone crushers which indicates substantial potential for energy saving.

Keywords: stone crushers, spray nozzles, energy audit

Procedia PDF Downloads 294
1266 Biofiltration Odour Removal at Wastewater Treatment Plant Using Natural Materials: Pilot Scale Studies

Authors: D. Lopes, I. I. R. Baptista, R. F. Vieira, J. Vaz, H. Varela, O. M. Freitas, V. F. Domingues, R. Jorge, C. Delerue-Matos, S. A. Figueiredo

Abstract:

Deodorization is nowadays a need in wastewater treatment plants. Nitrogen and sulphur compounds, volatile fatty acids, aldehydes and ketones are responsible for the unpleasant odours, being ammonia, hydrogen sulphide and mercaptans the most common pollutants. Although chemical treatments of the air extracted are efficient, these are more expensive than biological treatments, namely due the use of chemical reagents (commonly sulphuric acid, sodium hypochlorite and sodium hydroxide). Biofiltration offers the advantage of avoiding the use of reagents (only in some cases, nutrients are added in order to increase the treatment efficiency) and can be considered a sustainable process when the packing medium used is of natural origin. In this work the application of some natural materials locally available was studied both at laboratory and pilot scale, in a real wastewater treatment plant. The materials selected for this study were indigenous Portuguese forest materials derived from eucalyptus and pinewood, such as woodchips and bark, and coconut fiber was also used for comparison purposes. Their physico-chemical characterization was performed: density, moisture, pH, buffer and water retention capacity. Laboratory studies involved batch adsorption studies for ammonia and hydrogen sulphide removal and evaluation of microbiological activity. Four pilot-scale biofilters (1 cubic meter volume) were installed at a local wastewater treatment plant treating odours from the effluent receiving chamber. Each biofilter contained a different packing material consisting of mixtures of eucalyptus bark, pine woodchips and coconut fiber, with added buffering agents and nutrients. The odour treatment efficiency was monitored over time, as well as other operating parameters. The operation at pilot scale suggested that between the processes involved in biofiltration - adsorption, absorption and biodegradation - the first dominates at the beginning, while the biofilm is developing. When the biofilm is completely established, and the adsorption capacity of the material is reached, biodegradation becomes the most relevant odour removal mechanism. High odour and hydrogen sulphide removal efficiencies were achieved throughout the testing period (over 6 months), confirming the suitability of the materials selected, and mixtures thereof prepared, for biofiltration applications.

Keywords: ammonia hydrogen sulphide and removal, biofiltration, natural materials, odour control in wastewater treatment plants

Procedia PDF Downloads 276
1265 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP for Israel: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), carbon dioxide (CO2) emissions and gross domestic product (GDP) for Israel using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Phillips–Perron (PP) test for stationarity, Johansen maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests significant positive impacts of coal and natural gas consumptions on GDP in Israel. In the short run, GDP positively affects coal consumption. While there exists a positive unidirectional causality running from coal consumption to consumption of petroleum products and the direct combustion of crude oil, there exists a negative unidirectional causality running from natural gas consumption to consumption of petroleum products and the direct combustion of crude oil in the short run. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output but the associations can to be differed by the sources of energy in the case of Israel over of period 1980-2010.

Keywords: CO2 emissions, energy consumption, GDP, Israel, time series analysis

Procedia PDF Downloads 622
1264 Performance of Environmental Efficiency of Energy Consumption in OPEC Countries

Authors: Bahram Fathi, Mahdi Khodaparast Mashhadi, Masuod Homayounifar

Abstract:

Global awareness on energy security and climate change has created much interest in assessing energy efficiency performance. A number of previous studies have contributed to evaluate energy efficiency performance using different analytical techniques among which data envelopment analysis (DEA) has recently received increasing attention. Most of DEA-related energy efficiency studies do not consider undesirable outputs such as CO2 emissions in their modeling framework, which may lead to biased energy efficiency values. Within a joint production frame work of desirable and undesirable outputs, in this paper we construct energy efficiency performance index for measuring energy efficiency performance by using environmental DEA model with CO2 emissions. We finally apply the index proposed to assess the energy efficiency performance in OPEC over time.

Keywords: energy efficiency, environmental, OPEC, data envelopment analysis

Procedia PDF Downloads 356
1263 Nuclear Power Plant Radioactive Effluent Discharge Management in China

Authors: Jie Yang, Qifu Cheng, Yafang Liu, Zhijie Gu

Abstract:

Controlled emissions of effluent from nuclear power plants are an important means of ensuring environmental safety. In order to fully grasp the actual discharge level of nuclear power plant in China's nuclear power plant in the pressurized water reactor and heavy water reactor, it will use the global average nuclear power plant effluent discharge as a reference to the standard analysis of China's nuclear power plant environmental discharge status. The results show that the average normalized emission of liquid tritium in PWR nuclear power plants in China is slightly higher than the global average value, and the other nuclides emissions are lower than the global average values.

