Search results for: Simon Schmidt
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 277

Search results for: Simon Schmidt

277 Identifying Coloring in Graphs with Twins

Authors: Souad Slimani, Sylvain Gravier, Simon Schmidt

Abstract:

Recently, several vertex identifying notions were introduced (identifying coloring, lid-coloring,...); these notions were inspired by identifying codes. All of them, as well as original identifying code, is based on separating two vertices according to some conditions on their closed neighborhood. Therefore, twins can not be identified. So most of known results focus on twin-free graph. Here, we show how twins can modify optimal value of vertex-identifying parameters for identifying coloring and locally identifying coloring.

Keywords: identifying coloring, locally identifying coloring, twins, separating

Procedia PDF Downloads 111
276 Evaluation of Deteriorated Fired Clay Bricks Based on Schmidt Hammer Tests

Authors: Laurent Debailleux

Abstract:

Although past research has focused on parameters influencing the vulnerability of brick and its decay, in practice ancient fired clay bricks are usually replaced without any particular assessment of their characteristics. This paper presents results of non-destructive Schmidt hammer tests performed on ancient fired clay bricks sampled from historic masonry. Samples under study were manufactured between the 18th and 20th century and came from facades and interior walls. Tests were performed on three distinct brick surfaces, depending on their position within the masonry unit. Schmidt hammer tests were carried out in order to measure the mean rebound value (Rn), which refers to the resistance of the surface to successive impacts of the hammer plunger tip. Results indicate that rebound values increased with successive impacts at the same point. Therefore, mean Schmidt hammer rebound values (Rn), limited to the first impact on a surface minimises the estimation of compressive strength. In addition, the results illustrate that this technique is sensitive enough to measure weathering differences, even for different surfaces of a particular sample. Finally, the paper also highlights the relevance of considering the position of the brick within the masonry when conducting particular assessments of the material’s strength.

Keywords: brick, non-destructive tests, rebound number, Schmidt hammer, weathering grade

Procedia PDF Downloads 133
275 A Collective Intelligence Approach to Safe Artificial General Intelligence

Authors: Craig A. Kaplan

Abstract:

If AGI proves to be a “winner-take-all” scenario where the first company or country to develop AGI dominates, then the first AGI must also be the safest. The safest, and fastest, path to Artificial General Intelligence (AGI) may be to harness the collective intelligence of multiple AI and human agents in an AGI network. This approach has roots in seminal ideas from four of the scientists who founded the field of Artificial Intelligence: Allen Newell, Marvin Minsky, Claude Shannon, and Herbert Simon. Extrapolating key insights from these founders of AI, and combining them with the work of modern researchers, results in a fast and safe path to AGI. The seminal ideas discussed are: 1) Society of Mind (Minsky), 2) Information Theory (Shannon), 3) Problem Solving Theory (Newell & Simon), and 4) Bounded Rationality (Simon). Society of Mind describes a collective intelligence approach that can be used with AI and human agents to create an AGI network. Information theory helps address the critical issue of how an AGI system will increase its intelligence over time. Problem Solving Theory provides a universal framework that AI and human agents can use to communicate efficiently, effectively, and safely. Bounded Rationality helps us better understand not only the capabilities of SuperIntelligent AGI but also how humans can remain relevant in a world where the intelligence of AGI vastly exceeds that of its human creators. Each key idea can be combined with recent work in the fields of Artificial Intelligence, Machine Learning, and Large Language Models to accelerate the development of a working, safe, AGI system.

Keywords: AI Agents, Collective Intelligence, Minsky, Newell, Shannon, Simon, AGI, AGI Safety

Procedia PDF Downloads 44
274 Effect of Tilt Angle of Herringbone Microstructures on Enhancement of Heat and Mass Transfer

Authors: Nathan Estrada, Fangjun Shu, Yanxing Wang

Abstract:

The heat and mass transfer characteristics of a simple shear flow over a surface covered with staggered herringbone structures are numerically investigated using the lattice Boltzmann method. The focus is on the effect of ridge angle of the structures on the enhancement of heat and mass transfer. In the simulation, the temperature and mass concentration are modeled as a passive scalar released from the moving top wall and absorbed at the structured bottom wall. Reynolds number is fixed at 100. Two Prandtl or Schmidt numbers, 1 and 10, are considered. The results show that the advective scalar transport plays a more important role at larger Schmidt numbers. The fluid travels downward with higher scalar concentration into the grooves at the backward grove tips and travel upward with lower scalar concentration at the forward grove tips. Different tile angles result in different flow advection in wall-normal direction and thus different heat and mass transport efficiencies. The maximum enhancement is achieved at an angle between 15o and 30o. The mechanism of heat and mass transfer is analyzed in detail.

