Search results for: alveolar bone
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 837

Search results for: alveolar bone

297 Development of an Image-Based Biomechanical Model for Assessment of Hip Fracture Risk

Authors: Masoud Nasiri Sarvi, Yunhua Luo

Abstract:

Low-trauma hip fracture, usually caused by fall from standing height, has become a main source of morbidity and mortality for the elderly. Factors affecting hip fracture include sex, race, age, body weight, height, body mass distribution, etc., and thus, hip fracture risk in fall differs widely from subject to subject. It is therefore necessary to develop a subject-specific biomechanical model to predict hip fracture risk. The objective of this study is to develop a two-level, image-based, subject-specific biomechanical model consisting of a whole-body dynamics model and a proximal-femur finite element (FE) model for more accurately assessing the risk of hip fracture in lateral falls. Required information for constructing the model is extracted from a whole-body and a hip DXA (Dual Energy X-ray Absorptiometry) image of the subject. The proposed model considers all parameters subject-specifically, which will provide a fast, accurate, and non-expensive method for predicting hip fracture risk.

Keywords: bone mineral density, hip fracture risk, impact force, sideways falls

Procedia PDF Downloads 510
296 Biomaterials Solutions to Medical Problems: A Technical Review

Authors: Ashish Thakur

Abstract:

This technical paper was written in view of focusing the biomaterials and its various applications in modern industries. Author tires to elaborate not only the medical, infect plenty of application in other industries. The scope of the research area covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. Biomaterials are invariably in contact with living tissues. Thus, interactions between the surface of a synthetic material and biological environment must be well understood. This paper reviews the benefits and challenges associated with surface modification of the metals in biomedical applications. The paper also elaborates how the surface characteristics of metallic biomaterials, such as surface chemistry, topography, surface charge, and wettability, influence the protein adsorption and subsequent cell behavior in terms of adhesion, proliferation, and differentiation at the biomaterial–tissue interface. The chapter also highlights various techniques required for surface modification and coating of metallic biomaterials, including physicochemical and biochemical surface treatments and calcium phosphate and oxide coatings. In this review, the attention is focused on the biomaterial-associated infections, from which the need for anti-infective biomaterials originates. Biomaterial-associated infections differ markedly for epidemiology, aetiology and severity, depending mainly on the anatomic site, on the time of biomaterial application, and on the depth of the tissues harbouring the prosthesis. Here, the diversity and complexity of the different scenarios where medical devices are currently utilised are explored, providing an overview of the emblematic applicative fields and of the requirements for anti-infective biomaterials. In addition to this, chapter introduces nanomedicine and the use of both natural and synthetic polymeric biomaterials, focuses on specific current polymeric nanomedicine applications and research, and concludes with the challenges of nanomedicine research. Infection is currently regarded as the most severe and devastating complication associated to the use of biomaterials. Osteoporosis is a worldwide disease with a very high prevalence in humans older than 50. The main clinical consequences are bone fractures, which often lead to patient disability or even death. A number of commercial biomaterials are currently used to treat osteoporotic bone fractures, but most of these have not been specifically designed for that purpose. Many drug- or cell-loaded biomaterials have been proposed in research laboratories, but very few have received approval for commercial use. Polymeric nanomaterial-based therapeutics plays a key role in the field of medicine in treatment areas such as drug delivery, tissue engineering, cancer, diabetes, and neurodegenerative diseases. Advantages in the use of polymers over other materials for nanomedicine include increased functionality, design flexibility, improved processability, and, in some cases, biocompatibility.

Keywords: nanomedicine, tissue, infections, biomaterials

Procedia PDF Downloads 239
295 Energy Self-Sufficiency Through Smart Micro-Grids and Decentralised Sector-Coupling

Authors: C. Trapp, A. Vijay, M. Khorasani

Abstract:

Decentralised micro-grids with sector coupling can combat the spatial and temporal intermittence of renewable energy by combining power, transportation and infrastructure sectors. Intelligent energy conversion concepts such as electrolysers, hydrogen engines and fuel cells combined with energy storage using intelligent batteries and hydrogen storage form the back-bone of such a system. This paper describes a micro-grid based on Photo-Voltaic cells, battery storage, innovative modular and scalable Anion Exchange Membrane (AEM) electrolyzer with an efficiency of up to 73%, high-pressure hydrogen storage as well as cutting-edge combustion-engine based Combined Heat and Power (CHP) plant with more than 85% efficiency at the university campus to address the challenges of decarbonization whilst eliminating the necessity for expensive high-voltage infrastructure.

Keywords: sector coupling, micro-grids, energy self-sufficiency, decarbonization, AEM electrolysis, hydrogen CHP

Procedia PDF Downloads 156
294 Groundwater Contamination and Fluorosis: A Comprehensive Analysis

Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay

Abstract:

Groundwater contamination with fluoride has emerged as a global concern affecting millions of people, leading to the widespread occurrence of fluorosis. It affects bones and teeth, leading to dental and skeletal fluorosis. This study presents a comprehensive analysis of the relationship between groundwater contamination and fluorosis. It delves into the causes of fluoride contamination in groundwater, its spatial distribution, and adverse health impacts of fluorosis on affected communities. Fluoride contamination in groundwater can be attributed to both natural and anthropogenic sources. Geogenic sources involve the dissolution of fluoride-rich minerals present in the aquifer materials. On the other hand, anthropogenic activities such as industrial discharges, agricultural practices, and improper disposal of fluoride-containing waste contribute to the contamination of groundwater. The spatial distribution of fluoride contamination varies widely across different regions and geological formations. High fluoride levels are commonly observed in areas with fluorine-rich geological deposits. Additionally, agricultural and industrial centres often exhibit elevated fluoride concentrations due to anthropogenic contributions. Excessive fluoride ingestion during tooth development leads to dental fluorosis, characterized by enamel defects, discoloration, and dental caries. The severity of dental fluorosis varies based on fluoride exposure levels during tooth development. Long-term consumption of fluoride-contaminated water causes skeletal fluorosis, resulting in bone and joint pain, decreased joint mobility, and skeletal deformities. In severe cases, skeletal fluorosis can lead to disability and reduced quality of life. Various defluoridation techniques such as activated alumina, bone char, and reverse osmosis have been employed to reduce fluoride concentrations in drinking water. These methods effectively remove fluoride, but their implementation requires careful consideration of cost, maintenance, and sustainability. Diversifying water sources, such as rainwater harvesting and surface water supply, can reduce the reliance on fluoride-contaminated groundwater, especially in regions with high fluoride concentrations. Groundwater contamination with fluoride remains a significant public health challenge, leading to the widespread occurrence of fluorosis globally. This scientific report emphasizes the importance of understanding the relationship between groundwater contamination and fluorosis. Implementing effective mitigation strategies and preventive measures is crucial to combat fluorosis and ensure sustainable access to safe drinking water for communities worldwide. Collaborative efforts between government agencies, local communities, and scientific researchers are essential to address this issue and safeguard the health of vulnerable populations. Additionally, the report explores various mitigation strategies and preventive measures to address the issue and offers recommendations for sustainable management of groundwater resources to combat fluorosis effectively.

Keywords: fluorosis, fluoride contamination, groundwater contamination, groundwater resources

Procedia PDF Downloads 65
293 Promissing Antifungal Chitinase from Marine Strain of Bacillus

Authors: Ben Amar Cheba, Taha Ibrahim Zaghloul, Mohamad Hisham El-Massry, Ahmad Rafik El-Mahdy

Abstract:

Seventy two bacterial strains with ability to degrade chitin were isolated during a screening program. One of the most potent isolates (strain R2) was identified as Bacillus sp. using conventional methods as well as 16S rRNA technique and submitted in the Gen Bank sequence database as Bacillus sp. R2 with a given accession number DQ 923161. This strain was able to produce high levels of extracellular chitinase. The chitinase of Bacillus sp. R2 hydrolyzed several chitinous substrates preferentially and showed a maximum activity toward the β chitin such as Calmar pen and squid bone chitins with the folds 1.47 and 1.23 respectively. The enzyme also exhibited a substrate binding capacity of more than 70% for squid chitin, shrimp shell colloidal chitin, chitosan and prawn shell chitin. The chitinase showed a moderate antifungal activity against many phytopathogenic fungi such as Aspergillus niger, A. flavus, Penicillium degitatum and Fusarium calmorum.This strain could be a suitable candidate for chitinase production on an industrial scale for using as promising antifungal biopestecide.

Keywords: antifungal activity, Bacillus sp. R2, chitinase, substrate specificity

Procedia PDF Downloads 475
292 Development of a One-Window Services Model for Accessing Cancer Immunotherapies

Authors: Rizwan Arshad, Alessio Panza, Nimra Inayat, Syeda Mariam Batool Kazmi, Shawana Azmat

Abstract:

The rapidly expanding use of immunotherapy for a wide range of cancers from late to early stages has, predictably, been accompanied by evidence of inequities in access to these highly effective but costly treatments. In this survey-based case study, we aimed to develop a One-window services model (OWSM) based on Anderson’s behavioral model to enhance competence in accessing cancer medications, particularly immunotherapies, through the analysis of 20 patient surveys conducted in the Armed forces bone marrow transplant center of the district, Rawalpindi from November to December 2022. The purposive sampling technique was used. Cronbach’s alpha coefficient was found to be 0.71. It was analyzed using SPSS version 26 with descriptive analysis, and results showed that the majority of the cancer patients were non-competent to access their prescribed cancer immunotherapy because of individual-level, socioeconomic, and organizational barriers.

Keywords: cancer immunotherapy, one-window services model, accessibility, competence

Procedia PDF Downloads 50
291 Design and Optimization of a Customized External Fixation Device for Lower Limb Injuries

Authors: Mohammed S. Alqahtani, Paulo J. Bartolo

Abstract:

External fixation is a common technique for the treatment and stabilization of bone fractures. Different designs have been proposed by companies and research groups, but all of them present limitations such as high weight, not comfortable to use, and not customized to individual patients. This paper proposes a lightweight customized external fixator, overcoming some of these limitations. External fixators are designed using a set of techniques such as medical imaging, CAD modelling, finite element analysis, and full factorial design of experiments. Key design parameters are discussed, and the optimal set of parameters is used to design the final external fixator. Numerical simulations are used to validate design concepts. Results present an optimal external fixation design with weight reduction of 13% without compromising its stiffness and structural integrity. External fixators are also designed to be additively manufactured, allowing to develop a strategy for personalization.