Keywords: radioactive effluent, HWR, PWR, nuclear power plant

Procedia PDF Downloads 218
1262 Low Carbon Tourism Management: Strategies for Climate-Friendly Tourism of Koh Mak, Thailand

Authors: Panwad Wongthong, Thanan Apivantanaporn, Sutthiwan Amattayakul

Abstract:

Nature-based tourism is one of the fastest growing industries that can bring in economic benefits, improve quality of life and promote conservation of biodiversity and habitats. As tourism develops, substantial socio-economic and environmental costs become more explicit. Particularly in island destinations, the dynamic system and geographical limitations makes the intensity of tourism development and severity of the negative environmental impacts greater. The current contribution of the tourism sector to global climate change is established at approximately 5% of global anthropogenic CO2 emissions. In all scenarios, tourism is anticipated to grow substantially and to account for an increasingly large share of global greenhouse gas emissions. This has prompted an urgent call for more sustainable alternatives. This study selected a small island of Koh Mak in Thailand as a case study because of its reputation of being laid back, family oriented and rich in biodiversity. Importantly, it is a test platform for low carbon tourism development project supported by the Designated Areas for Sustainable Tourism Administration (DASTA) in collaboration with the Institute for Small and Medium Enterprises Development (ISMED). The study explores strategies for low carbon tourism management and assesses challenges and opportunities for Koh Mak to become a low carbon tourism destination. The goal is to identify suitable management approaches applicable for Koh Mak which may then be adapted to other small islands in Thailand and the region. Interventions/initiatives to increase energy efficiency in hotels and resorts; cut carbon emissions; reduce impacts on the environment; and promote conservation will be analyzed. Ways toward long-term sustainability of climate-friendly tourism will be recommended. Recognizing the importance of multi-stakeholder involvement in the tourism sector, findings from this study can reward Koh Mak tourism industry with a triple-win: cost savings and compliance with higher standards/markets; less waste, air emissions and effluents; and better capabilities of change, motivation of business owners, staff, tourists as well as residents. The consideration of climate change issues in the planning and implementation of tourism development is of great significance to protect the tourism sector from negative impacts.

Keywords: climate change, CO2 emissions, low carbon tourism, sustainable tourism management

Procedia PDF Downloads 256
1261 Carbon Supported Silver Nanostructures for Electrochemical Carbon Dioxide Reduction

Authors: Sonali Panigrahy, Manjunatha K., Sudip Barman

Abstract:

Electrocatalytic reduction methods hold significant promise in addressing the urgent need to mitigate excessive greenhouse gas emissions, particularly carbon dioxide (CO₂). A highly effective catalyst is essential for achieving the conversion of CO₂ into valuable products due to the complex, multi-electron, and multi-product nature of the CO₂ reduction process. The electrochemical reduction of CO₂, driven by renewable energy sources, presents a valuable opportunity for simultaneously reducing CO₂ emissions while generating valuable chemicals and fuels, with syngas being a noteworthy product. Silver-based electrodes have been the focus of extensive research due to their low overpotential and remarkable selectivity in promoting the generation of carbon monoxide (CO) in the electrocatalytic carbon dioxide reduction reaction (CO₂RR). In this study, we delve into the synthesis of carbon-supported silver nanoparticles (Ag/C), which serve as efficient electrocatalysts for the reduction of CO₂. The as-prepared catalyst, Ag/C, is not only cost-effective but also highly proficient in facilitating the conversion of CO₂ and H₂O into syngas, which is a customizable mixture of hydrogen (H₂) and carbon monoxide (CO). The highest faradic efficiency for the production of CO on Ag/C was calculated to be 56.4% at -1.4 V vs Ag/AgCl. The maximum partial current density for the generation of CO was determined to be -9.4 mA cm-2 at a potential of -1.6 V vs Ag/AgCl. This research demonstrates the potential of Ag/C as an electrocatalyst to enable the sustainable production of syngas, contributing to the reduction of CO₂ emissions and the synthesis of valuable chemical precursors and fuels.