Keywords: fluid mechanics, heat and mass transfer, microfluidics, staggered herringbone mixer

Procedia PDF Downloads 81
273 The Influence of Thermal Radiation and Chemical Reaction on MHD Micropolar Fluid in The Presence of Heat Generation/Absorption

Authors: Binyam Teferi

Abstract:

Numerical and theoretical analysis of mixed convection flow of magneto- hydrodynamics micropolar fluid with stretching capillary in the presence of thermal radiation, chemical reaction, viscous dissipation, and heat generation/ absorption have been studied. The non-linear partial differential equations of momentum, angular velocity, energy, and concentration are converted into ordinary differential equations using similarity transformations which can be solved numerically. The dimensionless governing equations are solved by using Runge Kutta fourth and fifth order along with the shooting method. The effect of physical parameters viz., micropolar parameter, unsteadiness parameter, thermal buoyancy parameter, concentration buoyancy parameter, Hartmann number, spin gradient viscosity parameter, microinertial density parameter, thermal radiation parameter, Prandtl number, Eckert number, heat generation or absorption parameter, Schmidt number and chemical reaction parameter on flow variables viz., the velocity of the micropolar fluid, microrotation, temperature, and concentration has been analyzed and discussed graphically. MATLAB code is used to analyze numerical and theoretical facts. From the simulation study, it can be concluded that an increment of micropolar parameter, Hartmann number, unsteadiness parameter, thermal and concentration buoyancy parameter results in decrement of velocity flow of micropolar fluid; microrotation of micropolar fluid decreases with an increment of micropolar parameter, unsteadiness parameter, microinertial density parameter, and spin gradient viscosity parameter; temperature profile of micropolar fluid decreases with an increment of thermal radiation parameter, Prandtl number, micropolar parameter, unsteadiness parameter, heat absorption, and viscous dissipation parameter; concentration of micropolar fluid decreases as unsteadiness parameter, Schmidt number and chemical reaction parameter increases. Furthermore, computational values of local skin friction coefficient, local wall coupled coefficient, local Nusselt number, and local Sherwood number for different values of parameters have been investigated. In this paper, the following important results are obtained; An increment of micropolar parameter and Hartmann number results in a decrement of velocity flow of micropolar fluid. Microrotation decreases with an increment of the microinertial density parameter. Temperature decreases with an increasing value of the thermal radiation parameter and viscous dissipation parameter. Concentration decreases as the values of Schmidt number and chemical reaction parameter increases. The coefficient of local skin friction is enhanced with an increase in values of both the unsteadiness parameter and micropolar parameter. Increasing values of unsteadiness parameter and micropolar parameter results in an increment of the local couple stress. An increment of values of unsteadiness parameter and thermal radiation parameter results in an increment of the rate of heat transfer. As the values of Schmidt number and unsteadiness parameter increases, Sherwood number decreases.

Keywords: thermal radiation, chemical reaction, viscous dissipation, heat absorption/ generation, similarity transformation

Procedia PDF Downloads 85
272 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium

Authors: Nidhal Jamia, Sami El-Borgi

Abstract:

In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.

Keywords: functionally graded piezoelectric material (FGPM), mixed-mode crack, non-local theory, Schmidt method

Procedia PDF Downloads 276
271 The Relationship between Lithological and Geomechanical Properties of Carbonate Rocks. Case study: Arab-D Reservoir Outcrop Carbonate, Central Saudi Arabia

Authors: Ammar Juma Abdlmutalib, Osman Abdullatif

Abstract:

Upper Jurrasic Arab-D Reservoir is considered as the largest oil reservoir in Saudi Arabia. The equivalent outcrop is exposed near Riyadh. The study investigates the relationships between lithofacies properties changes and geomechanical properties of Arab-D Reservoir in the outcrop scale. The methods used included integrated field observations and laboratory measurements. Schmidt Hammer Rebound Hardness, Point Load Index tests were carried out to estimate the strength of the samples, ultrasonic wave velocity test also was applied to measure P-wave, S-wave, and dynamic Poisson's ratio. Thin sections have been analyzed and described. The results show that there is a variation in geomechanical properties between the Arab-D member and Upper Jubaila Formation at outcrop scale, the change in texture or grain size has no or little effect on these properties. This is because of the clear effect of diagenesis which changes the strength of the samples. The result also shows the negative or inverse correlation between porosity and geomechanical properties. As for the strength, dolomitic mudstone and wackestone within Upper Jubaila Formation has higher Schmidt hammer values, wavy rippled sandy grainstone which is rich in quarts has the greater point load index values. While laminated mudstone and breccias, facies has lower strength. This emphasizes the role of mineral content in the geomechanical properties of Arab-D reservoir lithofacies.