Keywords: computer-aided design modelling, external fixation, finite element analysis, full factorial, personalization

Procedia PDF Downloads 129
290 Isolation and Characterization of Indigenous Rhizosphere Bacteria Producing Gibberellin Acid from Local Soybeans in Three Different Areas of South Sulawesi

Authors: Asmiaty Sahur, Ambo Ala, Baharuddin Patanjengi, Elkawakib Syam'un

Abstract:

This study aimed to isolate and characterize the indigenous Rhizosphere bacteria producing Gibberellin Acid as plant growth isolated from local soybean of three different areas in South Sulawesi, Indonesia. Several soil samples of soybean plants were collected from the Rhizosphere of local soybeans in three different areas of South Sulawesi such as Soppeng, Bone and Takalar. There were 56 isolates of bacteria were isolated and grouped into gram-positive bacteria and gram negative bacteria .There are 35 isolates produce a thick slime or slimy when cultured on media Natrium Broth and the remaining of those produced spores. The results showed that of potential bacterial isolated produced Gibberellin Acid in high concentration. The best isolate of Rhizosphere bacteria for the production of Gibberellin Acid is with concentration 2%. There are 4 isolates that had higher concentration are AKB 19 (4.67 mg/ml) followed by RKS 17 (3.80 mg/ml), RKS 25 (3.70 mg / ml) and RKS 24 (3.29 mg/ml) respectively.

Keywords: rhizosphere, bacteria, gibberellin acid, soybeans

Procedia PDF Downloads 209
289 An Anatomic Approach to the Lingual Artery in the Carotid Triangle in South Indian Population

Authors: Ashwin Rai, Rajalakshmi Rai, Rajanigandha Vadgoankar

Abstract:

Lingual artery is the chief artery of the tongue and the neighboring structures pertaining to the oral cavity. At the carotid triangle, this artery arises from the external carotid artery opposite to the tip of greater cornua of hyoid bone, undergoes a tortuous course with its first part being crossed by the hypoglossal nerve and runs beneath the digastric muscle. Then it continues to supply the tongue as the deep lingual artery. The aim of this study is to draw surgeon's attention to the course of lingual artery in this area since it can be accidentally lesioned causing an extensive hemorrhage in certain surgical or dental procedures. The study was conducted on 44 formalin fixed head and neck specimens focusing on the anatomic relations of lingual artery. In this study, we found that the lingual artery is located inferior to the digastric muscle and the hypoglossal nerve contradictory to the classical description. This data would be useful during ligation of lingual artery to avoid injury to the hypoglossal nerve in surgeries related to the anterior triangle of neck.

Keywords: anterior triangle, digastric muscle, hypoglossal nerve, lingual artery

Procedia PDF Downloads 153
288 Occipital Squama Convexity and Neurocranial Covariation in Extant Homo sapiens

Authors: Miranda E. Karban

Abstract:

A distinctive pattern of occipital squama convexity, known as the occipital bun or chignon, has traditionally been considered a derived Neandertal trait. However, some early modern and extant Homo sapiens share similar occipital bone morphology, showing pronounced internal and external occipital squama curvature and paralambdoidal flattening. It has been posited that these morphological patterns are homologous in the two groups, but this claim remains disputed. Many developmental hypotheses have been proposed, including assertions that the chignon represents a developmental response to a long and narrow cranial vault, a narrow or flexed basicranium, or a prognathic face. These claims, however, remain to be metrically quantified in a large subadult sample, and little is known about the feature’s developmental, functional, or evolutionary significance. This study assesses patterns of chignon development and covariation in a comparative sample of extant human growth study cephalograms. Cephalograms from a total of 549 European-derived North American subjects (286 male, 263 female) were scored on a 5-stage ranking system of chignon prominence. Occipital squama shape was found to exist along a continuum, with 34 subjects (6.19%) possessing defined chignons, and 54 subjects (9.84%) possessing very little occipital squama convexity. From this larger sample, those subjects represented by a complete radiographic series were selected for metric analysis. Measurements were collected from lateral and posteroanterior (PA) cephalograms of 26 subjects (16 male, 10 female), each represented at 3 longitudinal age groups. Age group 1 (range: 3.0-6.0 years) includes subjects during a period of rapid brain growth. Age group 2 (range: 8.0-9.5 years) includes subjects during a stage in which brain growth has largely ceased, but cranial and facial development continues. Age group 3 (range: 15.9-20.4 years) includes subjects at their adult stage. A total of 16 landmarks and 153 sliding semi-landmarks were digitized at each age point, and geometric morphometric analyses, including relative warps analysis and two-block partial least squares analysis, were conducted to study covariation patterns between midsagittal occipital bone shape and other aspects of craniofacial morphology. A convex occipital squama was found to covary significantly with a low, elongated neurocranial vault, and this pattern was found to exist from the youngest age group. Other tested patterns of covariation, including cranial and basicranial breadth, basicranial angle, midcoronal cranial vault shape, and facial prognathism, were not found to be significant at any age group. These results suggest that the chignon, at least in this sample, should not be considered an independent feature, but rather the result of developmental interactions relating to neurocranial elongation. While more work must be done to quantify chignon morphology in fossil subadults, this study finds no evidence to disprove the developmental homology of the feature in modern humans and Neandertals.

Keywords: chignon, craniofacial covariation, human cranial development, longitudinal growth study, occipital bun

Procedia PDF Downloads 164
287 Water Equivalent from the Point of View of Fast Neutron Removal Cross-Section

Authors: Mohammed Alrajhi

Abstract:

Radiological properties of gel dosimeters and phantom materials are often evaluated in terms of effective atomic number, electron density, photon mass attenuation coefficient, photon mass energy absorption coefficient and total stopping power of electrons. To evaluate the water equivalence of such materials for fast neutron attenuation 19 different types of gel dosimeters and phantom materials were considered. Macroscopic removal cross-sections for fast neutrons (ΣR cm-1) have been calculated for a range of ferrous-sulphate and polymeric gel dosimeters using Nxcom Program. The study showed that the value of ΣR/ρ (cm2.g-1) for all polymer gels were in close agreement (1.5- 2.8%) with that of water. As such, the slight differences in ΣR/ρ between water and gels are small and may be considered negligible. Also, the removal cross-section of the studied phantom materials were very close (~ ±1.5%) to that of water except bone (cortical) which had about 38% variation. Finally, the variation of removal cross-section with hydrogen content was studied.