Keywords: CO₂, carbon monooxide, electrochemical, silver

Procedia PDF Downloads 37
1260 Synthesis of La0.8Sr0.05Ca0.15Fe0.8Co0.2O3-δ -Ce0.9Gd0.1O1.95 Composite Cathode Material for Solid Oxide Fuel Cell with Lanthanum and Cerium Recycled from Wasted Glass Polishing Powder

Authors: Jun-Lun Jiang, Bing-Sheng Yu

Abstract:

Processing of flat-panel displays generates huge amount of wasted glass polishing powder, with high concentration of cerium and other elements such as lanthanum. According to the current statistics, consumption of polishing powder was approximately ten thousand tons per year in the world. Nevertheless, wasted polishing powder was usually buried or burned. If the lanthanum and cerium compounds in the wasted polishing powder could be recycled, that will greatly reduce enterprise cost and implement waste circulation. Cathodes of SOFCs are the principal consisting of rare earth elements such as lanthanum and cerium. In this study, we recycled the lanthanum and cerium from wasted glass polishing powder by acid-solution method, and synthesized La0.8Sr0.05Ca0.15Fe0.8Co0.8O3-δ and Gd0.1Ce0.9O2 (LSCCF-GDC) composite cathode material for SOFCs by glycinenitrate combustion (GNP) method. The results show that the recovery rates of lanthanum and cerium could accomplish up to 80% and 100% under 10N nitric acid solution within one hour. Comparing with the XRD data of the commercial LSCCF-GDC powder and the LSCCF-GDC product synthesized with chemicals, we find that the LSCCF-GDC was successfully synthesized with the recycled La & Ce solution by GNP method. The effect of adding ammonia to the product was also discussed, the grain size is finer and recovery rate of the product is higher without the addition of ammonia to the solution.

Keywords: glass polishing powder, acid solution, recycling, composite cathodes of solid oxide fuel, cell (SOFC), perovskite, glycine-nitrate combustion(GNP) method

Procedia PDF Downloads 239
1259 Study of Engine Performance and Exhaust Emissions on Multi-Cylinder Turbo-Charged Diesel Engine Operated with B5 Biodiesel Blend

Authors: Pradip Lingfa, L. M. Das, S. N. Naik

Abstract:

In the last three decades the world has been confronting an energy crisis caused by the decreased of fossil resources, and increased of environmental problems. This situation resulted in a search for an alternative fuel. Non-edible vegetable oils are promising sources for producing liquid fuels. In the present experimental investigation, the engine tests were carried out for performance and exhaust emissions on 2.5 L Turbo-charged diesel engine fuelled with 5% biodiesel blend obtained from non-edible vegetable oils such as Jatropha, Karanja, and Castor Seeds. The engine tests were carried out at full throttle position with various engine speeds of 1500, 1750, 2000, 2250, 2750 and 3000 rpm respectively. After test, it was observed that 5% Jatropha biodiesel blend have highest brake power of 46.65 kW and less brake specific fuel consumptions of 225.8 kg/kW-hr compared to other two biodiesel blends of brake power of 45.99 kW, 45.81 kW and brake specific fuel consumption of 234.34, 236.55 kg/kW-hr respectively. The brake specific fuel consumption of biodiesel blends increase at increasing speeds for all biodiesel blends. NOx emissions for biodiesel blends were observed to be higher compared to diesel fuel during the entire range of engine operations. The emission characteristics like CO, HC and smoke were lowered at all engine speed conditions compared to diesel fuel.

Keywords: biodiesel blend, brake power, brake specific fuel consumption, emission, performance

Procedia PDF Downloads 152
1258 Ethanol and Biomass Production from Spent Sulfite Liquor by Filamentous Fungi

Authors: M. T. Asadollahzadeh, A. Ghasemian, A. R. Saraeian, H. Resalati, P. R. Lennartsson, M. J. Taherzadeh

Abstract:

Since filamentous fungi are capable of assimilating several types of sugars (hexoses and pentoses), they are potential candidates for bioconversion of spent sulfite liquor (SSL). Three filamentous fungi such as Aspergillus oryzae, Mucor indicus, and Rhizopus oryzae were investigated in this work. The SSL was diluted in order to obtain concentrations of 50, 60, 70, 80, and 90% and supplemented with two types of nutrients. The results from cultivations in shake flask showed that A. oryzae and M. indicus were not able to grow in pure SSL and SSL90% while R. oryzae could grow only in SSL50% and SSL60%. Cultivation with A. oryzae resulted in the highest yield of produced fungal biomass, while R. oryzae cultivation resulted in the lowest fungal biomass yield. Although, the mediums containing yeast extract, (NH4)2SO4, KH2PO4, CaCl2∙2H2O, and MgSO4∙7H2O as nutrients supplementations produced higher fungal biomass compared to the mediums containing NH4H2PO4 and ammonia, but there was no significant difference between two types of nutrients in terms of sugars and acetic acid consumption rate. The sugars consumption in M. indicus cultivation was faster than A. oryzae and R. oryzae cultivation. Acetic acid present in SSL was completely consumed during cultivation of all fungi. M. indicus was the best and fastest ethanol producer from SSL among the fungi examined, when yeast extract and salts were used as nutrients supplementations. Furthermore, no further improvement in ethanol concentration and rate of sugars consumption was obtained in medium supplemented with NH4H2PO4 and ammonia compared to medium containing yeast extract, (NH4)2SO4, KH2PO4, CaCl2∙2H2O, and MgSO4∙7H2O. On the other hand, the higher dilution of SSL resulted in a better fermentability, and better consumption of sugars and acetic acid.