Keywords: geomechanical properties, Arab-D reservoir, lithofacies changes, Poisson's ratio, diageneis

Procedia PDF Downloads 368
270 Effect of Thermal Radiation and Chemical Reaction on MHD Flow of Blood in Stretching Permeable Vessel

Authors: Binyam Teferi

Abstract:

In this paper, a theoretical analysis of blood flow in the presence of thermal radiation and chemical reaction under the influence of time dependent magnetic field intensity has been studied. The unsteady non linear partial differential equations of blood flow considers time dependent stretching velocity, the energy equation also accounts time dependent temperature of vessel wall, and concentration equation includes time dependent blood concentration. The governing non linear partial differential equations of motion, energy, and concentration are converted into ordinary differential equations using similarity transformations solved numerically by applying ode45. MATLAB code is used to analyze theoretical facts. The effect of physical parameters viz., permeability parameter, unsteadiness parameter, Prandtl number, Hartmann number, thermal radiation parameter, chemical reaction parameter, and Schmidt number on flow variables viz., velocity of blood flow in the vessel, temperature and concentration of blood has been analyzed and discussed graphically. From the simulation study, the following important results are obtained: velocity of blood flow increases with both increment of permeability and unsteadiness parameter. Temperature of the blood increases in vessel wall as Prandtl number and Hartmann number increases. Concentration of the blood decreases as time dependent chemical reaction parameter and Schmidt number increases.

Keywords: stretching velocity, similarity transformations, time dependent magnetic field intensity, thermal radiation, chemical reaction

Procedia PDF Downloads 47
269 Simon Says: What Should I Study?

Authors: Fonteyne Lot

Abstract:

SIMON (Study capacities and Interest Monitor is a freely accessible online self-assessment tool that allows secondary education pupils to evaluate their interests and capacities in order to choose a post-secondary major that maximally suits their potential. The tool consists of two broad domains that correspond with two general questions pupils ask: 'What study fields interest me?' and 'Am I capable to succeed in this field of study?'. The first question is addressed by a RIASEC-type interest inventory that links personal interests to post-secondary majors. Pupils are provided with a personal profile and an overview of majors with their degree of congruence. The output is dynamic: respondents can manipulate their score and they can compare their results to the profile of all fields of study. That way they are stimulated to explore the broad range of majors. To answer whether pupils are capable of succeeding in a preferred major, a battery of tests is provided. This battery comprises a range of factors that are predictive of academic success. Traditional predictors such as (educational) background and cognitive variables (mathematical and verbal skills) are included. Moreover, non-cognitive predictors of academic success (such as 'motivation', 'test anxiety', 'academic self-efficacy' and 'study skills') are assessed. These non-cognitive factors are generally not included in admission decisions although research shows they are incrementally predictive of success and are less discriminating. These tests inform pupils on potential causes of success and failure. More important, pupils receive their personal chances of success per major. These differential probabilities are validated through the underlying research on academic success of students. For example, the research has shown that we can identify 22 % of the failing students in psychology and educational sciences. In this group, our prediction is 95% accurate. SIMON leads more students to a suitable major which in turn alleviates student success and retention. Apart from these benefits, the instrument grants insight into risk factors of academic failure. It also supports and fosters the development of evidence-based remedial interventions and therefore gives way to a more efficient use of means.

Keywords: academic success, online self-assessment, student retention, vocational choice

Procedia PDF Downloads 374
268 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network

Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson

Abstract:

The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.

Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0

Procedia PDF Downloads 144
267 Psychology Behind Aesthetic Rhinoplasty–Introducing the Term Sifon

Authors: Komal Saeed

Abstract:

Introduction: Rhinoplasty is considered one of the challenging aesthetic procedures. Psychosocial concerns motivate the urge for aesthetic procedures especially rhinoplasty. Males who fall in this category are designated as single, immature, male, over expectant and narcissistic (SIMON) in literature. As of yet, there is no term that depicts females showing similar characteristics. The purpose of this study is to evaluate the incidence of body dysmorphic disorder (BDD) in females seeking rhinoplasty and to introduce a term for such individuals. Materials and Methods: A prospective, questionnaire based, qualitative study was conducted in the Department Of Plastic Surgery between March 2018 and March 2020. 110 female candidates seeking aesthetic rhinoplasty were included in the study. BDD was evaluated using the Dysmorphic Concerns Questionnaire, DCQ. Data were analyzed using SPSS version 25 software and correlation between the groups was evaluated. Results: Out of 110 female subjects, 77.3% (n=85) were single, 16.4% (n=18) were married and 6.4% (n=7) were divorced. BDD was found in 41.8% (n=46) of the candidates, majority being single (n=41, 89.1%) and having educational status above diploma (n=39, 84.8%). There was a statistically higher percentage of young adults between 24 and 28 years (n=33, 71.7%) having BDD (p= 0.0001). Conclusion: Considering the high frequency of BDD among females seeking rhinoplasty, a standardized term ‘SIFON’ is introduced to describe such individuals who are S; single, I; immature, F; female, O; over expectant, N; narcissistic as apposed to SIMON in males. These individuals perceive aesthetic procedures as a solution to their body dissatisfaction. Therefore, preoperative counseling seems necessary to avoid unsatisfactory outcomes secondary to mental health.

Keywords: aesthetic rhinoplasty, body dismorphic disorder, single, immature, obsessive

Procedia PDF Downloads 62
266 Physico-Mechanical Properties of Dir-Volcanics and Its Use as a Dimension Stone from Kohistan Island Arc, North Pakistan

Authors: Muhammad Nawaz, Waqas Ahmad

Abstract:

Dimension stone is used in construction since prehistoric time; however, its use in the construction has gained significant attention for the last few decades. The present study is designed to investigate the physical and strength properties of volcanic rocks from the Kohistan Island Arc to assess their use as dimension stone. On the basis of the composition, color and texture, five varieties of andesites (MMA, PMA-1, PMA-2, CMA and FMA) and two varieties of agglomerates (AG-1 and AG-2) were identified. These were characterized in terms of their petrography (compositional and textural), physical properties (specific gravity, water absorption, porosity) and strength properties (Unconfined compressive strength and Unconfined tensile strength). Two non-destructive tests (Ultrasonic pulse velocity test and Schmidt Hammer) were conducted and the degree of polishing was evaluated. In addition, correlation analyses were carried out to establish possible relationships among these parameters. The presence of chlorite, epidote, sericite and recrystallized quartz showed the signs of low-grade metamorphism in andesites. The results showed feldspar, amphibole and quartz imparted good physical and strength properties to the samples MMA, CMA, FMA, AG1 and AG2. Whereas, the abundance of alteration products such as chlorite, sericite and epidote in PMA-1 and PMA-2 reduced the physical and strength properties. The unconfined compressive strength showed a strong correlation with ultrasonic pulse velocity, dry density, porosity and water absorption. The values of ultrasonic pulse velocity and Schmidt hammer were considerably affected by the weathering grade. The samples PMA-1 and PMA-2, due to their high water absorption and low strength values, were not recommended for use in load-bearing masonry units and outdoor applications. Whereas, the excellent properties, i.e. high strength and good polishing, the samples, FMA and MMA suggested their use as a decorative and facing stone, in the external pavement, ashlar, rubbles and load-bearing masonry units etc.

Keywords: Physico-mechanical properties, Volcanic rocks, Kohistan Island Arc, Pakistan

Procedia PDF Downloads 54
265 Numerical Study of the Breakdown of Surface Divergence Based Models for Interfacial Gas Transfer Velocity at Large Contamination Levels

Authors: Yasemin Akar, Jan G. Wissink, Herlina Herlina

Abstract:

The effect of various levels of contamination on the interfacial air–water gas transfer velocity is studied by Direct Numerical Simulation (DNS). The interfacial gas transfer is driven by isotropic turbulence, introduced at the bottom of the computational domain, diffusing upwards. The isotropic turbulence is generated in a separate, concurrently running the large-eddy simulation (LES). The flow fields in the main DNS and the LES are solved using fourth-order discretisations of convection and diffusion. To solve the transport of dissolved gases in water, a fifth-order-accurate WENO scheme is used for scalar convection combined with a fourth-order central discretisation for scalar diffusion. The damping effect of the surfactant contamination on the near surface (horizontal) velocities in the DNS is modelled using horizontal gradients of the surfactant concentration. An important parameter in this model, which corresponds to the level of contamination, is ReMa⁄We, where Re is the Reynolds number, Ma is the Marangoni number, and We is the Weber number. It was previously found that even small levels of contamination (ReMa⁄We small) lead to a significant drop in the interfacial gas transfer velocity KL. It is known that KL depends on both the Schmidt number Sc (ratio of the kinematic viscosity and the gas diffusivity in water) and the surface divergence β, i.e. K_L∝√(β⁄Sc). Previously it has been shown that this relation works well for surfaces with low to moderate contamination. However, it will break down for β close to zero. To study the validity of this dependence in the presence of surface contamination, simulations were carried out for ReMa⁄We=0,0.12,0.6,1.2,6,30 and Sc = 2, 4, 8, 16, 32. First, it will be shown that the scaling of KL with Sc remains valid also for larger ReMa⁄We. This is an important result that indicates that - for various levels of contamination - the numerical results obtained at low Schmidt numbers are also valid for significantly higher and more realistic Sc. Subsequently, it will be shown that - with increasing levels of ReMa⁄We - the dependency of KL on β begins to break down as the increased damping of near surface fluctuations results in an increased damping of β. Especially for large levels of contamination, this damping is so severe that KL is found to be underestimated significantly.