Keywords: cross-section, neutron, photon, coefficient, mathematics

Procedia PDF Downloads 350
286 Avian Esophagus: A Comparative Microscopic Study In Birds With Different Feeding Habits

Authors: M. P. S. Tomar, Himanshu R. Joshi, P. Jagapathi Ramayya, Rakhi Vaish, A. B. Shrivastav

Abstract:

The morphology of an organ system varies according to the feeding habit, habitat and nature of their life-style. This phenomenon is called adaptation. During evolution these morphological changes make the system species specific so the study on the differential characteristics of them makes the understanding regarding the morpho-physiological adaptation easier. Hence the present study was conducted on esophagus of pariah kite, median egret, goshawk, dove and duck. Esophagus in all birds was comprised of four layers viz. Tunica mucosa, Tunica submucosa, Tunica muscularis and Tunica adventitia. The mucosa of esophagus showed longitudinal folds thus the lumen was irregular. The epithelium was stratified squamous in all birds but in Median egret the cells were large and vacuolated. Among these species very thick epithelium was observed in goshawk and duck but keratinization was highest in dove. The stratum spongiosum was 7-8 layers thick in both Pariah kite and Goshawk. In all birds, the glands were alveolar mucous secreting type. In Median egret and Pariah kite, these were round or oval in shape and with or without lumen depending upon the functional status whereas in Goshawk the shape of the glands varied from spherical / oval to triangular with openings towards the lumen according to the functional activity and in dove these glands were oval in shape. The glands were numerous in number in egret while one or two in each fold in goshawk and less numerous in other three species. The core of the mucosal folds was occupied by the lamina propria and showed large number of collagen fibers and cellular infiltration in pariah kite, egret and dove where as in goshawk and duck, collagen and reticular fibers were fewer and cellular infiltration was lesser. Lamina muscularis was very thick in all species and it was comprised of longitudinally arranged smooth muscle fibers. In Median egret, it was in wavy pattern. Tunica submucosa was very thin in all species. Tunica muscularis was mostly comprised of circular smooth muscle bundles in all species but the longitudinal bundles were very few in number and not continuous. The tunica adventitia was comprised of loose connective tissue fibers containing collagen and elastic fibers with numerous small blood vessels in all species. Further, it was observed that the structure of esophagus in birds varies according to their feeding habits.

Keywords: dove, duck, egret, esophagus, goshawk, kite

Procedia PDF Downloads 409
285 Serum Cortisol and Osteocalsin in Response to Eight Weeks Aerobic Training in Asthma Men with Mild to Moderate Intensity

Authors: Eizadi Mojtaba

Abstract:

This study aimed to evaluate the effect of 8 weeks aerobic training on serum osteocalsin as an osteoblasts hormone and cortisol in adult men with asthma. For this purpose, twenty four non-trained adult men with mild to moderate asthma were participated in study voluntarily and divided into exercise (aerobic training, 8 weeks/3 times per week) and control groups by randomly. Pre and post training of serum osteocalsin and cortisol were measured of two groups. Student’s paired ‘t’ test was applied to compare the pre and post training values. A p-value of less than 0.05 was considered to be statistically significant. There were no statistically significant differences with regard to all anthropometrical and biochemical markers between the exercise and control groups at baseline ( P > 0.05 ). Exercise training resulted in a significant increase in serum osteocalsin and decrease in cortisol ( P > 0.05 ), but not in control group. Based on these data, we concluded that aerobic training can be improved Processes of bone formation in asthma patients.

Keywords: osteoblasts, asthma, aerobic exercise, sedentary

Procedia PDF Downloads 267
284 [Keynote Talk]: Monitoring of Ultrafine Particle Number and Size Distribution at One Urban Background Site in Leicester

Authors: Sarkawt M. Hama, Paul S. Monks, Rebecca L. Cordell

Abstract:

Within the Joaquin project, ultrafine particles (UFP) are continuously measured at one urban background site in Leicester. The main aims are to examine the temporal and seasonal variations in UFP number concentration and size distribution in an urban environment, and to try to assess the added value of continuous UFP measurements. In addition, relations of UFP with more commonly monitored pollutants such as black carbon (BC), nitrogen oxides (NOX), particulate matter (PM2.5), and the lung deposited surface area(LDSA) were evaluated. The effects of meteorological conditions, particularly wind speed and direction, and also temperature on the observed distribution of ultrafine particles will be detailed. The study presents the results from an experimental investigation into the particle number concentration size distribution of UFP, BC, and NOX with measurements taken at the Automatic Urban and Rural Network (AURN) monitoring site in Leicester. The monitoring was performed as part of the EU project JOAQUIN (Joint Air Quality Initiative) supported by the INTERREG IVB NWE program. The total number concentrations (TNC) were measured by a water-based condensation particle counter (W-CPC) (TSI model 3783), the particle number concentrations (PNC) and size distributions were measured by an ultrafine particle monitor (UFP TSI model 3031), the BC by MAAP (Thermo-5012), the NOX by NO-NO2-NOx monitor (Thermos Scientific 42i), and a Nanoparticle Surface Area Monitor (NSAM, TSI 3550) was used to measure the LDSA (reported as μm2 cm−3) corresponding to the alveolar region of the lung between November 2013 and November 2015. The average concentrations of particle number concentrations were observed in summer with lower absolute values of PNC than in winter might be related mainly to particles directly emitted by traffic and to the more favorable conditions of atmospheric dispersion. Results showed a traffic-related diurnal variation of UFP, BC, NOX and LDSA with clear morning and evening rush hour peaks on weekdays, only an evening peak at the weekends. Correlation coefficients were calculated between UFP and other pollutants (BC and NOX). The highest correlation between them was found in winter months. Overall, the results support the notion that local traffic emissions were a major contributor of the atmospheric particles pollution and a clear seasonal pattern was found, with higher values during the cold season.