Keywords: ethanol, filamentous fungi, fungal biomass, spent sulfite liquor

Procedia PDF Downloads 229
1257 Circular Nitrogen Removal, Recovery and Reuse Technologies

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and threatens water quality. Nitrogen pollution control has become a global concern. The concentration of nitrogen in water is reduced by converting ammonia nitrogen, nitrate nitrogen and nitrite nitrogen into nitrogen-containing gas through biological treatment, physicochemical treatment and oxidation technology. However, some wastewater containing high ammonia nitrogen including landfill leachate, is difficult to be treated by traditional nitrification and denitrification because of its high COD content. The core process of denitrification is that denitrifying bacteria convert nitrous acid produced by nitrification into nitrite under anaerobic conditions. Still, its low-carbon nitrogen does not meet the conditions for denitrification. Many studies have shown that the natural autotrophic anammox bacteria can combine nitrous and ammonia nitrogen without a carbon source through functional genes to achieve total nitrogen removal, which is very suitable for removing nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The short-range nitrification and denitrification coupled with anaerobic ammoX ensures total nitrogen removal. It improves the removal efficiency, meeting the needs of society for an ecologically friendly and cost-effective nutrient removal treatment technology. In recent years, research has found that the symbiotic system has more water treatment advantages because this process not only helps to improve the efficiency of wastewater treatment but also allows carbon dioxide reduction and resource recovery. Microalgae use carbon dioxide dissolved in water or released through bacterial respiration to produce oxygen for bacteria through photosynthesis under light, and bacteria, in turn, provide metabolites and inorganic carbon sources for the growth of microalgae, which may lead the algal bacteria symbiotic system save most or all of the aeration energy consumption. It has become a trend to make microalgae and light-avoiding anammox bacteria play synergistic roles by adjusting the light-to-dark ratio. Microalgae in the outer layer of light particles block most of the light and provide cofactors and amino acids to promote nitrogen removal. In particular, myxoccota MYX1 can degrade extracellular proteins produced by microalgae, providing amino acids for the entire bacterial community, which helps anammox bacteria save metabolic energy and adapt to light. As a result, initiating and maintaining the process of combining dominant algae and anaerobic denitrifying bacterial communities has great potential in treating landfill leachate. Chlorella has a brilliant removal effect and can withstand extreme environments in terms of high ammonia nitrogen, high salt and low temperature. It is urgent to study whether the algal mud mixture rich in denitrifying bacteria and chlorella can greatly improve the efficiency of landfill leachate treatment under an anaerobic environment where photosynthesis is stopped. The optimal dilution concentration of simulated landfill leachate can be found by determining the treatment effect of the same batch of bacteria and algae mixtures under different initial ammonia nitrogen concentrations and making a comparison. High-throughput sequencing technology was used to analyze the changes in microbial diversity, related functional genera and functional genes under optimal conditions, providing a theoretical and practical basis for the engineering application of novel bacteria-algae symbiosis system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, Partial nitrification, Algae-bacteria interaction

Procedia PDF Downloads 16
1256 Oxyhydrogen Gas (HHO) as Replacement to Gasoline Fuel

Authors: Rishabh Pandey, Umang Kumar Yadav

Abstract:

In today’s era of technological advancement, we come across incalculable innovations, almost every day. No doubt that the society has developed a lot in learning and technology, but we should also take into account the problems and inflictions that are occurring. Focusing on the petroleum sector a trending global concern is toward lowering fuel consumption and emissions. It is well known that gasoline is non-renewable source of energy and its burning produces harmful emissions which are adversely affecting the environment, such issues are motivating us to seek alternative solutions that would not require much modification in engine design and help us come out with an outcome. Keeping in mind the importance of environment and human race, we present a factious idea of use of oxyhydrogen gas or HHO gas in place of gasoline in the vehicles and petroleum industry. This technology is prospering, highly efficient, could be used economically and safe, and it will be responsible for changing the future of oil and gas sector in accordance with protection to the environment. In the coming future, we will check the compatibility of HHO generator with fuel engine for production of oxyhydrogen gas with use of water and effect of introducing HHO gas to the combustion on both thermal efficiency and specific fuel consumption. We will also work on the comparison of HHO gas and commercially available gasoline fuel in support of their chemical structures; ignition rate; octane rating; knocking properties; storage; transportation and cost effectiveness and it is trusted that use of HHO gas will be ecofriendly as no harmful emissions are produced, rather the only emission is water. Additionally, this paper will include the use of HHO cell in fuel engines and challenges faced in installing it in the current period and provide effective solutions for the same.

