Search results for: Simon Mulugeta
229 Named Entity Recognition System for Tigrinya Language
Authors: Sham Kidane, Fitsum Gaim, Ibrahim Abdella, Sirak Asmerom, Yoel Ghebrihiwot, Simon Mulugeta, Natnael Ambassager
Abstract:
The lack of annotated datasets is a bottleneck to the progress of NLP in low-resourced languages. The work presented here consists of large-scale annotated datasets and models for the named entity recognition (NER) system for the Tigrinya language. Our manually constructed corpus comprises over 340K words tagged for NER, with over 118K of the tokens also having parts-of-speech (POS) tags, annotated with 12 distinct classes of entities, represented using several types of tagging schemes. We conducted extensive experiments covering convolutional neural networks and transformer models; the highest performance achieved is 88.8% weighted F1-score. These results are especially noteworthy given the unique challenges posed by Tigrinya’s distinct grammatical structure and complex word morphologies. The system can be an essential building block for the advancement of NLP systems in Tigrinya and other related low-resourced languages and serve as a bridge for cross-referencing against higher-resourced languages.Keywords: Tigrinya NER corpus, TiBERT, TiRoBERTa, BiLSTM-CRF
Procedia PDF Downloads 131228 The Advancements of Transformer Models in Part-of-Speech Tagging System for Low-Resource Tigrinya Language
Authors: Shamm Kidane, Ibrahim Abdella, Fitsum Gaim, Simon Mulugeta, Sirak Asmerom, Natnael Ambasager, Yoel Ghebrihiwot
Abstract:
The call for natural language processing (NLP) systems for low-resource languages has become more apparent than ever in the past few years, with the arduous challenges still present in preparing such systems. This paper presents an improved dataset version of the Nagaoka Tigrinya Corpus for Parts-of-Speech (POS) classification system in the Tigrinya language. The size of the initial Nagaoka dataset was incremented, totaling the new tagged corpus to 118K tokens, which comprised the 12 basic POS annotations used previously. The additional content was also annotated manually in a stringent manner, followed similar rules to the former dataset and was formatted in CONLL format. The system made use of the novel approach in NLP tasks and use of the monolingually pre-trained TiELECTRA, TiBERT and TiRoBERTa transformer models. The highest achieved score is an impressive weighted F1-score of 94.2%, which surpassed the previous systems by a significant measure. The system will prove useful in the progress of NLP-related tasks for Tigrinya and similarly related low-resource languages with room for cross-referencing higher-resource languages.Keywords: Tigrinya POS corpus, TiBERT, TiRoBERTa, conditional random fields
Procedia PDF Downloads 103227 A Collective Intelligence Approach to Safe Artificial General Intelligence
Authors: Craig A. Kaplan
Abstract:
If AGI proves to be a “winner-take-all” scenario where the first company or country to develop AGI dominates, then the first AGI must also be the safest. The safest, and fastest, path to Artificial General Intelligence (AGI) may be to harness the collective intelligence of multiple AI and human agents in an AGI network. This approach has roots in seminal ideas from four of the scientists who founded the field of Artificial Intelligence: Allen Newell, Marvin Minsky, Claude Shannon, and Herbert Simon. Extrapolating key insights from these founders of AI, and combining them with the work of modern researchers, results in a fast and safe path to AGI. The seminal ideas discussed are: 1) Society of Mind (Minsky), 2) Information Theory (Shannon), 3) Problem Solving Theory (Newell & Simon), and 4) Bounded Rationality (Simon). Society of Mind describes a collective intelligence approach that can be used with AI and human agents to create an AGI network. Information theory helps address the critical issue of how an AGI system will increase its intelligence over time. Problem Solving Theory provides a universal framework that AI and human agents can use to communicate efficiently, effectively, and safely. Bounded Rationality helps us better understand not only the capabilities of SuperIntelligent AGI but also how humans can remain relevant in a world where the intelligence of AGI vastly exceeds that of its human creators. Each key idea can be combined with recent work in the fields of Artificial Intelligence, Machine Learning, and Large Language Models to accelerate the development of a working, safe, AGI system.Keywords: AI Agents, Collective Intelligence, Minsky, Newell, Shannon, Simon, AGI, AGI Safety
Procedia PDF Downloads 92226 Non-Adherence to Antidepressant Treatment and Its Predictors among Outpatients with Depressive Disorders