Keywords: size distribution, traffic emissions, UFP, urban area

Procedia PDF Downloads 306
283 Taguchi Approach for the Optimization of the Stitching Defects of Knitted Garments

Authors: Adel El-Hadidy

Abstract:

For any industry, the production and quality management or wastages reductions have major impingement on overall factory economy. This work discusses the quality improvement of garment industry by applying Pareto analysis, cause and effect diagram and Taguchi experimental design. The main purpose of the work is to reduce the stitching defects, which will also minimize the rejection and reworks rate. Application of Pareto chart, fish bone diagram and Process Sigma Level/and or Performance Level tools helps solving those problems on priority basis. Among all, only sewing, defects are responsible form 69.3% to 97.3 % of total defects. Process Sigma level has been improved from 0.79 to 1.3 and performance rate improved, from F to D level. The results showed that the new set of sewing parameters was superior to the original one. It can be seen that fabric size has the largest effect on the sewing defects and that needle size has the smallest effect on the stitching defects.

Keywords: garment, sewing defects, cost of rework, DMAIC, sigma level, cause and effect diagram, Pareto analysis

Procedia PDF Downloads 143
282 Finite Element Analysis of Human Tarsals, Meta Tarsals and Phalanges for Predicting probable location of Fractures

Authors: Irfan Anjum Manarvi, Fawzi Aljassir

Abstract:

Human bones have been a keen area of research over a long time in the field of biomechanical engineering. Medical professionals, as well as engineering academics and researchers, have investigated various bones by using medical, mechanical, and materials approaches to discover the available body of knowledge. Their major focus has been to establish properties of these and ultimately develop processes and tools either to prevent fracture or recover its damage. Literature shows that mechanical professionals conducted a variety of tests for hardness, deformation, and strain field measurement to arrive at their findings. However, they considered these results accuracy to be insufficient due to various limitations of tools, test equipment, difficulties in the availability of human bones. They proposed the need for further studies to first overcome inaccuracies in measurement methods, testing machines, and experimental errors and then carry out experimental or theoretical studies. Finite Element analysis is a technique which was developed for the aerospace industry due to the complexity of design and materials. But over a period of time, it has found its applications in many other industries due to accuracy and flexibility in selection of materials and types of loading that could be theoretically applied to an object under study. In the past few decades, the field of biomechanical engineering has also started to see its applicability. However, the work done in the area of Tarsals, metatarsals and phalanges using this technique is very limited. Therefore, present research has been focused on using this technique for analysis of these critical bones of the human body. This technique requires a 3-dimensional geometric computer model of the object to be analyzed. In the present research, a 3d laser scanner was used for accurate geometric scans of individual tarsals, metatarsals, and phalanges from a typical human foot to make these computer geometric models. These were then imported into a Finite Element Analysis software and a length refining process was carried out prior to analysis to ensure the computer models were true representatives of actual bone. This was followed by analysis of each bone individually. A number of constraints and load conditions were applied to observe the stress and strain distributions in these bones under the conditions of compression and tensile loads or their combination. Results were collected for deformations in various axis, and stress and strain distributions were observed to identify critical locations where fracture could occur. A comparative analysis of failure properties of all the three types of bones was carried out to establish which of these could fail earlier which is presented in this research. Results of this investigation could be used for further experimental studies by the academics and researchers, as well as industrial engineers, for development of various foot protection devices or tools for surgical operations and recovery treatment of these bones. Researchers could build up on these models to carryout analysis of a complete human foot through Finite Element analysis under various loading conditions such as walking, marching, running, and landing after a jump etc.

Keywords: tarsals, metatarsals, phalanges, 3D scanning, finite element analysis

Procedia PDF Downloads 303
281 Identification of High Stress Regions in Proximal Femur During Single-Leg Stance and Sideways Fall Using QCT-Based Finite Element Model

Authors: Hossein Kheirollahi, Yunhua Luo

Abstract:

Studying stress and strain trends in the femur and recognizing femur failure mechanism is very important for preventing hip fracture in the elderly. The aim of this study was to identify high stress and strain regions in the femur during normal walking and falling to find the mechanical behavior and failure mechanism of the femur. We developed a finite element model of the femur from the subject’s quantitative computed tomography (QCT) image and used it to identify potentially high stress and strain regions during the single-leg stance and the sideways fall. It was found that fracture may initiate from the superior region of femoral neck and propagate to the inferior region during a high impact force such as sideways fall. The results of this study showed that the femur bone is more sensitive to strain than stress which indicates the effect of strain, in addition to effect of stress, should be considered for failure analysis.

Keywords: finite element analysis, hip fracture, strain, stress

Procedia PDF Downloads 477
280 Comparison of Psychological Well-Being, Hope, and Health Concern in Leukemia Patients before and After Receiving Stem Cells

Authors: Tahereh Yavari, Sara Norozi Far

Abstract:

The aim of this study was to compare psychological well-being, hope, and health concerns in leukemia patients before and after receiving stem cells. The statistical population of the present study was made up of leukemia patients in Tehran, and the research sample was among the patients referred to the Bone Marrow Transplant Center of Shariati Hospital in Tehran, and they were placed in two experimental and control groups (15 people in each group), which were selected by purposive sampling method. In order to collect the data for the research, three psychological well-being questionnaires were used by Riff (2002), Schneider's Hope Scale (SHS), and Schneider's Health Concern Questionnaire (HCQ). In order to analyze the data in this research, according to the "pre-test-post-test design with a control group," covariance analysis was used. Based on the research findings, it was concluded that receiving stem cells increases hope and psychological well-being in leukemia patients and significantly reduces health concerns.

