Search results for: K doped ZnO
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 536

Search results for: K doped ZnO

56 Realization and Characterizations of Conducting Ceramics Based on ZnO Doped by TiO₂, Al₂O₃ and MgO

Authors: Qianying Sun, Abdelhadi Kassiba, Guorong Li

Abstract:

ZnO with wurtzite structure is a well-known semiconducting oxide (SCO), being applied in thermoelectric devices, varistors, gas sensors, transparent electrodes, solar cells, liquid crystal displays, piezoelectric and electro-optical devices. Intrinsically, ZnO is weakly n-type SCO due to native defects (Znⱼ, Vₒ). However, the substitutional doping by metallic elements as (Al, Ti) gives rise to a high n-type conductivity ensured by donor centers. Under CO+N₂ sintering atmosphere, Schottky barriers of ZnO ceramics will be suppressed by lowering the concentration of acceptors at grain boundaries and then inducing a large increase in the Hall mobility, thereby increasing the conductivity. The presented work concerns ZnO based ceramics, which are fabricated with doping by TiO₂ (0.50mol%), Al₂O₃ (0.25mol%) and MgO (1.00mol%) and sintering in different atmospheres (Air (A), N₂ (N), CO+N₂(C)). We obtained uniform, dense ceramics with ZnO as the main phase and Zn₂TiO₄ spinel as a secondary and minor phase. An important increase of the conductivity was shown for the samples A, N, and C which were sintered under different atmospheres. The highest conductivity (σ = 1.52×10⁵ S·m⁻¹) was obtained under the reducing atmosphere (CO). The role of doping was investigated with the aim to identify the local environment and valence states of the doping elements. Thus, Electron paramagnetic spectroscopy (EPR) determines the concentration of defects and the effects of charge carriers in ZnO ceramics as a function of the sintering atmospheres. The relation between conductivity and defects concentration shows the opposite behavior between these parameters suggesting that defects act as traps for charge carriers. For Al ions, nuclear magnetic resonance (NMR) technique was used to identify the involved local coordination of these ions. Beyond the six and forth coordinated Al, an additional NMR signature of ZnO based TCO requires analysis taking into account the grain boundaries and the conductivity through the Knight shift effects. From the thermal evolution of the conductivity as a function of the sintering atmosphere, we succeed in defining the conditions to realize ZnO based TCO ceramics with an important thermal coefficient of resistance (TCR) which is promising for electrical safety of devices.

Keywords: ceramics, conductivity, defects, TCO, ZnO

Procedia PDF Downloads 160
55 One Pot Synthesis of Ultrasmall NiMo Catalysts Supported on Amorphous Alumina with Enhanced type 2 Sites for Hydrodesulfurization Reaction: A Combined Experimental and Theoretical Study

Authors: Shalini Arora, Sri Sivakumar

Abstract:

The deep removal of high molecular weight sulphur compounds (e.g., 4,6, dimethyl dibenzothiophene) is challenging due to their steric hindrance. Hydrogenation desulfurization (HYD) pathway is the main pathway to remove these sulfur compounds, and it is mainly governed by the number of type 2 sites. The formation of type 2 sites can be enhanced by modulating the pore structure and the interaction between the active metal and support. To this end, we report the enhanced HDS catalytic activity of ultrasmall NiMo supported on amorphous alumina (A-Al₂O₃) catalysts by one pot colloidal synthesis method followed by calcination and sulfidation. The amorphous alumina (A-Al₂O₃) was chosen as the support due to its lower surface energy, better physicochemical properties, and enhanced acidic sites (due to the dominance of tetra and penta coordinated [Al] sites) than crystalline alumina phase. At 20% metal oxide composition, NiMo supported on A-Al₂O₃ catalyst showed 1.4 and 1.2 times more reaction rate constant and turn over frequency (TOF) respectively than the conventional catalyst (wet impregnated NiMo catalysts) for HDS reaction of dibenzothiophene reactant molecule. A-Al₂O₃ supported catalysts represented enhanced type 2 sites formation (because this catalystpossesses higher sulfidation degree (80%) and NiMoS sites (19.3 x 10¹⁷ sites/mg) with desired optimum stacking degree (2.5) than wet impregnated catalyst at same metal oxide composition 20%) along with higher active metal dispersion, Mo edge site fraction. The experimental observations were also supported by DFT simulations. Lower heat of adsorption (< 4.2 ev for MoS2 interaction and < 3.15 ev for Ni doped MoS2 interaction) values for A-Al₂O₃ confirmed the presence of weaker metal-support interaction in A-Al₂O₃ in contrast to crystalline ℽ-Al₂O3. The weak metal-support interaction for prepared catalysts clearly suggests the higher formation of type 2 sites which leads to higher catalytic activity for HDS reaction.

Keywords: amorphous alumina, colloidal, desulfurization, metal-support interaction

Procedia PDF Downloads 236
54 A Selective and Fast Hydrogen Sensor Using Doped-LaCrO₃ as Sensing Electrode

Authors: He Zhang, Jianxin Yi

Abstract:

As a clean energy, hydrogen shows many advantages such as renewability, high heat value, and extensive sources and may play an important role in the future society. However, hydrogen is a combustible gas because of its low ignition energy (0.02mJ) and wide explosive limit (4% ~ 74% in air). It is very likely to cause fire hazard or explosion once leakage is happened and not detected in time. Mixed-potential type sensor has attracted much attention in monitoring and detecting hydrogen due to its high response, simple support electronics and long-term stability. Typically, this kind of sensor is consisted of a sensing electrode (SE), a reference electrode (RE) and a solid electrolyte. The SE and RE materials usually display different electrocatalytic abilities to hydrogen. So hydrogen could be detected by measuring the EMF change between the two electrodes. Previous reports indicate that a high-performance sensing electrode is important for improving the sensing characteristics of the sensor. In this report, a planar type mixed-potential hydrogen sensor using La₀.₈Sr₀.₂Cr₀.₅Mn₀.₅O₃₋δ (LSCM) as SE, Pt as RE and yttria-stabilized zirconia (YSZ) as solid electrolyte was developed. The reason for selecting LSCM as sensing electrode is that it shows the high electrocatalytic ability to hydrogen in solid oxide fuel cells. The sensing performance of the fabricated LSCM/YSZ/Pt sensor was tested systemically. The experimental results show that the sensor displays high response to hydrogen. The response values for 100ppm and 1000ppm hydrogen at 450 ºC are -70 mV and -118 mV, respectively. The response time is an important parameter to evaluate a sensor. In this report, the sensor response time decreases with increasing hydrogen concentration and get saturated above 500ppm. The steady response time at 450 ºC is as short as 4s, indicating the sensor shows great potential in practical application to monitor hydrogen. An excellent response repeatability to 100ppm hydrogen at 450 ˚C and a good sensor reproducibility among three sensors were also observed. Meanwhile, the sensor exhibits excellent selectivity to hydrogen compared with several interfering gases such as NO₂, CH₄, CO, C₃H₈ and NH₃. Polarization curves were tested to investigate the sensing mechanism and the results indicated the sensor abide by the mixed-potential mechanism.