Authors: Selam Mulugeta, Barkot Milkias, Mesfin Araya, Abel Worku, Eyasu Mulugeta
Abstract:
In Ethiopia, there is inadequate information on non-adherence to antidepressant treatment in patients with depressive disorders. Having awareness of the pattern of adherence is important in future prognosis, quality of life, and functionality in these patients. This hospital-based cross-sectional quantitative study was done on a sample of 216 consecutive outpatients with depressive disorders. Data were collected using questionnaires through in-person and phone call interviews. The 8-item Morisky scale was used to assess the pattern of medication adherence. Other specially developed tools were used to obtain sociodemographic and clinical information from electronic medical records and patient interviews. Data were analyzed using the Statistical Package for the Social Sciences Version - 25. Univariate and multivariable analyses were carried out to assess factors associated with non-adherence. 90% of the participants had a primary diagnosis of major depressive disorder. Based on the 8-item Morisky Medication Adherence Scale, the prevalence of non-adherence was found to be 84.7%. Living distance between 11 to 50 km from the hospital (AOR= 11, 95% CI (29,46.6)), post-secondary level of education (AOR= 8.3, 95% CI (1, 64.4)) and taking multiple medications (AOR= 6.1, 95% CI (1, 34.9)) were found to have significantly increased odds of non-adherence. Non-adherence was significantly associated with factors such as increased living distance from the hospital, relatively higher educational level, and polypharmacy. Proper and patient-centered psychoeducation, addressing the communication gap between patients and doctors, adherence to prescribing guidelines, avoiding polypharmacy unless indicated & working on accessibility of treatment is essential to decrease non-adherence.Keywords: depressive disorders, Ethiopia, medication adherence, Addis Ababa
Procedia PDF Downloads 149225 Simon Says: What Should I Study?
Authors: Fonteyne Lot
Abstract:
SIMON (Study capacities and Interest Monitor is a freely accessible online self-assessment tool that allows secondary education pupils to evaluate their interests and capacities in order to choose a post-secondary major that maximally suits their potential. The tool consists of two broad domains that correspond with two general questions pupils ask: 'What study fields interest me?' and 'Am I capable to succeed in this field of study?'. The first question is addressed by a RIASEC-type interest inventory that links personal interests to post-secondary majors. Pupils are provided with a personal profile and an overview of majors with their degree of congruence. The output is dynamic: respondents can manipulate their score and they can compare their results to the profile of all fields of study. That way they are stimulated to explore the broad range of majors. To answer whether pupils are capable of succeeding in a preferred major, a battery of tests is provided. This battery comprises a range of factors that are predictive of academic success. Traditional predictors such as (educational) background and cognitive variables (mathematical and verbal skills) are included. Moreover, non-cognitive predictors of academic success (such as 'motivation', 'test anxiety', 'academic self-efficacy' and 'study skills') are assessed. These non-cognitive factors are generally not included in admission decisions although research shows they are incrementally predictive of success and are less discriminating. These tests inform pupils on potential causes of success and failure. More important, pupils receive their personal chances of success per major. These differential probabilities are validated through the underlying research on academic success of students. For example, the research has shown that we can identify 22 % of the failing students in psychology and educational sciences. In this group, our prediction is 95% accurate. SIMON leads more students to a suitable major which in turn alleviates student success and retention. Apart from these benefits, the instrument grants insight into risk factors of academic failure. It also supports and fosters the development of evidence-based remedial interventions and therefore gives way to a more efficient use of means.Keywords: academic success, online self-assessment, student retention, vocational choice
Procedia PDF Downloads 404224 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network
Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson
Abstract:
The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0
Procedia PDF Downloads 182223 Modeling of Traffic Turning Movement
Authors: Michael Tilahun Mulugeta