Keywords: fuel, gas, generator, water

Procedia PDF Downloads 295
1255 The Effect of Metal-Organic Framework Pore Size to Hydrogen Generation of Ammonia Borane via Nanoconfinement

Authors: Jing-Yang Chung, Chi-Wei Liao, Jing Li, Bor Kae Chang, Cheng-Yu Wang

Abstract:

Chemical hydride ammonia borane (AB, NH3BH3) draws attentions to hydrogen energy researches for its high theoretical gravimetrical capacity (19.6 wt%). Nevertheless, the elevated AB decomposition temperatures (Td) and unwanted byproducts are main hurdles in practical application. It was reported that the byproducts and Td can be reduced with nanoconfinement technique, in which AB molecules are confined in porous materials, such as porous carbon, zeolite, metal-organic frameworks (MOFs), etc. Although nanoconfinement empirically shows effectiveness on hydrogen generation temperature reduction in AB, the theoretical mechanism is debatable. Low Td was reported in AB@IRMOF-1 (Zn4O(BDC)3, BDC = benzenedicarboxylate), where Zn atoms form closed metal clusters secondary building unit (SBU) with no exposed active sites. Other than nanosized hydride, it was also observed that catalyst addition facilitates AB decomposition in the composite of Li-catalyzed carbon CMK-3, MOF JUC-32-Y with exposed Y3+, etc. It is believed that nanosized AB is critical for lowering Td, while active sites eliminate byproducts. Nonetheless, some researchers claimed that it is the catalytic sites that are the critical factor to reduce Td, instead of the hydride size. The group physically ground AB with ZIF-8 (zeolitic imidazolate frameworks, (Zn(2-methylimidazolate)2)), and found similar reduced Td phenomenon, even though AB molecules were not ‘confined’ or forming nanoparticles by physical hand grinding. It shows the catalytic reaction, not nanoconfinement, leads to AB dehydrogenation promotion. In this research, we explored the possible criteria of hydrogen production temperature from nanoconfined AB in MOFs with different pore sizes and active sites. MOFs with metal SBU such as Zn (IRMOF), Zr (UiO), and Al (MIL-53), accompanying with various organic ligands (BDC and BPDC; BPDC = biphenyldicarboxylate) were modified with AB. Excess MOFs were used for AB size constrained in micropores estimated by revisiting Horvath-Kawazoe model. AB dissolved in methanol was added to MOFs crystalline with MOF pore volume to AB ratio 4:1, and the slurry was dried under vacuum to collect AB@MOF powders. With TPD-MS (temperature programmed desorption with mass spectroscopy), we observed Td was reduced with smaller MOF pores. For example, it was reduced from 100°C to 64°C when MOF micropore ~1 nm, while ~90°C with pore size up to 5 nm. The behavior of Td as a function of AB crystalline radius obeys thermodynamics when the Gibbs free energy of AB decomposition is zero, and no obvious correlation with metal type was observed. In conclusion, we discovered Td of AB is proportional to the reciprocal of MOF pore size, possibly stronger than the effect of active sites.

Keywords: ammonia borane, chemical hydride, metal-organic framework, nanoconfinement

Procedia PDF Downloads 157
1254 The LNG Paradox: The Role of Gas in the Energy Transition

Authors: Ira Joseph

Abstract:

The LNG paradox addresses the issue of how the most expensive form of gas supply, which is LNG, will grow in an end user market where demand is most competitive, which is power generation. In this case, LNG demand growth is under siege from two entirely different directions. At one end is price; it will be extremely difficult for gas to replace coal in Asia due to the low price of coal and the age of the generation plants. Asia's coal fleet, on average, is less than two decades old and will need significant financial incentives to retire before its state lifespan. While gas would cut emissions in half relative to coal, it would also more than double the price of the fuel source for power generation, which puts it in a precarious position. In most countries in Asia other than China, this cost increase, particularly from imports, is simply not realistic when it is also necessary to focus on economic growth and social welfare. On the other end, renewables are growing at an exponential rate for three reasons. One is that prices are dropping. Two is that policy incentives are driving deployment, and three is that China is forcing renewables infrastructure into the market to take a political seat at the global energy table with Saudi Arabia, the US, and Russia. Plus, more renewables will lower import growth of oil and gas in China, if not end it altogether. Renewables are the predator at the gate of gas demand in power generation and in every year that passes, renewables cut into demand growth projections for gas; in particular, the type of gas that is most expensive, which is LNG. Gas does have a role in the future, particularly within a domestic market. Once it crosses borders in the form of LNG or even pipeline gas, it quickly becomes a premium fuel and must be marketed and used this way. Our research shows that gas will be able to compete with batteries as an intermittency and storage tool and does offer a method to harmonize with renewables as part of the energy transition. As a baseload fuel, however, the role of gas, particularly, will be limited by cost once it needs to cross a border. Gas converted into blue or green hydrogen or ammonia is also an option for storage depending on the location. While this role is much reduced from the primary baseload role that gas once aspired to land, it still offers a credible option for decades to come.