Keywords: fire hazard, H₂ sensor, mixed-potential, perovskite

Procedia PDF Downloads 149
53 MnO₂-Carbon Nanotubes Catalyst for Enhanced Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cell

Authors: Abidullah, Basharat Hussain, Jong Seok Kim

Abstract:

Polymer electrolyte membrane fuel cell (PEMFC) is an electrochemical cell, which undergoes an oxygen reduction reaction to produce electrical energy. Platinum (Pt) metal has been used as a catalyst since its inception, but expensiveness is the major obstacle in the commercialization of fuel cells. Herein a non-precious group metal (NPGM) is employed instead of Pt to reduce the cost of PEMFCs. Manganese dioxide impregnated carbon nanotubes (MnO₂-CNTs composite) is a catalyst having excellent electrochemical properties and offers a better alternative to the Platinum-based PEMFC. The catalyst is synthesized by impregnating the transition metal on large surface carbonaceous CNTs by hydrothermal synthesis techniques. To enhance the catalytic activity and increase the volumetric current density, the sample was pyrolyzed at 800ᵒC under a nitrogen atmosphere. During pyrolysis, the nitrogen was doped in the framework of CNTs. Then the material was treated with acid for removing the unreacted metals and adding oxygen functional group to the CNT framework. This process ameliorates the catalytic activity of the manganese-based catalyst. The catalyst has been characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and the catalyst activity has been examined by rotating disc electrode (RDE) experiment. The catalyst was strong enough to withstand an austere alkaline environment in experimental conditions and had a high electrocatalytic activity for oxygen reduction reaction (ORR). Linear Sweep Voltammetry (LSV) depicts an excellent current density of -4.0 mA/cm² and an overpotential of -0.3V vs. standard calomel electrode (SCE) in 0.1M KOH electrolyte. Rotating disk electrode (RDE) was conducted at 400, 800, 1200, and 1600 rpm. The catalyst exhibited a higher methanol tolerance and long term durability with respect to commercial Pt/C. The results for MnO₂-CNT show that the low-cost catalyst will supplant the expensive Pt/C catalyst in the fuel cell.

Keywords: carbon nanotubes, methanol fuel cell, oxygen reduction reaction, MnO₂-CNTs

Procedia PDF Downloads 97
52 Studies on Radio Frequency Sputtered Copper Zinc Tin Sulphide Absorber Layers for Thin Film Solar Cells

Authors: G. Balaji, R. Balasundaraprabhu, S. Prasanna, M. D. Kannan, K. Sivakumaran, David Mcilroy

Abstract:

Copper Zin tin sulphide (Cu2ZnSnS4 or CZTS) is found to be better alternative to Copper Indium gallium diselenide as absorber layers in thin film based solar cells due to the utilisation of earth-abundant materials in the midst of lower toxicity. In the present study, Cu2ZnSnS4 thin films were prepared on soda lime glass using (CuS, ZnS, SnS) targets and were deposited by three different stacking orders, using RF Magnetron sputtering. The substrate temperature was fixed at 300 °C during the depositions. CZTS thin films were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and UV-Vis-NIR spectroscopy. All the samples exhibited X-ray peaks pertaining to (112) kesterite phase of CZTS, along with the presence of a predominant wurtzite CZTS phase. X-ray photoelectron spectroscopy revealed the presence of all the elements in all the samples. The change in stacking order clearly shows that it affects the structural and phase properties of the films. Relative atomic concentrations of Zn, Cu, Sn and S, which are determined by high-resolution XPS core level spectra integrated peak areas revealed that the CZTS films exhibit inhomogeneity in both stoichiometry and elemental composition. Raman spectroscopy studies on the film showed the presence of CZTS phase. The energy band gap of the CZTS thin films was found to be in the range of 1.5 eV to 1.6 eV. The films were then annealed at 450 °C for 5 hrs and it was found that the predominant nature of the X-ray peaks has transformed from Wurtzite to Kesterite phase which is highly desirable for absorber layers in thin film solar cells. The optimized CZTS layer was used as an absorber layer in thin film solar cells. ZnS and CdS were used as buffer layers which in turn prepared by Hot wall epitaxy technique. Gallium doped Zinc oxide was used as a transparent conducting oxide. The solar cell structure Glass/Mo/CZTS/CdS or ZnS/GZO has been fabricated, and solar cell parameters were measured.

Keywords: earth-abundant, Kesterite, RF sputtering, thin film solar cells

Procedia PDF Downloads 258
51 Magnetic Bio-Nano-Fluids for Hyperthermia

Authors: Z. Kolacinski, L. Szymanski. G. Raniszewski, D. Koza, L. Pietrzak

Abstract:

Magnetic Bio-Nano-Fluid (BNF) can be composed of a buffer fluid such as plasma and magnetic nanoparticles such as iron, nickel, cobalt and their oxides. However iron is one of the best elements for magnetization by electromagnetic radiation. It can be used as a tool for medical diagnosis and treatment. Radio frequency (RF) radiation is able to heat iron nanoparticles due to magnetic hysteresis. Electromagnetic heating of iron nanoparticles and ferro-fluids BNF can be successfully used for non-invasive thermal ablation of cancer cells. Moreover iron atoms can be carried by carbon nanotubes (CNTs) if iron is used as catalyst for CNTs synthesis. Then CNTs became the iron containers and they screen the iron content against oxidation. We will present a method of CNTs addressing to the required cells. For thermal ablation of cancer cells we use radio frequencies for which the interaction with human body should be limited to minimum. Generally, the application of RF energy fields for medical treatment is justified by deep tissue penetration. The highly iron doped CNTs as the carriers creating magnetic fluid will be presented. An excessive catalyst injection method using electrical furnace and microwave plasma reactor will be presented. This way it is possible to grow the Fe filled CNTs on a moving surface in continuous synthesis process. This also allows producing uniform carpet of the Fe filled CNTs carriers. For the experimental work targeted to cell ablation we used RF generator to measure the increase in temperature for some samples like: solution of Fe2O3 in BNF which can be plasma-like buffer, solutions of pure iron of different concentrations in plasma-like buffer and in buffer used for a cell culture, solutions of carbon nanotubes (MWCNTs) of different concentrations in plasma-like buffer and in buffer used for a cell culture. Then the targeted therapies which can be effective if the carriers are able to distinguish the difference between cancerous and healthy cell’s physiology are considered. We have developed an approach based on ligand-receptor or antibody-antigen interactions for the case of colon cancer.