Keywords: psychological well-being, hope, health concerns, blood cancer, stem cells

Procedia PDF Downloads 65
279 Nutritional Benefits of Soy: An Implication for Health Education

Authors: Mbadugha Esther Ifeoma

Abstract:

Soybeans, like other legumes are rich in nutrients. However, the nutrient profile of soybeans differs in some important ways from most other legumes. Among other nutrients, soy is high in protein, carbohydrates, and fibers, is rich in vitamins, minerals and unsaturated fatty acids and is low in saturated fatty acids. Because of its high nutritional value, it has been rated to be equivalent to meats, eggs and milk. Soy has many health benefits including prevention of coronary heart disease, prevention of cancer growth, improvement of cognitive function, promotion of bone health, prevention of obesity, prevention of type II diabetes and promotion of growth of normal floras in the colon. Soybean consumption is also associated with some side effects which include allergy, flatulence and abdominal discomfort. Nurses/health care providers should therefore, educate clients on the precautionary measures to be taken in preparing soy food products in order to reduce to the barest minimum the side effects, while encouraging them to include soy as part of their daily meals for optimal health and vitality.

Keywords: health benefit, health education, nutritional benefit, soybeans

Procedia PDF Downloads 458
278 Effects of Corynebacterium cutis Lysate Administration on Hematology and Biochemistry Parameters with PPR Vaccine

Authors: Burak Dik, Oguzhan Avci, Irmak Dik, Emre Bahcivan

Abstract:

The objective of this study was to evaluate the effects of alone and combined administration of Peste des petits ruminants (PPR) vaccine with Corynebacterium cutis lysate (CCL) on the hematology and biochemistry parameters levels in sheep. CCL and PPR vaccine changes cell and organ activity. In this study, 12 ewes were divided into equal groups; first group; PPR vaccine was applied only one time 1 mL subcutan of armpit on 6 sheep, and the second group; CCL (1 mL) and PPR vaccine (1 mL) combination were applied only one time subcutan of armpit on 6 sheep. Blood samples were collected before treatment (0. hour, control) and after treatment (1, 3, 7, 14, 21 and 28 days) from the sheep. Plasma and serum samples were evaluated for hematology and biochemistry parameters and there were statistically significant in sheep. In conclusion, combined usage of PPR vaccine with CCL may not influence cells and organs. Repeated CCL treatment with vaccine can create hepatotoxic, renal and bone marrow effects in sheep.

Keywords: Corynebacterium cutis lysate, hematology, peste des petits ruminants, vaccine

Procedia PDF Downloads 228
277 A Novel Photocrosslinkable and Cytocompatible Chitosan Coating for TI6AL4V Surfaces

Authors: D. Zujur, J. Moret, D. Rodriguez, L. Cruz, J. Lira, L. Gil, E. Dominguez, J. F. Alvarez-Barreto

Abstract:

In this work, chitosan (CH) has been used to produce a novel coating for Ti6Al4V, the most widely used alloy in orthopedic implants, so as to improve the biological tissue response at the metallic surface. The Ti6Al4V surface was sandblasted with alumina particles and observed by SEM. Chitosan was chemically modified, via crodiimide chemistry, with lactobionic and 4-azidebenzoic acid to make it soluble at physiological pH and photo-crosslinkable, respectively. The reaction was verified by FTIR, NMR, and UV/vis spectroscopy. Ti6Al4V surfaces were coated with solutions of the modified CH and exposed to UV light, causing the polymer crosslinking, and formation of a hydrogel on the surface. The crosslinking reaction was monitored by FTIR at different exposure times. Coating morphology was observed by SEM. The coating´s cytocompatibility was determined in vitro through the culture of rat bone marrow´s mesenchymal stem cells, using an MTT assay. The results show that the developed coating is cytocompatible, easy to apply and could be used for further studies in the encapsulation of bioactive molecules to improve osteogenic potential at the tissue-implant interface.

Keywords: chitosan, photo-crosslinking, Ti6Al4V, bioactive coating, hydrogel

Procedia PDF Downloads 302
276 Mechanical Properties of ECAP-Biomedical Titanium Materials: A Review

Authors: Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee

Abstract:

The wide use of titanium (Ti) materials in medicine gives impetus to a search for development new techniques with elevated properties such as strength, corrosion resistance and Young's modulus close to that of bone tissue. This article presents the most recent state of the art on the use of equal channel angular pressing (ECAP) technique in evolving mechanical characteristics of the ultrafine-grained bio-grade Ti materials. Over past few decades, research activities in this area have grown enormously and have produced interesting results, including achieving the combination of conflicting properties that are desirable for biomedical applications by severe plastic deformation (SPD) processing. A comprehensive review of the most recent work in this area is systematically presented. The challenges in processing ultrafine-grained Ti materials are identified and discussed. An overview of the biomedical Ti alloys processed with ECAP technique is given in this review, along with a summary of their effect on the important mechanical properties that can be achieved by SPD processing. The paper also offers insights in the mechanisms underlying SPD.