Abstract:
Pedestrians are the most vulnerable road users as they are more exposed to the risk of collusion. Pedestrian safety at road intersections still remains the most vital and yet unsolved issue in Addis Ababa, Ethiopia. One of the critical points in pedestrian safety is the occurrence of conflict between turning vehicle and pedestrians at un-signalized intersection. However, a better understanding of the factors that affect the likelihood of the conflicts would help provide direction for countermeasures aimed at reducing the number of crashes. This paper has sorted to explore a model to describe the relation between traffic conflicts and influencing factors using Multiple Linear regression methodology. In this research the main focus is to study the interaction of turning (left & right) vehicle with pedestrian at unsignalized intersections. The specific objectives also to determine factors that affect the number of potential conflicts and develop a model of potential conflict.Keywords: potential, regression analysis, pedestrian, conflicts
Procedia PDF Downloads 66222 Psychology Behind Aesthetic Rhinoplasty–Introducing the Term Sifon
Authors: Komal Saeed
Abstract:
Introduction: Rhinoplasty is considered one of the challenging aesthetic procedures. Psychosocial concerns motivate the urge for aesthetic procedures especially rhinoplasty. Males who fall in this category are designated as single, immature, male, over expectant and narcissistic (SIMON) in literature. As of yet, there is no term that depicts females showing similar characteristics. The purpose of this study is to evaluate the incidence of body dysmorphic disorder (BDD) in females seeking rhinoplasty and to introduce a term for such individuals. Materials and Methods: A prospective, questionnaire based, qualitative study was conducted in the Department Of Plastic Surgery between March 2018 and March 2020. 110 female candidates seeking aesthetic rhinoplasty were included in the study. BDD was evaluated using the Dysmorphic Concerns Questionnaire, DCQ. Data were analyzed using SPSS version 25 software and correlation between the groups was evaluated. Results: Out of 110 female subjects, 77.3% (n=85) were single, 16.4% (n=18) were married and 6.4% (n=7) were divorced. BDD was found in 41.8% (n=46) of the candidates, majority being single (n=41, 89.1%) and having educational status above diploma (n=39, 84.8%). There was a statistically higher percentage of young adults between 24 and 28 years (n=33, 71.7%) having BDD (p= 0.0001). Conclusion: Considering the high frequency of BDD among females seeking rhinoplasty, a standardized term ‘SIFON’ is introduced to describe such individuals who are S; single, I; immature, F; female, O; over expectant, N; narcissistic as apposed to SIMON in males. These individuals perceive aesthetic procedures as a solution to their body dissatisfaction. Therefore, preoperative counseling seems necessary to avoid unsatisfactory outcomes secondary to mental health.Keywords: aesthetic rhinoplasty, body dismorphic disorder, single, immature, obsessive
Procedia PDF Downloads 99221 In Search for the 'Bilingual Advantage' in Immersion Education
Authors: M. E. Joret, F. Germeys, P. Van de Craen
Abstract:
Background: Previous studies have shown that ‘full’ bilingualism seems to enhance the executive functions in children, young adults and elderly people. Executive functions refer to a complex cognitive system responsible for self-controlled and planned behavior and seem to predict academic achievement. The present study aimed at investigating whether similar effects could be found in children learning their second language at school in immersion education programs. Methods: In this study, 44 children involved in immersion education for 4 to 5 years were compared to 48 children in traditional schools. All children were between 9 and 11 years old. To assess executive functions, the Simon task was used, a neuropsychological measure assessing executive functions with reaction times and accuracy on congruent and incongruent trials. To control for background measures, all children underwent the Raven’s coloured progressive matrices, to measure non-verbal intelligence and the Echelle de Vocabulaire en Images Peabody (EVIP), assessing verbal intelligence. In addition, a questionnaire was given to the parents to control for other confounding variables, such as socio-economic status (SES), home language, developmental disorders, etc. Results: There were no differences between groups concerning non-verbal intelligence and verbal intelligence. Furthermore, the immersion learners showed overall faster reaction times on both congruent and incongruent trials compared to the traditional learners, but only after 5 years of training, not before. Conclusion: These results show that the cognitive benefits found in ‘full’ bilinguals also appear in children involved in immersion education, but only after a sufficient exposure to the second language. Our results suggest that the amount of second language training needs to be sufficient before these cognitive effects may emerge.Keywords: bilingualism, executive functions, immersion education, Simon task