Keywords: natural gas, LNG, demand, price, intermittency, storage, renewables

Procedia PDF Downloads 29
1253 Preparation and Characterization of Mixed Cu-Ag-Pd Oxide Supported Catalysts for Complete Catalytic Oxidation of Methane

Authors: Ts. Lazarova, V. Tumbalev, S. Atanacova-Vladimirova, G. Ivanov, A. Naydenov, D. Kovacheva

Abstract:

Methane is a major Greenhouse Gas (GHG) that accounts for 14% of the world’s total amount of GHG emissions, originating mainly from agriculture, Coal mines, land fields, wastewater and oil and gas facilities. Nowadays the problem caused by the methane emissions has been a subject of an increased concern. One of the methods for neutralization of the methane emissions is it's complete catalytic oxidation. The efforts of the researchers are focused on the development of new types of catalysts and optimizing the existing catalytic systems in order to prevent the sintering of the palladium, providing at the same time a sufficient activity at temperatures below 500oC. The aim of the present work is to prepare mixed Cu-Ag-Pd oxide catalysts supported on alumina and to test them for methane complete catalytic oxidation. Cu-Ag-Pd/Al2O3 were prepared on a γ-Al2O3 (BET surface area = 220 m2/g) by the incipient wetness method using the corresponding metal nitrates (Cu:Ag = 90:10, Cu:Pd =97:3, Cu:Ag:Pd= 87:10:3) as precursors. A second set of samples were prepared with addition of urea to the metal nitrate solutions with the above mentioned ratios assuming increased dispersivity of the catalysts. The catalyst samples were dried at 100°C for 3 hours and calcined at 550°C for 30 minutes. Catalysts samples were characterized using X-ray diffraction (XRD), low temperature adsorption of nitrogen (BET) and scanning electron microscopy (SEM). The catalytic activity tests were carried out in a continuous flow type of reactor at atmospheric pressure. The effect of catalyst aging at 500 oC for 120 h on the methane combustion activity was also investigated. The results clearly indicate the synergetic effect of Ag and Pd on the catalytic activity.

Keywords: catalysts, XRD, BET, SEM, catalytic oxidation

Procedia PDF Downloads 357
1252 Sustainability and Energy-Efficiency in Buildings: A review

Authors: Medya Fathi

Abstract:

Moving toward sustainable development is among today’s critical issues worldwide that make all industries, particularly construction, pay increasing attention to a healthy environment and a society with a prosperous economy. One of the solutions is to improve buildings’ energy performance by cutting energy consumption and related carbon emissions, eventually improving the quality of life. Unfortunately, the energy demand for buildings is rising. For instance, in Europe, the building sector accounts for 19% of the global energy-related greenhouse gas (GHGs) emissions, the main contributor to global warming in the last 50 years, and 36% of the total CO2 emissions, according to European Commission 2019. The crisis of energy use demands expanding knowledge and understanding of the potential benefits of energy-efficient buildings. In this regard, the present paper aims to critically review the existing body of knowledge on improving energy efficiency in buildings and detail the significant research contributions. Peer-reviewed journal articles published in the last decade in reputed journals were reviewed using the database Scopus and keywords of Sustainability, Sustainable Development, Energy Performance, Energy Consumption, Energy Efficiency, and Buildings. All contributions will be classified by journal type, publication time, country/region, building occupancy type, applied strategies, and findings. This study will provide an essential basis for researchers working on missing areas and filling the existing gaps in the body of knowledge.