Keywords: cancer treatment, carbon nano tubes, drag delivery, hyperthermia, iron

Procedia PDF Downloads 388
50 H2/He and H2O/He Separation Experiments with Zeolite Membranes for Nuclear Fusion Applications

Authors: Rodrigo Antunes, Olga Borisevich, David Demange

Abstract:

In future nuclear fusion reactors, tritium self-sufficiency will be ensured by tritium (3H) production via reactions between the fusion neutrons and lithium. To favor tritium breeding, a neutron multiplier must also be used. Both tritium breeder and neutron multiplier will be placed in the so-called Breeding Blanket (BB). For the European Helium-Cooled Pebble Bed (HCPB) BB concept, the tritium production and neutron multiplication will be ensured by neutron bombardment of Li4SiO4 and Be pebbles, respectively. The produced tritium is extracted from the pebbles by purging them with large flows of He (~ 104 Nm3h-1), doped with small amounts of H2 (~ 0.1 vol%) to promote tritium extraction via isotopic exchange (producing HT). Due to the presence of oxygen in the pebbles, production of tritiated water is unavoidable. Therefore, the purging gas downstream of the BB will be composed by Q2/Q2O/He (Q = 1H, 2H, 3H), with Q2/Q2O down to ppm levels, which must be further processed for tritium recovery. A two-stage continuous approach, where zeolite membranes (ZMs) are followed by a catalytic membrane reactor (CMR), has been recently proposed to fulfil this task. The tritium recovery from Q2/Q2O/He is ensured by the CMR, that requires a reduction of the gas flow coming from the BB and a pre-concentration of Q2 and Q2O to be efficient. For this reason, and to keep this stage with reasonable dimensions, ZMs are required upfront to reduce as much as possible the He flows and concentrate the Q2/Q2O species. Therefore, experimental activities have been carried out at the Tritium Laboratory Karlsruhe (TLK) to test the separation performances of different zeolite membranes for H2/H2O/He. First experiments have been performed with binary mixtures of H2/He and H2O/He with commercial MFI-ZSM5 and NaA zeolite-type membranes. Only the MFI-ZSM5 demonstrated selectivity towards H2, with a separation factor around 1.5, and H2 permeances around 0.72 µmolm-2s-1Pa-1, rather independent for feed concentrations in the range 0.1 vol%-10 vol% H2/He. The experiments with H2O/He have demonstrated that the separation factor towards H2O is highly dependent on the feed concentration and temperature. For instance, at 0.2 vol% H2O/He the separation factor with NaA is below 2 and around 1000 at 5 vol% H2O/He, at 30°C. Overall, both membranes demonstrated complementary results at equivalent temperatures. In fact, at low feed concentrations ( ≤ 1 vol% H2O/He) MFI-ZSM5 separates better than NaA, whereas the latter has higher separation factors for higher inlet water content ( ≥ 5 vol% H2O/He). In this contribution, the results obtained with both MFI-ZSM5 and NaA membranes for H2/He and H2O/H2 mixtures at different concentrations and temperatures are compared and discussed.

Keywords: nuclear fusion, gas separation, tritium processes, zeolite membranes

Procedia PDF Downloads 265
49 Mn3O4 anchored Broccoli-Flower like Nickel Manganese Selenide Composite for Ultra-efficient Solid-State Hybrid Supercapacitors with Extended Durability

Authors: Siddhant Srivastav, Shilpa Singh, Sumanta Kumar Meher

Abstract:

Innovative renewable energy sources for energy storage/conversion is the demand of the current scenario in electrochemical machinery. In this context, choosing suitable organic precipitants for tuning the crystal characteristics and microstructures is a challenge. On the same note, herein we report broccoli flower-like porous Mn3O4/NiSe2−MnSe2 composite synthesized using a simple two step hydrothermal synthesis procedure assisted by sluggish precipitating agent and an effective cappant followed by intermediated anion exchange. The as-synthesized material was exposed to physical and chemical measurements depicting poly-crystallinity, stronger bonding and broccoli flower-like porous arrangement. The material was assessed electrochemically by cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) measurements. The Electrochemical studies reveal redox behavior, supercapacitive charge-discharge shape and extremely low charge transfer resistance. Further, the fabricated Mn3O4/NiSe2−MnSe2 composite based solid-state hybrid supercapacitor (Mn3O4/NiSe2−MnSe2 ||N-rGO) delivers excellent rate specific capacity, very low internal resistance, with energy density (~34 W h kg–1) of a typical rechargeable battery and power density (11995 W kg–1) of an ultra-supercapacitor. Consequently, it can be a favorable contender for supercapacitor applications for high performance energy storage utilizations. A definitive exhibition of the supercapacitor device is credited to electrolyte-ion buffering reservior alike behavior of broccoli flower like Mn3O4/NiSe2−MnSe2, enhanced by upgraded electronic and ionic conductivities of N- doped rGO (negative electrode) and PVA/KOH gel (electrolyte separator), respectively

Keywords: electrolyte-ion buffering reservoir, intermediated-anion exchange, solid-state hybrid supercapacitor, supercapacitive charge-dischargesupercapacitive charge-discharge

Procedia PDF Downloads 45
48 Zinc Oxide Nanoparticle-Doped Poly (8-Anilino-1-Napthalene Sulphonic Acid/Nat Nanobiosensors for TB Drugs

Authors: Rachel Fanelwa Ajayi, Anovuyo Jonnas, Emmanuel I. Iwuoha

Abstract:

Tuberculosis (TB) is an infectious disease caused by the bacterium (Mycobacterium tuberculosis) which has a predilection for lung tissue due to its rich oxygen supply. The mycobacterial cell has a unique innate characteristic which allows it to resist human immune systems and drug treatments; hence, it is one of the most difficult of all bacterial infections to treat, let alone to cure. At the same time, multi-drug resistance TB (MDR-TB) caused by poorly managed TB treatment, is a growing problem and requires the administration of expensive and less effective second line drugs which take much longer treatment duration than fist line drugs. Therefore, to acknowledge the issues of patients falling ill as a result of inappropriate dosing of treatment and inadequate treatment administration, a device with a fast response time coupled with enhanced performance and increased sensitivity is essential. This study involved the synthesis of electroactive platforms for application in the development of nano-biosensors suitable for the appropriate dosing of clinically diagnosed patients by promptly quantifying the levels of the TB drug; Isonaizid. These nano-biosensors systems were developed on gold surfaces using the enzyme N-acetyletransferase 2 coupled to the cysteamine modified poly(8-anilino-1-napthalene sulphonic acid)/zinc oxide nanocomposites. The morphology of ZnO nanoparticles, PANSA/ZnO nano-composite and nano-biosensors platforms were characterized using High-Resolution Transmission Electron Microscopy (HRTEM) and High-Resolution Scanning Electron Microscopy (HRSEM). On the other hand, the elemental composition of the developed nanocomposites and nano-biosensors were studied using Fourier Transform Infra-Red Spectroscopy (FTIR) and Energy Dispersive X-Ray (EDX). The electrochemical studies showed an increase in electron conductivity for the PANSA/ZnO nanocomposite which was an indication that it was suitable as a platform towards biosensor development.

Keywords: N-acetyletransferase 2, isonaizid, tuberculosis, zinc oxide

Procedia PDF Downloads 343
47 Supramolecular Approach towards Novel Applications: Battery, Band Gap and Gas Separation

Authors: Sudhakara Naidu Neppalli, Tejas S. Bhosale

Abstract:

It is well known that the block copolymer (BCP) can form a complex molecule, through non-covalent bonds such as hydrogen bond, ionic bond and co-ordination bond, with low molecular weight compound as well as with macromolecules, which provide vast applications, includes the alteration of morphology and properties of polymers. Hence we covered the research that, the importance of non-covalent bonds in increasing the non-favourable segmental interactions of the blocks was well examined by attaching and detaching the bonds between the BCP and additive. We also monitored the phase transition of block copolymer and effective interaction parameter (χeff) for Li-doped polymers using small angle x-ray scattering and transmission electron microscopy. The effective interaction parameter (χeff) between two block components was evaluated using Leibler theory based on the incompressible random phase approximation (RPA) for ionized BCP in a disordered state. Furthermore, conductivity experiments demonstrate that the ionic conductivity in the samples quenched from the different structures is morphology-independent, while it increases with increasing ion salt concentration. Morphological transitions, interaction parameter, and thermal stability also examined in quarternized block copolymer. D-spacing was used to estimate effective interaction parameter (χeff) of block components in weak and strong segregation regimes of ordered phase. Metal-containing polymer has been the topic of great attention in recent years due to their wide range of potential application. Similarly, metal- ligand complex is used as a supramolecular linker between the polymers giving rise to a ‘Metallo-Supramolecule assembly. More precisely, functionalized polymer end capped with 2, 2’:6’, 2”- terpyridine ligand can be selectively complexed with wide range of transition metal ions and then subsequently attached to other terpyridine terminated polymer block. In compare to other supramolecular assembly, BCP involved metallo-supramolecule assembly offers vast applications such as optical activity, electrical conductivity, luminescence and photo refractivity.

Keywords: band gap, block copolymer, conductivity, interaction parameter, phase transition

Procedia PDF Downloads 138
46 Biodegradable Polymeric Vesicles Containing Magnetic Nanoparticles, Quantum Dots and Anticancer Drugs for Drug Delivery and Imaging

Authors: Fei Ye, Åsa Barrefelt, Manuchehr Abedi-Valugerdi, Khalid M. Abu-Salah, Salman A. Alrokayan, Mamoun Muhammed, Moustapha Hassan

Abstract:

With appropriate encapsulation in functional nanoparticles drugs are more stable in physiological environment and the kinetics of the drug can be more carefully controlled and monitored. Furthermore, targeted drug delivery can be developed to improve chemotherapy in cancer treatment, not only by enhancing intracellular uptake by target cells but also by reducing the adverse effects in non-target organs. Inorganic imaging agents, delivered together with anti-cancer drugs, enhance the local imaging contrast and provide precise diagnosis as well as evaluation of therapy efficacy. We have developed biodegradable polymeric vesicles as a nanocarrier system for multimodal bio-imaging and anticancer drug delivery. The poly (lactic-co-glycolic acid) PLGA) vesicles were fabricated by encapsulating inorganic imaging agents of superparamagnetic iron oxide nanoparticles (SPION), manganese-doped zinc sulfide (MN:ZnS) quantum dots (QDs) and the anticancer drug busulfan into PLGA nanoparticles via an emulsion-evaporation method. T2-weighted magnetic resonance imaging (MRI) of PLGA-SPION-Mn:ZnS phantoms exhibited enhanced negative contrast with r2 relaxivity of approximately 523 s-1 mM-1 Fe. Murine macrophage (J774A) cellular uptake of PLGA vesicles started fluorescence imaging at 2 h and reached maximum intensity at 24 h incubation. The drug delivery ability PLGA vesicles was demonstrated in vitro by release of busulfan. PLGA vesicles degradation was studied in vitro, showing that approximately 32% was degraded into lactic and glycolic acid over a period of 5 weeks. The biodistribution of PLGA vesicles was investigated in vivo by MRI in a rat model. Change of contrast in the liver could be visualized by MRI after 7 min and maximal signal loss detected after 4 h post-injection of PLGA vesicles. Histological studies showed that the presence of PLGA vesicles in organs was shifted from the lungs to the liver and spleen over time.

Keywords: biodegradable polymers, multifunctional nanoparticles, quantum dots, anticancer drugs

Procedia PDF Downloads 443
45 An Electrochemical Enzymatic Biosensor Based on Multi-Walled Carbon Nanotubes and Poly (3,4 Ethylenedioxythiophene) Nanocomposites for Organophosphate Detection

Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar

Abstract:

The most controversial issue in crop production is the use of Organophosphate insecticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. OPs detection is of crucial importance for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). Substrate kinetics has been performed and studied for the determination of Michaelis Menten constant. The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared biosensor is observed to be 30 days and seven times, respectively. The application of the developed biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed biosensor made them reliable, sensitive and a low cost process.

Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, biosensor, oxime (2-PAM)

Procedia PDF Downloads 421
44 The Effects of Addition of Chloride Ions on the Properties of ZnO Nanostructures Grown by Electrochemical Deposition

Authors: L. Mentar, O. Baka, A. Azizi

Abstract:

Zinc oxide as a wide band semiconductor materials, especially nanostructured materials, have potential applications in large-area such as electronics, sensors, photovoltaic cells, photonics, optical devices and optoelectronics due to their unique electrical and optical properties and surface properties. The feasibility of ZnO for these applications is due to the successful synthesis of diverse ZnO nanostructures, including nanorings, nanobows, nanohelixes, nanosprings, nanobelts, nanotubes, nanopropellers, nanodisks, and nanocombs, by different method. Among various synthesis methods, electrochemical deposition represents a simple and inexpensive solution based method for synthesis of semiconductor nanostructures. In this study, the electrodeposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate as TCO from chloride bath. We present a systematic study on the effects of the concentration of chloride anion on the properties of ZnO. The influence of KCl concentrations on the electrodeposition process, morphological, structural and optical properties of ZnO nanostructures was examined. In this research electrochemical deposition of ZnO nanostructures is investigated using conventional electrochemical measurements (cyclic voltammetry and Mott-Schottky), scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. The potentials of electrodeposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. SEM images shows different size and morphology of the nanostructures and depends greatly on the KCl concentrations. The morphology of ZnO nanostructures is determined by the corporated action between [Zn(NO3)2] and [Cl-].Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. XRD studies revealed that the all deposited films were polycrystalline in nature with wurtzite phase. The electrodeposited thin films are found to have preferred oriented along (002) plane of the wurtzite structure of ZnO with c-axis normal to the substrate surface for sample at different concentrations of KCl. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV.

Keywords: electrodeposition, ZnO, chloride ions, Mott-Schottky, SEM, XRD

Procedia PDF Downloads 264
43 Enhanced Performance of Supercapacitor Based on Boric Acid Doped Polyvinyl Alcohol-H₂SO₄ Gel Polymer Electrolyte System

Authors: Hamide Aydin, Banu Karaman, Ayhan Bozkurt, Umran Kurtan

Abstract:

Recently, Proton Conducting Gel Polymer Electrolytes (GPEs) have drawn much attention in supercapacitor applications due to their physical and electrochemical characteristics and stability conditions for low temperatures. In this research, PVA-H2SO4-H3BO3 GPE has been used for electric-double layer capacitor (EDLCs) application, in which electrospun free-standing carbon nanofibers are used as electrodes. Introduced PVA-H2SO4-H3BO3 GPE behaves as both separator and the electrolyte in the supercapacitor. Symmetric Swagelok cells including GPEs were assembled via using two electrode arrangements and the electrochemical properties were searched. Electrochemical performance studies demonstrated that PVA-H2SO4-H3BO3 GPE had a maximum specific capacitance (Cs) of 134 F g-1 and showed great capacitance retention (%100) after 1000 charge/discharge cycles. Furthermore, PVA-H2SO4-H3BO3 GPE yielded an energy density of 67 Wh kg-1 with a corresponding power density of 1000 W kg-1 at a current density of 1 A g-1. PVA-H2SO4 based polymer electrolyte was produced according to following procedure; Firstly, 1 g of commercial PVA was dissolved in distilled water at 90°C and stirred until getting transparent solution. This was followed by addition of the diluted H2SO4 (1 g of H2SO4 in a distilled water) to the solution to obtain PVA-H2SO4. PVA-H2SO4-H3BO3 based polymer electrolyte was produced by dissolving H3BO3 in hot distilled water and then inserted into the PVA-H2SO4 solution. The mole fraction was arranged to ¼ of the PVA repeating unit. After the stirring 2 h at RT, gel polymer electrolytes were obtained. The final electrolytes for supercapacitor testing included 20% of water in weight. Several blending combinations of PVA/H2SO4 and H3BO3 were studied to observe the optimized combination in terms of conductivity as well as electrolyte stability. As the amount of boric acid increased in the matrix, excess sulfuric acid was excluded due to cross linking, especially at lower solvent content. This resulted in the reduction of proton conductivity. Therefore, the mole fraction of H3BO3 was chosen as ¼ of PVA repeating unit. Within this optimized limits, the polymer electrolytes showed better conductivities as well as stability.

Keywords: electrical double layer capacitor, energy density, gel polymer electrolyte, ultracapacitor

Procedia PDF Downloads 176
42 DNA Nano Wires: A Charge Transfer Approach

Authors: S. Behnia, S. Fathizadeh, A. Akhshani

Abstract:

In the recent decades, DNA has increasingly interested in the potential technological applications that not directly related to the coding for functional proteins that is the expressed in form of genetic information. One of the most interesting applications of DNA is related to the construction of nanostructures of high complexity, design of functional nanostructures in nanoelectronical devices, nanosensors and nanocercuits. In this field, DNA is of fundamental interest to the development of DNA-based molecular technologies, as it possesses ideal structural and molecular recognition properties for use in self-assembling nanodevices with a definite molecular architecture. Also, the robust, one-dimensional flexible structure of DNA can be used to design electronic devices, serving as a wire, transistor switch, or rectifier depending on its electronic properties. In order to understand the mechanism of the charge transport along DNA sequences, numerous studies have been carried out. In this regard, conductivity properties of DNA molecule could be investigated in a simple, but chemically specific approach that is intimately related to the Su-Schrieffer-Heeger (SSH) model. In SSH model, the non-diagonal matrix element dependence on intersite displacements is considered. In this approach, the coupling between the charge and lattice deformation is along the helix. This model is a tight-binding linear nanoscale chain established to describe conductivity phenomena in doped polyethylene. It is based on the assumption of a classical harmonic interaction between sites, which is linearly coupled to a tight-binding Hamiltonian. In this work, the Hamiltonian and corresponding motion equations are nonlinear and have high sensitivity to initial conditions. Then, we have tried to move toward the nonlinear dynamics and phase space analysis. Nonlinear dynamics and chaos theory, regardless of any approximation, could open new horizons to understand the conductivity mechanism in DNA. For a detailed study, we have tried to study the current flowing in DNA and investigated the characteristic I-V diagram. As a result, It is shown that there are the (quasi-) ohmic areas in I-V diagram. On the other hand, the regions with a negative differential resistance (NDR) are detectable in diagram.

Keywords: DNA conductivity, Landauer resistance, negative di erential resistance, Chaos theory, mean Lyapunov exponent

Procedia PDF Downloads 395
41 Spectroscopic Studies and Reddish Luminescence Enhancement with the Increase in Concentration of Europium Ions in Oxy-Fluoroborate Glasses

Authors: Mahamuda Sk, Srinivasa Rao Allam, Vijaya Prakash G.