Procedia PDF Downloads 442220 Model of MSD Risk Assessment at Workplace
Authors: K. Sekulová, M. Šimon
Abstract:
This article focuses on upper-extremity musculoskeletal disorders risk assessment model at workplace. In this model are used risk factors that are responsible for musculoskeletal system damage. Based on statistic calculations the model is able to define what risk of MSD threatens workers who are under risk factors. The model is also able to say how MSD risk would decrease if these risk factors are eliminated.Keywords: ergonomics, musculoskeletal disorders, occupational diseases, risk factors
Procedia PDF Downloads 551219 Short-Term Effects of an Open Monitoring Meditation on Cognitive Control and Information Processing
Authors: Sarah Ullrich, Juliane Rolle, Christian Beste, Nicole Wolff
Abstract:
Inhibition and cognitive flexibility are essential parts of executive functions in our daily lives, as they enable the avoidance of unwanted responses or selectively switch between mental processes to generate appropriate behavior. There is growing interest in improving inhibition and response selection through brief mindfulness-based meditations. Arguably, open-monitoring meditation (OMM) improves inhibitory and flexibility performance by optimizing cognitive control and information processing. Yet, the underlying neurophysiological processes have been poorly studied. Using the Simon-Go/Nogo paradigm, the present work examined the effect of a single 15-minute smartphone app-based OMM on inhibitory performance and response selection in meditation novices. We used both behavioral and neurophysiological measures (event-related potentials, ERPs) to investigate which subprocesses of response selection and inhibition are altered after OMM. The study was conducted in a randomized crossover design with N = 32 healthy adults. We thereby investigated Go and Nogo trials in the paradigm. The results show that as little as 15 minutes of OMM can improve response selection and inhibition at behavioral and neurophysiological levels. More specifically, OMM reduces the rate of false alarms, especially during Nogo trials regardless of congruency. It appears that OMM optimizes conflict processing and response inhibition compared to no meditation, also reflected in the ERP N2 and P3 time windows. The results may be explained by the meta control model, which argues in terms of a specific processing mode with increased flexibility and inclusive decision-making under OMM. Importantly, however, the effects of OMM were only evident when there was the prior experience with the task. It is likely that OMM provides more cognitive resources, as the amplitudes of these EKPs decreased. OMM novices seem to induce finer adjustments during conflict processing after familiarization with the task.Keywords: EEG, inhibition, meditation, Simon Nogo
Procedia PDF Downloads 211218 Identifying Coloring in Graphs with Twins
Authors: Souad Slimani, Sylvain Gravier, Simon Schmidt
Abstract:
Recently, several vertex identifying notions were introduced (identifying coloring, lid-coloring,...); these notions were inspired by identifying codes. All of them, as well as original identifying code, is based on separating two vertices according to some conditions on their closed neighborhood. Therefore, twins can not be identified. So most of known results focus on twin-free graph. Here, we show how twins can modify optimal value of vertex-identifying parameters for identifying coloring and locally identifying coloring.Keywords: identifying coloring, locally identifying coloring, twins, separating
Procedia PDF Downloads 148217 UEMSD Risk Identification: Case Study
Authors: K. Sekulová, M. Šimon
Abstract:
The article demonstrates on a case study how it is possible to identify MSD risk. It is based on a dissertation risk identification model of occupational diseases formation in relation to the work activity that determines what risk can endanger workers who are exposed to the specific risk factors. It is evaluated based on statistical calculations. These risk factors are main cause of upper-extremities musculoskeletal disorders.Keywords: case study, upper-extremity musculoskeletal disorders, ergonomics, risk identification