Keywords: contamination, gas transfer, surfactants, turbulence

Procedia PDF Downloads 269
264 Development of Bicomponent Fibre to Combat Insects

Authors: M. Bischoff, F. Schmidt, J. Herrmann, J. Mattheß, G. Seide, T. Gries

Abstract:

Crop yields have not increased as dramatically as the demand for food. One method to counteract this is to use pesticides to keep away predators, e.g. several forms of insecticide are available to fight insects. These insecticides and pesticides are both controversial as their application and their residue in the food product can also harm humans. In this study an alternative method to combat insects is studied. A physical insect-killing effect of SiO2 particles is used. The particles are applied on fibres to avoid erosion in the fields, which would occur when applied separately. The development of such SiO2 functionalized PP fibres is shown.

Keywords: agriculture, environment, insects, protection, silica, textile

Procedia PDF Downloads 268
263 Heinz-Type Inequalities in Hilbert Spaces

Authors: Jin Liang, Guanghua Shi

Abstract:

In this paper, we are concerned with the further refinements of the Heinz operator inequalities in Hilbert spaces. Our purpose is to derive several new Heinz-type operator inequalities. First, with the help of the Taylor series of some hyperbolic functions, we obtain some refinements of the ordering relations among Heinz means defined by Bhatia with different parameters, which would be more suitable in obtaining the corresponding operator inequalities. Second, we present some generalizations of Heinz operator inequalities. Finally, we give a matrix version of the Heinz inequality for the Hilbert-Schmidt norm.

Keywords: Hilbert space, means inequality, norm inequality, positive linear operator

Procedia PDF Downloads 237
262 Cross-Country Differences in Homeownership: A Cultural Phenomenon?

Authors: Stefanie J. Huber, Tobias Schmidt

Abstract:

Cross-country differences in homeownership rates are large and very persistent over time, ranging between 35% in Switzerland to 80% in Spain. In this project, we test the hypothesis that these cross-country differences are driven by cultural tastes. To isolate the effect of culture from the effects of institutions and economic factors, we investigate the homeownership attitudes of second-generation immigrants in the United States. We find robust evidence that cross-country differences in cultural preferences are an important explanatory factor for the observed persistent differences in homeownership rates across countries.

Keywords: housing markets, homeownership rates, country heterogeneity, preferences, cultural transmission, migration

Procedia PDF Downloads 240
261 In Search for the 'Bilingual Advantage' in Immersion Education

Authors: M. E. Joret, F. Germeys, P. Van de Craen

Abstract:

Background: Previous studies have shown that ‘full’ bilingualism seems to enhance the executive functions in children, young adults and elderly people. Executive functions refer to a complex cognitive system responsible for self-controlled and planned behavior and seem to predict academic achievement. The present study aimed at investigating whether similar effects could be found in children learning their second language at school in immersion education programs. Methods: In this study, 44 children involved in immersion education for 4 to 5 years were compared to 48 children in traditional schools. All children were between 9 and 11 years old. To assess executive functions, the Simon task was used, a neuropsychological measure assessing executive functions with reaction times and accuracy on congruent and incongruent trials. To control for background measures, all children underwent the Raven’s coloured progressive matrices, to measure non-verbal intelligence and the Echelle de Vocabulaire en Images Peabody (EVIP), assessing verbal intelligence. In addition, a questionnaire was given to the parents to control for other confounding variables, such as socio-economic status (SES), home language, developmental disorders, etc. Results: There were no differences between groups concerning non-verbal intelligence and verbal intelligence. Furthermore, the immersion learners showed overall faster reaction times on both congruent and incongruent trials compared to the traditional learners, but only after 5 years of training, not before. Conclusion: These results show that the cognitive benefits found in ‘full’ bilinguals also appear in children involved in immersion education, but only after a sufficient exposure to the second language. Our results suggest that the amount of second language training needs to be sufficient before these cognitive effects may emerge.