Keywords: mechanical properties, ECAP, titanium, biomedical applications

Procedia PDF Downloads 428
275 Anatomical and Pathological Evaluation of Anomaly Cases Presented to the Department of Pathology at the Kafkas University Faculty of Veterinary Medicine, between 2017 and 2019

Authors: Gülseren Kırbaş Doğan, Emin Karakurt, Mushap Kuru, Hilmi Nuhoğlu

Abstract:

Developmental anomalies can be caused by defects in bone tissue, cartilage tissue, or primitive mesenchymal tissue. Genetic-, environmental-, teratogenic-, faulty breeding selection–, or feeding-related anomalies can be observed either locally or systemically. This study aimed to evaluate in detail the various anomalies in six calves according to pathological and anatomical investigations. Six calves were delivered to the Department of Pathology at the Kafkas University Faculty of Veterinary Medicine between 2017 and 2019. These calves comprised one with anencephaly, one with the diencephalic syndrome, one with Schistosoma reflexum, two with anasarca, and one with nasal and calvarium openings. After necropsy, samples were taken from the organs, foreseen, and routine pathological examinations were performed. Following these procedures, the calves were brought to the anatomy laboratory and anatomically examined. As a result, various anomalies in 6 calves were evaluated according to pathological and anatomical investigations. These findings are believed to contribute to the literature.

Keywords: anatomy, anomaly, calf, pathology

Procedia PDF Downloads 148
274 Sickle Cell Disease: Review of Managements in Pregnancy and the Outcome in Ampang Hospital, Selangor

Authors: Z. Nurzaireena, K. Azalea, T. Azirawaty, S. Jameela, G. Muralitharan

Abstract:

The aim of this study is the review of the management practices of sickle cell disease patients during pregnancy, as well as the maternal and neonatal outcome at Ampang Hospital, Selangor. The study consisted of a review of pregnant patients with sickle cell disease under follow up at the Hematology Clinic, Ampang Hospital over the last seven years to assess their management and maternal-fetal outcome. The results of the review show that Ampang Hospital is considered the public hematology centre for sickle cell disease and had successfully managed three pregnancies throughout the last seven years. Patients’ presentations, managements and maternal-fetal outcome were compared and reviewed for academic improvements. All three patients were seen very early in their pregnancy and had been given a regime of folic acid, antibiotics and thrombo-prophylactic drugs. Close monitoring of maternal and fetal well being was done by the hematologists and obstetricians. Among the patients, there were multiple admissions during the pregnancy for either a painful sickle cell bone crisis, haemolysis following an infection and anemia requiring phenotype- matched blood and exchange transfusions. Broad spectrum antibiotics coverage during and infection, hydration, pain management and venous-thrombolism prophylaxis were mandatory. The pregnancies managed to reach near term in the third trimester but all required emergency caesarean section for obstetric indications. All pregnancies resulted in live births with good fetal outcome. During post partum all were nursed closely in the high dependency units for further complications and were discharged well. Post partum follow up and contraception counseling was comprehensively given for future pregnancies. Sickle cell disease is uncommonly seen in the East, especially in the South East Asian region, yet more cases are seen in the current decade due to improved medical expertise and advance medical laboratory technologies. Pregnancy itself is a risk factor for sickle cell patients as increased thrombosis event and risk of infections can lead to multiple crisis, haemolysis, anemia and vaso-occlusive complications including eclampsia, cerebrovasular accidents and acute bone pain. Patients mostly require multiple blood product transfusions thus phenotype-matched blood is required to reduce the risk of alloimmunozation. Emphasizing the risks and complications in preconception counseling and establishing an ultimate pregnancy plan would probably reduce the risk of morbidity and mortality to the mother and unborn child. Early management for risk of infection, thromboembolic events and adequate hydration is mandatory. A holistic approach involving multidisciplinary team care between the hematologist, obstetricians, anesthetist, neonatologist and close nursing care for both mother and baby would ensure the best outcome. In conclusion, sickle cell disease by itself is a high risk medical condition and pregnancy would further amplify the risk. Thus, close monitoring with combine multidisciplinary care, counseling and educating the patients are crucial in achieving the safe outcome.

Keywords: anaemia, haemoglobinopathies, pregnancy, sickle cell disease

Procedia PDF Downloads 234
273 Anthropometry in Macedonian Senior Football and Basketball Players

Authors: L. Todorovska, E. Sivevska, B. Dejanova, J. Pluncevic, S. Petrovska, V. Antevska, S. Mancevska, I. Karadjozova

Abstract:

Objective: The aim of this longitudinal study was to describe anthropometric and performance characteristics and to explore their differences between senior football (F) and basketball (B) players. Subjects and methods: 25 F (aged 23±2.5 y) and 25 B (aged 22±4.2 y) from Macedonian national teams and elite sport clubs were annually tested during 2 consecutive years. Full anthropometric profiles (stature, weight, five circumferences, four bone diameters, seven skin-folds and nine calculated parameters with standard formulas) were collected. Body composition was determined with InBody720 System. Physical capacity was tested with ergo metric test of Bruce (Custo med GmbH, Germany). Results: B were taller (p<0.001) and heavier (p<0.01), but leaner (p<0.001). F had higher percentage of muscle mass (p<0.01) and body fat (p< 0.001). F had higher VO2max (p<0.05) and lower hard rate (p<0.01). The differences in physical performance were not significant (p>0.05) within the groups during the 2-years period. Conclusions: These results suggest that there are distinct differences in anthropometric profile between Macedonian senior football and basketball players during the two competitive seasons.