Procedia PDF Downloads 500216 Assessment of Essential and Nonessential Metal Concentration in Selected Edible Fruit and Leaf Vegetables Grown with Adiahferom River, Tigray, Ethiopia
Authors: Mulugeta Gurum Gerechal
Abstract:
In this piece of study, food safety questions and potential health risks make this as one of the most serious environmental concerns. Then, the levels of essential and non-essential heavy metals concentration were studied in Onion, Carrot, Swiss chard and Lettuce vegetables and compared the permissible levels with international guidelines for safe food. The concentration of Fe was found in the higher concentrations compared to other metals analyzed or significantly different at 95% confidence level than the rest metals studied in this study. However, the levels of the concentration of Cd and Pb exceeded the permissible level set by WHO specifications in water samples, Cd and Pb exceeded the permissible level set by FAO/WHO specifications in all vegetable samples collected from Adiahferom River Fe and Cu were also found below the recommended levels. The higher concentration of Pb and Cd above the permissible level in vegetables used for human food may pose health risk to consumer. However, the Fe hasn’t any health effect they take on from the Adiahferom body River. Mostly, the levels of metals in similar vegetable samples differed between the three sampling site, that may be due to variation in sources and processes of contaminations.Keywords: Adiahferom, turbidity, temperature, physico-chemical, assessment
Procedia PDF Downloads 12215 The Challenges of Unemployment Situation and Trends in Nigeria
Authors: Simon Oga Egboja
Abstract:
In Africa, particularly in Nigeria, unemployment is a serious issue of concern to every citizen. Hence, this paper focuses on the employment situation and trends in Nigeria. It also investigated the causes why unemployment persists in the country. Prominent among them is the population explosion and rapid expansion of education opportunities all over the country without a corresponding increase in industrial establishment. The paper also discusses the way of reducing the rate of unemployment by encouraging graduates of tertiary institutions in Nigeria to read professional courses and also to indulge in the habit of establishing small-scale enterprises so that after them school they can be self-employed rather than relying solely on government for employment.Keywords: causes, population, remedy, unemployment
Procedia PDF Downloads 273214 Electrochemical Treatment and Chemical Analyses of Tannery Wastewater Using Sacrificial Aluminum Electrode, Ethiopia
Authors: Dessie Tibebe, Muluken Asmare, Marye Mulugeta, Yezbie Kassa, Zerubabel Moges, Dereje Yenealem, Tarekegn Fentie, Agmas Amare
Abstract:
The performance of electrocoagulation (EC) using Aluminium electrodes for the treatment of effluent-containing chromium metal using a fixed bed electrochemical batch reactor was studied. In the present work, the efficiency evaluation of EC in removing physicochemical and heavy metals from real industrial tannery wastewater in the Amhara region, collected from Bahirdar, Debre Brihan, and Haik, was investigated. The treated and untreated samples were determined by AAS and ICP OES spectrophotometers. The results indicated that selected heavy metals were removed in all experiments with high removal percentages. The optimal results were obtained regarding both cost and electrocoagulation efficiency with initial pH = 3, initial concentration = 40 mg/L, electrolysis time = 30 min, current density = 40 mA/cm2, and temperature = 25oC favored metal removal. The maximum removal percentages of selected metals obtained were 84.42% for Haik, 92.64% for Bahir Dar and 94.90% for Debre Brihan. The sacrificial electrode and sludge were characterized by FT-IR, SEM and XRD. After treatment, some metals like chromium will be used again as a tanning agent in leather processing to promote a circular economy.Keywords: electrochemical, treatment, aluminum, tannery effluent
Procedia PDF Downloads 112213 Long-Term Climate Patterns in Eastern and Southeastern Ethiopia
Authors: Messay Mulugeta, Degefa Tolossa
Abstract:
The purpose of this paper is to scrutinize trends of climate risks in eastern and southeastern parts of Ethiopia. This part of the country appears severely affected by recurrent droughts, erratic rainfall, and increasing temperature condition. Particularly, erratic rains and moisture stresses have been forcibly threatening and shoving the people over many decades coupled with unproductive policy frameworks and weak institutional setups. These menaces have been more severe in dry lowlands where rainfall is more erratic and scarce. Long-term climate data of nine weather stations in eastern and southeastern parts of Ethiopia were obtained from National Meteorological Agency of Ethiopia (NMA). As issues related to climate risks are very intricate, different techniques and indices were applied to deal with the objectives of the study. It is concluded that erratic rainfall, moisture scarcity, and increasing temperature conditions have been the main challenges in eastern and southeastern Ethiopia. In fact, these risks can be eased by putting in place efficient and integrated rural development strategies, environmental rehabilitation plans of action in overworked areas, proper irrigation and water harvesting practices and well thought-out and genuine resettlement schemes.Keywords: rainfall variability, erratic rains, precipitation concentration index (PCI), climatic pattern, Ethiopia
Procedia PDF Downloads 238212 MATLAB Supported Learning and Students' Conceptual Understanding of Functions of Two Variables: Experiences from Wolkite University
Authors: Eyasu Gemech, Kassa Michael, Mulugeta Atnafu
Abstract:
A non-equivalent group's quasi-experiment research was conducted at Wolkite University to investigate MATLAB supported learning and students' conceptual understanding in learning Applied Mathematics II using four different comparative instructional approaches: MATLAB supported traditional lecture method, MATLAB supported collaborative method, only collaborative method, and only traditional lecture method. Four intact classes of mechanical engineering groups 1 and 2, garment engineering and textile engineering students were randomly selected out of eight departments. The first three departments were considered as treatment groups and the fourth one 'Textile engineering' was assigned as a comparison group. The departments had 30, 29, 35 and 32 students respectively. The results of the study show that there is a significant mean difference in students' conceptual understanding between groups of students learning through MATLAB supported collaborative method and the other learning approaches. Students who were learned through MATLAB technology-supported learning in combination with collaborative method were found to understand concepts of functions of two variables better than students learning through the other methods of learning. These, hence, are informative of the potential approaches universities would follow for a better students’ understanding of concepts.Keywords: MATLAB supported collaborative method, MATLAB supported learning, collaborative method, conceptual understanding, functions of two variables
Procedia PDF Downloads 279211 Spectral Analysis Applied to Variables of Oil Wells Profiling
Authors: Suzana Leitão Russo, Mayara Laysa de Oliveira Silva, José Augusto Andrade Filho, Vitor Hugo Simon
Abstract:
Currently, seismic methods and prospecting methods are commonly applied in the oil industry and, according to the information reported every day; oil is a source of non-renewable energy. It is easier to understand why the ownership of areas of oil extraction is coveted by many nations. It is necessary to think about ways that will enable the maximization of oil production. The technique of spectral analysis can be used to analyze the behavior of the variables already defined in oil well the profile. The main objective is to verify the series dependence of variables, and to model the variables using the frequency domain to observe the model residuals.Keywords: oil, well, spectral analysis, oil extraction
Procedia PDF Downloads 535210 Treatment and Characterization of Cadmium Metal From Textile Factory Wastewater by Electrochemical Process Using Aluminum Plate Electrode
Authors: Dessie Tibebe, Yeshifana Ayenew, Marye Mulugeta, Yezbie Kassa, Zerubabel Moges, Dereje Yenealem, Tarekegn Fentie, Agmas Amare, Hailu Sheferaw Ayele
Abstract:
Electrochemical treatment technology is a technique used for wastewater treatment due to its ability to eliminate impurities that are not easily removed by chemical processes. The objective of the study is the treatment and characterization of textile wastewater by an electrochemical process. The results obtained at various operational parameters indicated that at 20 minutes of electrochemical process at ( pH =7), initial concentration 10 mg/L, current density 37.5 mA/cm², voltage 9 v and temperature 25⁰C the highest removal efficiency was achieved. The kinetics of removal of selected metal by electrochemical treatment has been successfully described by the first-order rate equation. The results of microscopic techniques using SEM for the scarified electrode before treatment were uniform and smooth, but after the electrochemical process, the morphology was completely changed. This is due to the detection of the adsorbed aluminum hydroxide coming from adsorption of the conducting electrolyte, chemicals used in the experiments, alloying and the scrap impurities of the anode and cathode. The FTIR spectroscopic analysis broad bands at 3450 cm-¹ representing O-H functional groups, while the presence of H-O-H and Al-H groups are indicated by the bands at 2850-2750 cm-¹ and 1099 representing C-H functional groups.Keywords: electrochemical, treatment, textile wastewater, kinetics, removal efficiency