Keywords: sustainability, energy performance, energy efficiency, buildings, review

Procedia PDF Downloads 39
1251 Influence of the Nature of Plants on Drainage, Purification Performance and Quality of Biosolids on Faecal Sludge Planted Drying Beds in Sub-Saharan Climate Conditions

Authors: El Hadji Mamadou Sonko, Mbaye Mbéguéré, Cheikh Diop, Linda Strande

Abstract:

In new approaches that are being developed for the treatment of sludge, the valorization of by-product is increasingly encouraged. In this perspective, Echinochloa pyramidalis has been successfully tested in Cameroon. Echinochloa pyramidalis is an efficient forage plant in the treatment of faecal sludge. It provides high removal rates and biosolids of high agronomic value. Thus in order to advise the use of this plant in planted drying beds in Senegal its comparison with the plants long been used in the field deserves to be carried out. That is the aim of this study showing the influence of the nature of the plants on the drainage, the purifying performances and the quality of the biosolids. Echinochloa pyramidalis, Typha australis, and Phragmites australis are the three macrophytes used in this study. The drainage properties of the beds were monitored through the frequency of clogging, the percentage of recovered leachate and the dryness of the accumulated sludge. The development of plants was followed through the measurement of the density. The purification performances were evaluated from the incoming raw sludge flows and the outflows of leachate for parameters such as Total Solids (TS), Total Suspended Solids (TSS), Total Volatile Solids (TVS), Chemical Oxygen Demand (COD), Total Kjeldahl Nitrogen (TKN), Ammonia (NH₄⁺), Nitrate (NO₃⁻), Total Phosphorus (TP), Orthophosphorus (PO₄³⁻) and Ascaris eggs. The quality of the biosolids accumulated on the beds was measured after 3 months of maturation for parameters such as dryness, C/N ratio NH₄⁺/NO₃⁻ ratio, ammonia, Ascaris eggs. The results have shown that the recovered leachate volume is about 40.4%; 45.6% and 47.3%; the dryness about 41.7%; 38.7% and 28.7%, and clogging frequencies about 6.7%; 8.2% and 14.2% on average for the beds planted with Echinochloa pyramidalis, Typha australis and Phragmites australis respectively. The plants of Echinochloa pyramidalis (198.6 plants/m²) and Phragmites australis (138 plants/m²) have higher densities than Typha australis (90.3 plants/m²). The nature of the plants has no influence on the purification performance with reduction percentages around 80% or more for all the parameters followed whatever the nature of the plants. However, the concentrations of these various leachate pollutants are above the limit values of the Senegalese standard NS 05-061 for the release into the environment. The biosolids harvested after 3 months of maturation are all mature with C/N ratios around 10 for all the macrophytes. The NH₄⁺/NO₃⁻ ratio is lower than 1 except for the biosolids originating from the Echinochloa pyramidalis beds. The ammonia is also less than 0.4 g/kg except for biosolids from Typha australis beds. Biosolids are also rich in mineral elements. Their concentrations of Ascaris eggs are higher than the WHO recommendations despite a percentage of inactivation around 80%. These biosolids must be stored for an additional time or composted. From these results, the use of Echinochloa pyramidalis as the main macrophyte can be recommended in the various drying beds planted in sub-Saharan climate conditions.

Keywords: faecal sludge, nature of plants, quality of biosolids, treatment performances

Procedia PDF Downloads 145
1250 The Challenge of the Decarbonization of Shipping and Complex Imo Regulations

Authors: Saiyeed Jakaria Baksh Imran

Abstract:

The earth is being endangered by many of the climate related issues today. The most serious issue for the world today is the global warming. Increase in Greenhouse gas (GHG) emissions post-industrial revolution period is the prime reason for global warming. Shipping is the fifth largest GHG emitting sector worldwide. The key reason for this is because, over 90% of the world trade is conducted through ocean as the ocean alone covers 70% of the earth surface. While the countries continue to develop, trade and commerce continue to increase between them simultaneously. However, there is no sign of reduction in GHG emission from shipping because of many concerned issues. Firstly, there is technological barrier for which ships cannot just become environment friendly immediately. Secondly, there is no alternative fuel available as well. Thirdly, there is no proper mechanism to measure how much ships emit as emission from ships vary according to the size, engine type and loading capacity of ships. The International Maritime Organization (IMO) being the governing body of the international shipping has implemented MARPOL Annex VI. However, the policy alone is not enough unless there is a proper data available regarding ship emissions, which the IMO is yet to figure out. This paper will present a critical analysis of existing IMO policies such as the Energy Efficiency Design Index (EEDI), Ship Energy Efficiency Management Plan (SEEMP), Data Collection System (SEEMP) and the IMO’s Initial Strategy on Reduction of Greenhouse Gas emissions from shipping. Also, the challenges exist in implementing such policies have been presented in the paper.