Keywords: bilingualism, executive functions, immersion education, Simon task

Procedia PDF Downloads 403
260 Towards the Design of Gripper Independent of Substrate Surface Structures

Authors: Annika Schmidt, Ausama Hadi Ahmed, Carlo Menon

Abstract:

End effectors for robotic systems are becoming more and more advanced, resulting in a growing variety of gripping tasks. However, most grippers are application specific. This paper presents a gripper that interacts with an object’s surface rather than being dependent on a defined shape or size. For this purpose, ingressive and astrictive features are combined to achieve the desired gripping capabilities. The developed prototype is tested on a variety of surfaces with different hardness and roughness properties. The results show that the gripping mechanism works on all of the tested surfaces. The influence of the material properties on the amount of the supported load is also studied and the efficiency is discussed.

Keywords: claw, dry adhesion, insects, material properties

Procedia PDF Downloads 324
259 Model of MSD Risk Assessment at Workplace

Authors: K. Sekulová, M. Šimon

Abstract:

This article focuses on upper-extremity musculoskeletal disorders risk assessment model at workplace. In this model are used risk factors that are responsible for musculoskeletal system damage. Based on statistic calculations the model is able to define what risk of MSD threatens workers who are under risk factors. The model is also able to say how MSD risk would decrease if these risk factors are eliminated.

Keywords: ergonomics, musculoskeletal disorders, occupational diseases, risk factors

Procedia PDF Downloads 505
258 Short-Term Effects of an Open Monitoring Meditation on Cognitive Control and Information Processing

Authors: Sarah Ullrich, Juliane Rolle, Christian Beste, Nicole Wolff

Abstract:

Inhibition and cognitive flexibility are essential parts of executive functions in our daily lives, as they enable the avoidance of unwanted responses or selectively switch between mental processes to generate appropriate behavior. There is growing interest in improving inhibition and response selection through brief mindfulness-based meditations. Arguably, open-monitoring meditation (OMM) improves inhibitory and flexibility performance by optimizing cognitive control and information processing. Yet, the underlying neurophysiological processes have been poorly studied. Using the Simon-Go/Nogo paradigm, the present work examined the effect of a single 15-minute smartphone app-based OMM on inhibitory performance and response selection in meditation novices. We used both behavioral and neurophysiological measures (event-related potentials, ERPs) to investigate which subprocesses of response selection and inhibition are altered after OMM. The study was conducted in a randomized crossover design with N = 32 healthy adults. We thereby investigated Go and Nogo trials in the paradigm. The results show that as little as 15 minutes of OMM can improve response selection and inhibition at behavioral and neurophysiological levels. More specifically, OMM reduces the rate of false alarms, especially during Nogo trials regardless of congruency. It appears that OMM optimizes conflict processing and response inhibition compared to no meditation, also reflected in the ERP N2 and P3 time windows. The results may be explained by the meta control model, which argues in terms of a specific processing mode with increased flexibility and inclusive decision-making under OMM. Importantly, however, the effects of OMM were only evident when there was the prior experience with the task. It is likely that OMM provides more cognitive resources, as the amplitudes of these EKPs decreased. OMM novices seem to induce finer adjustments during conflict processing after familiarization with the task.

Keywords: EEG, inhibition, meditation, Simon Nogo

Procedia PDF Downloads 173
257 Identifying Confirmed Resemblances in Problem-Solving Engineering, Both in the Past and Present

Authors: Colin Schmidt, Adrien Lecossier, Pascal Crubleau, Simon Richir

Abstract:

Introduction:The widespread availability of artificial intelligence, exemplified by Generative Pre-trained Transformers (GPT) relying on large language models (LLM), has caused a seismic shift in the realm of knowledge. Everyone now has the capacity to swiftly learn how these models can either serve them well or not. Today, conversational AI like ChatGPT is grounded in neural transformer models, a significant advance in natural language processing facilitated by the emergence of renowned LLMs constructed using neural transformer architecture. Inventiveness of an LLM : OpenAI's GPT-3 stands as a premier LLM, capable of handling a broad spectrum of natural language processing tasks without requiring fine-tuning, reliably producing text that reads as if authored by humans. However, even with an understanding of how LLMs respond to questions asked, there may be lurking behind OpenAI’s seemingly endless responses an inventive model yet to be uncovered. There may be some unforeseen reasoning emerging from the interconnection of neural networks here. Just as a Soviet researcher in the 1940s questioned the existence of Common factors in inventions, enabling an Under standing of how and according to what principles humans create them, it is equally legitimate today to explore whether solutions provided by LLMs to complex problems also share common denominators. Theory of Inventive Problem Solving (TRIZ) : We will revisit some fundamentals of TRIZ and how Genrich ALTSHULLER was inspired by the idea that inventions and innovations are essential means to solve societal problems. It's crucial to note that traditional problem-solving methods often fall short in discovering innovative solutions. The design team is frequently hampered by psychological barriers stemming from confinement within a highly specialized knowledge domain that is difficult to question. We presume ChatGPT Utilizes TRIZ 40. Hence, the objective of this research is to decipher the inventive model of LLMs, particularly that of ChatGPT, through a comparative study. This will enhance the efficiency of sustainable innovation processes and shed light on how the construction of a solution to a complex problem was devised. Description of the Experimental Protocol : To confirm or reject our main hypothesis that is to determine whether ChatGPT uses TRIZ, we will follow a stringent protocol that we will detail, drawing on insights from a panel of two TRIZ experts. Conclusion and Future Directions : In this endeavor, we sought to comprehend how an LLM like GPT addresses complex challenges. Our goal was to analyze the inventive model of responses provided by an LLM, specifically ChatGPT, by comparing it to an existing standard model: TRIZ 40. Of course, problem solving is our main focus in our endeavours.

Keywords: artificial intelligence, Triz, ChatGPT, inventiveness, problem-solving

Procedia PDF Downloads 30
256 UEMSD Risk Identification: Case Study

Authors: K. Sekulová, M. Šimon

Abstract:

The article demonstrates on a case study how it is possible to identify MSD risk. It is based on a dissertation risk identification model of occupational diseases formation in relation to the work activity that determines what risk can endanger workers who are exposed to the specific risk factors. It is evaluated based on statistical calculations. These risk factors are main cause of upper-extremities musculoskeletal disorders.

Keywords: case study, upper-extremity musculoskeletal disorders, ergonomics, risk identification

Procedia PDF Downloads 464
255 Enhancement of Mass Transport and Separations of Species in a Electroosmotic Flow by Distinct Oscillatory Signals

Authors: Carlos Teodoro, Oscar Bautista

Abstract:

In this work, we analyze theoretically the mass transport in a time-periodic electroosmotic flow through a parallel flat plate microchannel under different periodic functions of the applied external electric field. The microchannel connects two reservoirs having different constant concentrations of an electro-neutral solute, and the zeta potential of the microchannel walls are assumed to be uniform. The governing equations that allow determining the mass transport in the microchannel are given by the Poisson-Boltzmann equation, the modified Navier-Stokes equations, where the Debye-Hückel approximation is considered (the zeta potential is less than 25 mV), and the species conservation. These equations are nondimensionalized and four dimensionless parameters appear which control the mass transport phenomenon. In this sense, these parameters are an angular Reynolds, the Schmidt and the Péclet numbers, and an electrokinetic parameter representing the ratio of the half-height of the microchannel to the Debye length. To solve the mathematical model, first, the electric potential is determined from the Poisson-Boltzmann equation, which allows determining the electric force for various periodic functions of the external electric field expressed as Fourier series. In particular, three different excitation wave forms of the external electric field are assumed, a) sawteeth, b) step, and c) a periodic irregular functions. The periodic electric forces are substituted in the modified Navier-Stokes equations, and the hydrodynamic field is derived for each case of the electric force. From the obtained velocity fields, the species conservation equation is solved and the concentration fields are found. Numerical calculations were done by considering several binary systems where two dilute species are transported in the presence of a carrier. It is observed that there are different angular frequencies of the imposed external electric signal where the total mass transport of each species is the same, independently of the molecular diffusion coefficient. These frequencies are called crossover frequencies and are obtained graphically at the intersection when the total mass transport is plotted against the imposed frequency. The crossover frequencies are different depending on the Schmidt number, the electrokinetic parameter, the angular Reynolds number, and on the type of signal of the external electric field. It is demonstrated that the mass transport through the microchannel is strongly dependent on the modulation frequency of the applied particular alternating electric field. Possible extensions of the analysis to more complicated pulsation profiles are also outlined.