Abstract:

The different concentrations of Eu3+ ions doped in Oxy-fluoroborate glasses of composition 60 B2O3-10 BaF2-10 CaF2-15 CaF2- (5-x) Al2O3 -x Eu2O3 where x = 0.1, 0.5, 1.0 and 2.0 mol%, have been prepared by conventional melt quenching technique and are characterized through absorption and photoluminescence (PL), decay, color chromaticity and Confocal measurements. The absorption spectra of all the glasses consists of six peaks corresponding to the transitions 7F0→5D2, 7F0→5D1, 7F1→5D1, 7F1→5D0, 7F0→7F6 and 7F1→7F6 respectively. The experimental oscillator strengths with and without thermal corrections have been evaluated using absorption spectra. Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4) have been evaluated from the photoluminescence spectra of all the glasses. PL spectra of all the glasses have been recorded at excitation wavelengths 395 nm (conventional excitation source) and 410 nm (diode laser) to observe the intensity variation in the PL spectra. All the spectra consists of five emission peaks corresponding to the transitions 5D0→7FJ (J = 0, 1, 2, 3 and 4). Surprisingly no concentration quenching is observed on PL spectra. Among all the glasses the glass with 2.0 mol% of Eu3+ ion concentration possesses maximum intensity for the transition 5D0→7F2 (612 nm) in bright red region. The JO parameters derived from the photoluminescence spectra have been used to evaluate the essential radiative properties such as transition probability (A), radiative lifetime (τR), branching ratio (βR) and peak stimulated emission cross-section (σse) for the 5D0→7FJ (J = 0, 1, 2, 3 and 4) transitions of the Eu3+ ions. The decay rates of the 5D0 fluorescent level of Eu3+ ions in the title glasses are found to be single exponential for all the studied Eu3+ ion concentrations. A marginal increase in lifetime of the 5D0 level has been noticed with increase in Eu3+ ion concentration from 0.1 mol% to 2.0 mol%. Among all the glasses, the glass with 2.0 mol% of Eu3+ ion concentration possesses maximum values of branching ratio, stimulated emission cross-section and quantum efficiency for the transition 5D0→7F2 (612 nm) in bright red region. The color chromaticity coordinates are also evaluated to confirm the reddish luminescence from these glasses. These color coordinates exactly fall in the bright red region. Confocal images also recorded to confirm reddish luminescence from these glasses. From all the obtained results in the present study, it is suggested that the glass with 2.0 mol% of Eu3+ ion concentration is suitable to emit bright red color laser.

Keywords: Europium, Judd-Ofelt parameters, laser, luminescence

Procedia PDF Downloads 212
40 Stretchable and Flexible Thermoelectric Polymer Composites for Self-Powered Volatile Organic Compound Vapors Detection

Authors: Petr Slobodian, Pavel Riha, Jiri Matyas, Robert Olejnik, Nuri Karakurt

Abstract:

Thermoelectric devices generate an electrical current when there is a temperature gradient between the hot and cold junctions of two dissimilar conductive materials typically n-type and p-type semiconductors. Consequently, also the polymeric semiconductors composed of polymeric matrix filled by different forms of carbon nanotubes with proper structural hierarchy can have thermoelectric properties which temperature difference transfer into electricity. In spite of lower thermoelectric efficiency of polymeric thermoelectrics in terms of the figure of merit, the properties as stretchability, flexibility, lightweight, low thermal conductivity, easy processing, and low manufacturing cost are advantages in many technological and ecological applications. Polyethylene-octene copolymer based highly elastic composites filled with multi-walled carbon nanotubes (MWCTs) were prepared by sonication of nanotube dispersion in a copolymer solution followed by their precipitation pouring into non-solvent. The electronic properties of MWCNTs were moderated by different treatment techniques such as chemical oxidation, decoration by Ag clusters or addition of low molecular dopants. In this concept, for example, the amounts of oxygenated functional groups attached on MWCNT surface by HNO₃ oxidation increase p-type charge carriers. p-type of charge carriers can be further increased by doping with molecules of triphenylphosphine. For partial altering p-type MWCNTs into less p-type ones, Ag nanoparticles were deposited on MWCNT surface and then doped with 7,7,8,8-tetracyanoquino-dimethane. Both types of MWCNTs with the highest difference in generated thermoelectric power were combined to manufacture polymeric based thermoelectric module generating thermoelectric voltage when the temperature difference is applied between hot and cold ends of the module. Moreover, it was found that the generated voltage by the thermoelectric module at constant temperature gradient was significantly affected when exposed to vapors of different volatile organic compounds representing then a self-powered thermoelectric sensor for chemical vapor detection.

Keywords: carbon nanotubes, polymer composites, thermoelectric materials, self-powered gas sensor

Procedia PDF Downloads 123
39 CeO₂-Decorated Graphene-coated Nickel Foam with NiCo Layered Double Hydroxide for Efficient Hydrogen Evolution Reaction

Authors: Renzhi Qi, Zhaoping Zhong

Abstract:

Under the dual pressure of the global energy crisis and environmental pollution, avoiding the consumption of non-renewable fossil fuels based on carbon as the energy carrier and developing and utilizing non-carbon energy carriers are the basic requirements for the future new energy economy. Electrocatalyst for water splitting plays an important role in building sustainable and environmentally friendly energy conversion. The oxygen evolution reaction (OER) is essentially limited by the slow kinetics of multi-step proton-electron transfer, which limits the efficiency and cost of water splitting. In this work, CeO₂@NiCo-NRGO/NF hybrid materials were prepared using nickel foam (NF) and nitrogen-doped reduced graphene oxide (NRGO) as conductive substrates by multi-step hydrothermal method and were used as highly efficient catalysts for OER. The well-connected nanosheet array forms a three-dimensional (3D) network on the substrate, providing a large electrochemical surface area with abundant catalytic active sites. The doping of CeO₂ in NiCo-NRGO/NF electrocatalysts promotes the dispersion of substances and its synergistic effect in promoting the activation of reactants, which is crucial for improving its catalytic performance against OER. The results indicate that CeO₂@NiCo-NRGO/NF only requires a lower overpotential of 250 mV to drive the current density of 10 mA cm-2 for an OER reaction of 1 M KOH, and exhibits excellent stability at this current density for more than 10 hours. The double layer capacitance (Cdl) values show that CeO₂@NiCo-NRGO/NF significantly affects the interfacial conductivity and electrochemically active surface area. The hybrid structure could promote the catalytic performance of oxygen evolution reaction, such as low initial potential, high electrical activity, and excellent long-term durability. The strategy for improving the catalytic activity of NiCo-LDH can be used to develop a variety of other electrocatalysts for water splitting.