Procedia PDF Downloads 97209 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning
Procedia PDF Downloads 244208 Synthesis and Characterization of TiO₂, N Doped TiO₂ and AG Doped TiO₂ for Photocatalytic Degradation of Methylene Blue in Adwa Almeda Textile Industry, Tigray, Ethiopia
Authors: Mulugeta Gurum Gerechal
Abstract:
Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, urea, NH₄OH, and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400°C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM, and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was an efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21% under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 400⁰C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency.Keywords: photocatalysis, degradation, nanoparticles, catalyst loading, calcination, methylene blue
Procedia PDF Downloads 13207 Optimal Wheat Straw to Bioethanol Supply Chain Models
Authors: Abdul Halim Abdul Razik, Ali Elkamel, Leonardo Simon
Abstract:
Wheat straw is one of the alternative feedstocks that may be utilized for bioethanol production especially when sustainability criteria are the major concerns. To increase market competitiveness, optimal supply chain plays an important role since wheat straw is a seasonal agricultural residue. In designing the supply chain optimization model, economic profitability of the thermochemical and biochemical conversion routes options were considered. It was found that torrefied pelletization with gasification route to be the most profitable option to produce bioethanol from the lignocellulosic source of wheat straw.Keywords: bio-ethanol, optimization, supply chain, wheat straw
Procedia PDF Downloads 737206 Assessment of Metal and Nano-Metal Doped TiO₂ Nanoparticles for Photocatalytic Degradation of Methylene Blue in Almeda Textile Industry, Tigray, Ethiopia
Authors: Mulugeta Gurum Gerechal
Abstract:
Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the Crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, Urea, NH₄OH and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400 °C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was a well efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21 % under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 4000C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency.Keywords: photocatalysis, degradation, nanoparticles, catalyst loading, calcination and methylene blue
Procedia PDF Downloads 63205 Variation Theory and Mixed Instructional Approaches: Advancing Conceptual Understanding in Geometry
Authors: Belete Abebaw, Mulugeta Atinafu, Awoke Shishigu
Abstract:
The study aimed to examine students’ problem-solving skills through mixed instruction (variation theory based Geogerba assisted problem-solving instructional approaches). A total of 125 students divided into 4 intact groups participated in the study. The study employed a quasi-experimental research design. Three intact groups were randomly assigned as a treatment group, while one group was taken as a comparison group. Each of the groups took a specific instructional approach, while the comparison group proceeded as usual without any changes to the instructional process for all sessions. Both pre and post problem-solving tests were administered to all groups. To analyze the data and examine the differences (if any) in each group, ANCOVA and Paired samples t-tests were employed. There was a significant mean difference between students pre-test and post-test in their conceptual understanding of each treatment group. Furthermore, the mixed treatment had a large mean difference. It was recommended that teachers give attention to using variation theory-based geometry problem-solving approaches for students’ better understanding. Administrators should emphasize launching Geogebra software through IT labs in schools, and government officials should appreciate the implementation of technology in schools.Keywords: conceptual understanding, Geogebra, learning geometry, problem solving approaches, variation theory
Procedia PDF Downloads 27204 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning
Procedia PDF Downloads 231203 Examining the Relationship between Preferred Leadership Style and Motivation of Female Volleyball Players in Ethiopian Primer League Clubs