Keywords: electroosmotic flow, mass transport, oscillatory flow, species separation

Procedia PDF Downloads 191
254 The Challenges of Unemployment Situation and Trends in Nigeria

Authors: Simon Oga Egboja

Abstract:

In Africa, particularly in Nigeria, unemployment is a serious issue of concern to every citizen. Hence, this paper focuses on the employment situation and trends in Nigeria. It also investigated the causes why unemployment persists in the country. Prominent among them is the population explosion and rapid expansion of education opportunities all over the country without a corresponding increase in industrial establishment. The paper also discusses the way of reducing the rate of unemployment by encouraging graduates of tertiary institutions in Nigeria to read professional courses and also to indulge in the habit of establishing small-scale enterprises so that after them school they can be self-employed rather than relying solely on government for employment.

Keywords: causes, population, remedy, unemployment

Procedia PDF Downloads 230
253 Synthesis, Spectral, Thermal, Optical and Dielectric Studies of Some Organic Arylidene Derivatives

Authors: S. Sathiyamoorthi, P. Srinivasan, K. Suganya Devi

Abstract:

Arylidene derivatives are the subclass of chalcone derivatives. Chalcone derivatives are studied widely for the past decade because of its nonlinearity. To seek new organic group of crystals which suit for fabrication of optical devices, three-member organic arylidene crystals were synthesized by using Claisen–Schmidt condensation reaction. Good quality crystals were grown by slow evaporation method. Functional groups were identified by FT-IR and FT-Raman spectrum. Optical transparency and optical band gap were determined by UV-Vis-IR studies. Thermal stability and melting point were calculated using TGA and DSC. Variation of dielectric loss and dielectric constant with frequency were calculated by dielectric measurement.

Keywords: DSC and TGA studies, nonlinear optic studies, Fourier Transform Infrared Spectroscopy, UV-vis-NIR spectra

Procedia PDF Downloads 269
252 Optimization Based Obstacle Avoidance

Authors: R. Dariani, S. Schmidt, R. Kasper

Abstract:

Based on a non-linear single track model which describes the dynamics of vehicle, an optimal path planning strategy is developed. Real time optimization is used to generate reference control values to allow leading the vehicle alongside a calculated lane which is optimal for different objectives such as energy consumption, run time, safety or comfort characteristics. Strict mathematic formulation of the autonomous driving allows taking decision on undefined situation such as lane change or obstacle avoidance. Based on position of the vehicle, lane situation and obstacle position, the optimization problem is reformulated in real-time to avoid the obstacle and any car crash.

Keywords: autonomous driving, obstacle avoidance, optimal control, path planning

Procedia PDF Downloads 336
251 An Investigation on Ultrasonic Pulse Velocity of Hybrid Fiber Reinforced Concretes

Authors: Soner Guler, Demet Yavuz, Refik Burak Taymuş, Fuat Korkut

Abstract:

Because of the easy applying and not costing too much, ultrasonic pulse velocity (UPV) is one of the most used non-destructive techniques to determine concrete characteristics along with impact-echo, Schmidt rebound hammer (SRH) and pulse-echo. This article investigates the relationship between UPV and compressive strength of hybrid fiber reinforced concretes. Water/cement ratio (w/c) was kept at 0.4 for all concrete mixes. Compressive strength of concrete was targeted at 35 MPa. UPV testing and compressive strength tests were carried out at the curing age of 28 days. The UPV of concrete containing steel fibers has been found to be higher than plain concrete for all the testing groups. It is decided that there is not a certain relationship between fiber addition and strength.

Keywords: ultrasonic pulse velocity, hybrid fiber, compressive strength, fiber

Procedia PDF Downloads 318
250 Spectral Analysis Applied to Variables of Oil Wells Profiling

Authors: Suzana Leitão Russo, Mayara Laysa de Oliveira Silva, José Augusto Andrade Filho, Vitor Hugo Simon

Abstract:

Currently, seismic methods and prospecting methods are commonly applied in the oil industry and, according to the information reported every day; oil is a source of non-renewable energy. It is easier to understand why the ownership of areas of oil extraction is coveted by many nations. It is necessary to think about ways that will enable the maximization of oil production. The technique of spectral analysis can be used to analyze the behavior of the variables already defined in oil well the profile. The main objective is to verify the series dependence of variables, and to model the variables using the frequency domain to observe the model residuals.

Keywords: oil, well, spectral analysis, oil extraction

Procedia PDF Downloads 497
249 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks

Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han

Abstract:

In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.

Keywords: underwater concrete, rebound hardness, Schmidt hammer, ultrasonic pulse velocity, ultrasonic sensor, artificial neural networks, ANN

Procedia PDF Downloads 489
248 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.

Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning

Procedia PDF Downloads 195