Keywords: anthropometry, basketball players, football players, Macedonia

Procedia PDF Downloads 459
272 Repurposing of Crystalline Solar PV For Sodium Silicate Production

Authors: Lawal Alkasim, Clement M. Gonah, Zainab S. Aliyu

Abstract:

This work is focus on recovering silicon form photovoltaic cells and repurposing it toward the use in glass, ceramics or glass ceramics as it is made up of silicon material. Silicon is the main back-bone and responsible for the thermodynamic properties of glass, ceramics and glass ceramics materials. Antireflection silicon is soluble in hot alkali. Successfully the recovered material composed of silicon and silicon nitride of the A.R, with a small amount of silver, Aluminuim, lead & copper in the sunshine of crystalline/non-crystalline silicon solar cell. Aquaregia is used to remove the silver, Aluminium, lead & copper. The recovered material treated with hot alkali highly concentrated to produce sodium silicate, which is an alkali silicate glass (water glass). This type of glass is produced through chemical process, unlike other glasses that are produced through physical process of melting and non-crystalline solidification. It has showed a property of being alkali silicate glass from its solubility in water and insoluble in alcohol. The XRF analysis shows the presence of sodium silicate.

Keywords: unrecyclable solar PV, crystalline silicon, hot conc. alkali, sodium silicate

Procedia PDF Downloads 69
271 Modeling and Design of Rectenna for Low Power Medical Implants

Authors: Madhav Pant, Khem N. Poudel

Abstract:

Wireless power transfer is continuously becoming more powerful and compact in medical implantable devices and the wide range of applications. A rectenna is designed for wireless power transfer technique that can be applied to medical implant devices. The experiment is performed using ANSYS HFSS, a full wave electromagnetic simulation. The dipole antenna combinations operating at 2.4 GHz are used for wireless power transfer and the maximum DC voltage reception by the implant considering International Commission on Non-Ionizing Radiation Protection (ICNIRP) regulation. The power receiving dipole antenna is placed inside the cylindrical geometry having the similar properties of the human body at the frequency of 2.4 GHz. Our design can provide the power at the depth of 5 mm skin and 5mm of bone for the implant. The voltage doubler/quadrupler rectifier in ANSYS Simplorer is used to calculate the exact DC current utilized by implant inside the human body. The qualitative design and analysis of this wireless power transfer method could also be used for other biomedical implants systems such as cardiac pacemaker, insulin pump, and retinal implants.

Keywords: dipole antenna, medical implants, wireless power transfer, rectifier

Procedia PDF Downloads 149
270 Aesthetic Modification with Combined Orthognathic Surgery and Closed Rhinoplasty

Authors: Alessandro Marano

Abstract:

Aim: The author describes the aesthetic modification using orthognathic surgery and closed rhinoplasty. Methods: Series of case study. After orthognathic surgery we can observe a dramatical change of aesthetic especially in the mid-face and nose projection. The advancement of maxillary bone through Le Fort I osteotomy will change the nasal tip projection and lips roundness; combining orthognathic surgery with closed approach rhinoplasty will manage both function and aesthetic of all mid face district. Results: Combining Le Fort I osteotomy with closed approach rhinoplasty resulted in good objective results with high patient satisfaction. Le Fort I osteotomy will increase projection of mid face and the closed approach rhinoplasty will modify the nasal shape to be more harmonic with the new maxillary district. The scars are not visible because hidden inside the mouth and nose. Conclusions: The orthognathic surgery combined with closed approach rhinoplasty are very effective for changing the aesthetic of the mid face. The results illustrate the difference between the use of orthognathic surgery only and to use it in association of closed approach rhinoplasty. Using both will allow to obtain a long lasting and pleasing results.

Keywords: orthognathic, rhinoplasty, aesthetic, face

Procedia PDF Downloads 73
269 Comparative Study of Titanium and Polyetheretherketone Cranial Implant Using Finite Element Model

Authors: Khaja Moiduddin, Sherif Mohammed Elseufy, Hisham Alkhalefah

Abstract:

Recent advances in three-dimensional (3D) printing, medical imaging, and implant design may alter how craniomaxillofacial surgeons construct individualized treatments using patient data. By utilizing medical image data, medical professionals can obtain detailed information about a patient's injuries, enabling them to conduct a thorough preoperative assessment while ensuring the implant's accuracy. However, selecting the right implant material requires careful consideration of various mechanical properties. This study aims to compare the two commonly used implant material for cranial reconstruction which includes titanium (Ti6Al4V) and Polyetheretherketone (PEEK). Biomechanical analysis was performed to study the implant behavior, by keeping the implant design and fixation constant in both cases. A finite element model was created and analyzed under loading conditions. The finite element analysis proves that although Ti6Al4V is stronger than PEEK but, its mechanical strength is adequate to bear the loads of the adjacent bone tissue.

Keywords: cranial reconstruction, titanium implants, PEEK, finite element model

Procedia PDF Downloads 46
268 Parametric Study of Ball and Socket Joint for Bio-Mimicking Exoskeleton

Authors: Mukesh Roy, Basant Singh Sikarwar, Ravi Prakash, Priya Ranjan, Ayush Goyal

Abstract:

More than 11% of people suffer from weakness in the bone resulting in inability in walking or climbing stairs or from limited upper body and limb immobility. This motivates a fresh bio-mimicking solution to the design of an exo-skeleton to support human movement in the case of partial or total immobility either due to congenital or genetic factors or due to some accident or due to geratological factors. A deeper insight and detailed understanding is required into the workings of the ball and socket joints. Our research is to mimic ball and socket joints to design snugly fitting exoskeletons. Our objective is to design an exoskeleton which is comfortable and the presence of which is not felt if not in use. Towards this goal, a parametric study is conducted to provide detailed design parameters to fabricate an exoskeleton. This work builds up on real data of the design of the exoskeleton, so that the designed exo-skeleton will be able to provide required strength and support to the subject.

Keywords: bio-mimicking, exoskeleton, ball joint, socket joint, artificial limb, patient rehabilitation, joints, human-machine interface, wearable robotics

Procedia PDF Downloads 265