Authors: Meseret Mulugeta, Alemmebrat Kiflu, Belaynehchikle
Abstract:
The purpose of the present study was to examine the preferred leadership style and motivation of premier league volleyball players. The sample encompassed 46 female premier league volleyball players whose ages ranged between 15 and 35 years. The data were collected using standardized questionnaires. The questionnaires were distributed to 46 female players from five volleyball clubs in the Premier League. To evaluate the motivational level of the players, the Sports Motivation Scale (SMS-6) was used. The leadership scale for sport was used to evaluate leadership. Descriptive statistics and the person correlation coefficient (P <0.05) were used to validate the relationship between leadership style and motivation. The result showed that there is a meaningful and significant relationship between leadership style and motivation. Concerning preferred coaching styles, the most preferred style was training and instruction, with a mean score of 4.10, and the least preferred style was autocratic, with a mean score of 3.37. The result of the Pearson correlation coefficient showed that the correlation between motivation types and leadership styles showed that motivation was significantly and positively correlated with all independent variables except autocratic leadership style, which is negatively correlated with motivation. This study’s nobility is to provide evidence for the most effective coaching to practice the training and instruction behaviour and social support behaviour leadership styles and refrain from using the autocratic leadership style.Keywords: autocratic, training and instruction, motivation, leadership style
Procedia PDF Downloads 84202 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning
Procedia PDF Downloads 213201 Analyzing Soviet and Post-Soviet Contemporary Russian Foreign Policy by Applying the Theory of Political Realism
Authors: Simon Tsipis
Abstract:
In this study, we propose to analyze Russian foreign policy conduct by applying the theory of Political Realism and the qualitative comparative method of analysis. We find that the paradigm of Political Realism supplies us with significant insights into the sources of contemporary Russian foreign policy conduct since the power factor was and remains an integral element in Russian foreign policies, especially when we apply comparative analysis and compare it with the behavior of its Soviet predecessor. Through the lens of the Realist theory, a handful of Russian foreign policy-making becomes clearer and much more comprehensible.Keywords: realism, Russia, cold war, Soviet Union, European security
Procedia PDF Downloads 117200 Households’ Willingness to Pay for Watershed Management Practices in Lake Hawassa Watershed, Southern Ethiopia
Authors: Mulugeta Fola, Mengistu Ketema, Kumilachew Alamerie
Abstract:
Watershed provides vast economic benefits within and beyond the management area of interest. But most watersheds in Ethiopia are increasingly facing the threats of degradation due to both natural and man-made causes. To reverse these problems, communities’ participation in sustainable management programs is among the necessary measures. Hence, this study assessed the households’ willingness to pay for watershed management practices through a contingent valuation study approach. Double bounded dichotomous choice with open-ended follow-up format was used to elicit the households’ willingness to pay. Based on data collected from 275 randomly selected households, descriptive statistics results indicated that most households (79.64%) were willing to pay for watershed management practices. A bivariate Probit model was employed to identify determinants of households’ willingness to pay and estimate mean willingness to pay. Its result shows that age, gender, income, livestock size, perception of watershed degradation, social position, and offered bids were important variables affecting willingness to pay for watershed management practices. The study also revealed that the mean willingness to pay for watershed management practices was calculated to be 58.41 Birr and 47.27 Birr per year from the double bounded and open-ended format, respectively. The study revealed that the aggregate welfare gains from watershed management practices were calculated to be 931581.09 Birr and 753909.23 Birr per year from double bounded dichotomous choice and open-ended format, respectively. Therefore, the policymakers should make households to pay for the services of watershed management practices in the study area.Keywords: bivariate probit model, contingent valuation, watershed management practices, willingness to pay
Procedia PDF Downloads 224