Keywords: GHG, IMO, EEDI, SEEMP, DCS, greenhouse gas, decarbonization, shipping

Procedia PDF Downloads 49
1249 Study on the Rapid Start-up and Functional Microorganisms of the Coupled Process of Short-range Nitrification and Anammox in Landfill Leachate Treatment

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and poses a threat to water quality. Nitrogen pollution control has become a global concern. Currently, the problem of water pollution in China is still not optimistic. As a typical high ammonia nitrogen organic wastewater, landfill leachate is more difficult to treat than domestic sewage because of its complex water quality, high toxicity, and high concentration.Many studies have shown that the autotrophic anammox bacteria in nature can combine nitrous and ammonia nitrogen without carbon source through functional genes to achieve total nitrogen removal, which is very suitable for the removal of nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The process composed of short-range nitrification and denitrification coupled an ammo ensures the removal of total nitrogen and improves the removal efficiency, meeting the needs of the society for an ecologically friendly and cost-effective nutrient removal treatment technology. Continuous flow process for treating late leachate [an up-flow anaerobic sludge blanket reactor (UASB), anoxic/oxic (A/O)–anaerobic ammonia oxidation reactor (ANAOR or anammox reactor)] has been developed to achieve autotrophic deep nitrogen removal. In this process, the optimal process parameters such as hydraulic retention time and nitrification flow rate have been obtained, and have been applied to the rapid start-up and stable operation of the process system and high removal efficiency. Besides, finding the characteristics of microbial community during the start-up of anammox process system and analyzing its microbial ecological mechanism provide a basis for the enrichment of anammox microbial community under high environmental stress. One research developed partial nitrification-Anammox (PN/A) using an internal circulation (IC) system and a biological aerated filter (BAF) biofilm reactor (IBBR), where the amount of water treated is closer to that of landfill leachate. However, new high-throughput sequencing technology is still required to be utilized to analyze the changes of microbial diversity of this system, related functional genera and functional genes under optimal conditions, providing theoretical and further practical basis for the engineering application of novel anammox system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, partial nitrification

Procedia PDF Downloads 15
1248 Performance and Emissions Analysis of Diesel Engine with Bio-Diesel of Waste Cooking Oils

Authors: Mukesh Kumar, Onkar Singh, Naveen Kumar, Amar Deep

Abstract:

The waste cooking oil is taken as feedstock for biodiesel production. For this research, waste cooking oil is collected from many hotels and restaurants, and then biodiesel is prepared for experimentation purpose. The prepared biodiesel is mixed with mineral diesel in the proportion of 10%, 20%, and 30% to perform tests on a diesel engine. The experimental analysis is carried out at different load conditions to analyze the impact of the blending ratio on the performance and emission parameters. When the blending proportion of biodiesel is increased, then the highest pressure reduces due to the fall in the calorific value of the blended mixture. Experimental analysis shows a promising decrease in nitrogen oxides (NOx). A mixture of 20% biodiesel and mineral diesel is the best negotiation, mixing ratio, and beyond that, a remarkable reduction in the outcome of the performance has been observed.

Keywords: alternative sources, diesel engine, emissions, performance

Procedia PDF Downloads 144
1247 Integration of Agroforestry Shrub for Diversification and Improved Smallholder Production: A Case of Cajanus cajan-Zea Mays (Pigeonpea-Maize) Production in Ghana

Authors: F. O. Danquah, F. Frimpong, E. Owusu Danquah, T. Frimpong, J. Adu, S. K. Amposah, P. Amankwaa-Yeboah, N. E. Amengor

Abstract:

In the face of global concerns such as population increase, climate change, and limited natural resources, sustainable agriculture practices are critical for ensuring food security and environmental stewardship. The study was conducted in the Forest zones of Ghana during the major and minor seasons of 2023 cropping seasons to evaluate maize yield productivity improvement and profitability of integrating Cajanus cajan (pigeonpea) into a maize production system described as a pigeonpea-maize cropping system. This is towards an integrated soil fertility management (ISFM) with a legume shrub pigeonpea for sustainable maize production while improving smallholder farmers' resilience to climate change. A split-plot design with maize-pigeonpea (Pigeonpea-Maize intercrop – MPP and No pigeonpea/ Sole maize – NPP) and inorganic fertilizer rate (250 kg/ha of 15-15-15 N-P2O5-K2O + 250 kg/ha Sulphate of Ammonia (SoA) – Full rate (FR), 125 kg/ha of 15-15-15 N-P2O5-K2O + 125 kg/ha Sulphate of Ammonia (SoA) – Half rate (HR) and no inorganic fertilizer (NF) as control) was used as the main plot and subplot treatments respectively. The results indicated a significant interaction of the pigeonpea-maize cropping system and inorganic fertilizer rate on the growth and yield of the maize with better and similar maize productivity when HR and FR were used with pigeonpea biomass. Thus, the integration of pigeonpea and its biomass would result in the reduction of recommended fertiliser rate to half. This would improve farmers’ income and profitability for sustainable maize production in the face of climate change.

Keywords: agroforestry tree, climate change, integrated soil fertility management, resource use efficiency

Procedia PDF Downloads 23