Keywords: CeO₂, reduced graphene oxide, NiCo-layered double hydroxide, oxygen evolution reaction

Procedia PDF Downloads 31
38 Impact of the Oxygen Content on the Optoelectronic Properties of the Indium-Tin-Oxide Based Transparent Electrodes for Silicon Heterojunction Solar Cells

Authors: Brahim Aissa

Abstract:

Transparent conductive oxides (TCOs) used as front electrodes in solar cells must feature simultaneously high electrical conductivity, low contact resistance with the adjacent layers, and an appropriate refractive index for maximal light in-coupling into the device. However, these properties may conflict with each other, motivating thereby the search for TCOs with high performance. Additionally, due to the presence of temperature sensitive layers in many solar cell designs (for example, in thin-film silicon and silicon heterojunction (SHJ)), low-temperature deposition processes are more suitable. Several deposition techniques have been already explored to fabricate high-mobility TCOs at low temperatures, including sputter deposition, chemical vapor deposition, and atomic layer deposition. Among this variety of methods, to the best of our knowledge, magnetron sputtering deposition is the most established technique, despite the fact that it can lead to damage of underlying layers. The Sn doped In₂O₃ (ITO) is the most commonly used transparent electrode-contact in SHJ technology. In this work, we studied the properties of ITO thin films grown by RF sputtering. Using different oxygen fraction in the argon/oxygen plasma, we prepared ITO films deposited on glass substrates, on one hand, and on a-Si (p and n-types):H/intrinsic a-Si/glass substrates, on the other hand. Hall Effect measurements were systematically conducted together with total-transmittance (TT) and total-reflectance (TR) spectrometry. The electrical properties were drastically affected whereas the TT and TR were found to be slightly impacted by the oxygen variation. Furthermore, the time of flight-secondary ion mass spectrometry (TOF-SIMS) technique was used to determine the distribution of various species throughout the thickness of the ITO and at various interfaces. The depth profiling of indium, oxygen, tin, silicon, phosphorous, boron and hydrogen was investigated throughout the various thicknesses and interfaces, and obtained results are discussed accordingly. Finally, the extreme conditions were selected to fabricate rear emitter SHJ devices, and the photovoltaic performance was evaluated; the lower oxygen flow ratio was found to yield the best performance attributed to lower series resistance.

Keywords: solar cell, silicon heterojunction, oxygen content, optoelectronic properties

Procedia PDF Downloads 125
37 Tunable Crystallinity of Zinc Gallogermanate Nanoparticles via Organic Ligand-Assisted Biphasic Hydrothermal Synthesis

Authors: Sarai Guerrero, Lijia Liu

Abstract:

Zinc gallogermanate (ZGGO) is a persistent phosphor that can emit in the near infrared (NIR) range once dopped with Cr³⁺ enabling its use for in-vivo deep-tissue bio-imaging. Such a property also allows for its application in cancer diagnosis and therapy. Given this, work into developing a synthetic procedure that can be done using common laboratory instruments and equipment as well as understanding ZGGO overall, is in demand. However, the ZGGO nanoparticles must have a size compatible for cell intake to occur while still maintaining sufficient photoluminescence. The nanoparticle must also be made biocompatible by functionalizing the surface for hydrophilic solubility and for high particle uniformity in the final product. Additionally, most research is completed on doped ZGGO, leaving a gap in understanding the base form of ZGGO. It also leaves a gap in understanding how doping affects the synthesis of ZGGO. In this work, the first step of optimizing the particle size via the crystalline size of ZGGO was done with undoped ZGGO using the organic acid, oleic acid (OA) for organic ligand-assisted biphasic hydrothermal synthesis. The effects of this synthesis procedure on ZGGO’s crystallinity were evaluated using Powder X-Ray Diffraction (PXRD). OA was selected as the capping ligand as experiments have shown it beneficial in synthesizing sub-10 nm zinc gallate (ZGO) nanoparticles as well as palladium nanocrystals and magnetite (Fe₃O₄) nanoparticles. Later it is possible to substitute OA with a different ligand allowing for hydrophilic solubility. Attenuated Total Reflection Fourier-Transform Infrared (ATR-FTIR) was used to investigate the surface of the nanoparticle to investigate and verify that OA had capped the nanoparticle. PXRD results showed that using this procedure led to improved crystallinity, comparable to the high-purity reagents used on the ZGGO nanoparticles. There was also a change in the crystalline size of the ZGGO nanoparticles. ATR-FTIR showed that once capped ZGGO cannot be annealed as doing so will affect the OA. These results point to this new procedure positively affecting the crystallinity of ZGGO nanoparticles. There are also repeatable implying the procedure is a reliable source of highly crystalline ZGGO nanoparticles. With this completed, the next step will be working on substituting the OA with a hydrophilic ligand. As these ligands effect the solubility of the nanoparticle as well as the pH that the nanoparticles can dissolve in, further research is needed to verify which ligand is best suited for preparing ZGGO for bio-imaging.

Keywords: biphasic hydrothermal synthesis, crystallinity, oleic acid, zinc gallogermanate

Procedia PDF Downloads 97
36 Production, Characterisation and Assessment of Biomixture Fuels for Compression Ignition Engine Application

Authors: K. Masera, A. K. Hossain

Abstract:

Hardly any neat biodiesel satisfies the European EN14214 standard for compression ignition engine application. To satisfy the EN14214 standard, various additives are doped into biodiesel; however, biodiesel additives might cause other problems such as increase in the particular emission and increased specific fuel consumption. In addition, the additives could be expensive. Considering the increasing level of greenhouse gas GHG emissions and fossil fuel depletion, it is forecasted that the use of biodiesel will be higher in the near future. Hence, the negative aspects of the biodiesel additives will likely to gain much more importance and need to be replaced with better solutions. This study aims to satisfy the European standard EN14214 by blending the biodiesels derived from sustainable feedstocks. Waste Cooking Oil (WCO) and Animal Fat Oil (AFO) are two sustainable feedstocks in the EU (including the UK) for producing biodiesels. In the first stage of the study, these oils were transesterified separately and neat biodiesels (W100 & A100) were produced. Secondly, the biodiesels were blended together in various ratios: 80% WCO biodiesel and 20% AFO biodiesel (W80A20), 60% WCO biodiesel and 40% AFO biodiesel (W60A40), 50% WCO biodiesel and 50% AFO biodiesel (W50A50), 30% WCO biodiesel and 70% AFO biodiesel (W30A70), 10% WCO biodiesel and 90% AFO biodiesel (W10A90). The prepared samples were analysed using Thermo Scientific Trace 1300 Gas Chromatograph and ISQ LT Mass Spectrometer (GC-MS). The GS-MS analysis gave Fatty Acid Methyl Ester (FAME) breakdowns of the fuel samples. It was found that total saturation degree of the samples was linearly increasing (from 15% for W100 to 54% for A100) as the percentage of the AFO biodiesel was increased. Furthermore, it was found that WCO biodiesel was mainly (82%) composed of polyunsaturated FAMEs. Cetane numbers, iodine numbers, calorific values, lower heating values and the densities (at 15 oC) of the samples were estimated by using the mass percentages data of the FAMEs. Besides, kinematic viscosities (at 40 °C and 20 °C), densities (at 15 °C), heating values and flash point temperatures of the biomixture samples were measured in the lab. It was found that estimated and measured characterisation results were comparable. The current study concluded that biomixture fuel samples W60A40 and W50A50 were perfectly satisfying the European EN 14214 norms without any need of additives. Investigation on engine performance, exhaust emission and combustion characteristics will be conducted to assess the full feasibility of the proposed biomixture fuels.

Keywords: biodiesel, blending, characterisation, CI engine

Procedia PDF Downloads 138
35 Fabrication and Characteristics of Ni Doped Titania Nanotubes by Electrochemical Anodization

Authors: J. Tirano, H. Zea, C. Luhrs

Abstract:

It is well known that titanium dioxide is a semiconductor with several applications in photocatalytic process. Its band gap makes it very interesting in the photoelectrodes manufacturing used in photoelectrochemical cells for hydrogen production, a clean and environmentally friendly fuel. The synthesis of 1D titanium dioxide nanostructures, such as nanotubes, makes possible to produce more efficient photoelectrodes for solar energy to hydrogen conversion. In essence, this is because it increases the charge transport rate, decreasing recombination options. However, its principal constraint is to be mainly sensitive to UV range, which represents a very low percentage of solar radiation that reaches earth's surface. One of the alternatives to modifying the TiO2’s band gap and improving its photoactivity under visible light irradiation is to dope the nanotubes with transition metals. This option requires fabricating efficient nanostructured photoelectrodes with controlled morphology and specific properties able to offer a suitable surface area for metallic doping. Hence, currently one of the central challenges in photoelectrochemical cells is the construction of nanomaterials with a proper band position for driving the reaction while absorbing energy over the VIS spectrum. This research focuses on the synthesis and characterization of Nidoped TiO2 nanotubes for improving its photocatalytic activity in solar energy conversion applications. Initially, titanium dioxide nanotubes (TNTs) with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C - 550 °C. Afterwards, the nanotubes were superficially modified by nickel deposition. Morphology and crystalline phase of the samples were carried out by SEM, EDS and XRD analysis before and after nickel deposition. Determining the photoelectrochemical performance of photoelectrodes is based on typical electrochemical characterization techniques. Also, the morphological characterization associated electrochemical behavior analysis were discussed to establish the effect of nickel nanoparticles modification on the TiO2 nanotubes. The methodology proposed in this research allows using other transition metal for nanotube surface modification.

Keywords: dimensionally stable electrode, nickel nanoparticles, photo-electrode, TiO₂ nanotubes

Procedia PDF Downloads 150
34 Structure and Magnetic Properties of M-Type Sr-Hexaferrite with Ca, La Substitutions

Authors: Eun-Soo Lim, Young-Min Kang

Abstract:

M-type Sr-hexaferrite (SrFe₁₂O₁₉) have been studied during the past decades because it is the most utilized materials in permanent magnets due to their low price, outstanding chemical stability, and appropriate hard magnetic properties. Many attempts have been made to improve the intrinsic magnetic properties of M-type Sr-hexaferrites (SrM), such as by improving the saturation magnetization (MS) and crystalline anisotropy by cation substitution. It is well proved that the Ca-La-Co substitutions are one of the most successful approaches, which lead to a significant enhancement in the crystalline anisotropy without reducing MS, and thus the Ca-La-Co-doped SrM have been commercialized in high-grade magnet products. In this research, the effect of respective doping of Ca and La into the SrM lattices were studied with assumptions that these elements could substitute both of Fe and Sr sites. The hexaferrite samples of stoichiometric SrFe₁₂O₁₉ (SrM) and the Ca substituted SrM with formulae of Sr₁₋ₓCaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) and SrFe₁₂₋ₓCaₓOₐ (x = 0.1, 0.2, 0.3, 0.4), and also La substituted SrM of Sr₁₋ₓLaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) and SrFe₁₂₋ₓLaₓOₐ (x = 0.1, 0.2, 0.3, 0.4) were prepared by conventional solid state reaction processes. X-ray diffraction (XRD) with a Cu Kα radiation source (λ=0.154056 nm) was used for phase analysis. Microstructural observation was conducted with a field emission scanning electron microscopy (FE-SEM). M-H measurements were performed using a vibrating sample magnetometer (VSM) at 300 K. Almost pure M-type phase could be obtained in the all series of hexaferrites calcined at > 1250 ºC. Small amount of Fe₂O₃ phases were detected in the XRD patterns of Sr₁₋ₓCaₓFe₁₂Oₐ (x = 0.2, 0.3, 0.4) and Sr₁₋ₓLaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) samples. Also, small amount of unidentified secondary phases without the Fe₂O₃ phase were found in the samples of SrFe₁₂₋ₓCaₓOₐ (x = 0.4) and SrFe₁₂₋ₓLaₓOₐ (x = 0.3, 0.4). Although the Ca substitution (x) into SrM structure did not exhibit a clear tendency in the cell parameter change in both series of samples, Sr₁₋ₓCaₓFe₁₂Oₐ and SrFe₁₂₋ₓCaₓOₐ , the cell volume slightly decreased with doping of Ca in the Sr₁₋ₓCaₓFe₁₂Oₐ samples and increased in the SrFe₁₂₋ₓCaₓOₐ samples. Considering relative ion sizes between Sr²⁺ (0.113 nm), Ca²⁺ (0.099 nm), Fe³⁺ (0.064 nm), these results imply that the Ca substitutes both of Sr and Fe in the SrM. A clear tendency of cell parameter change was observed in case of La substitution into Sr site of SrM ( Sr₁₋ₓLaₓFe₁₂Oₐ); the cell volume decreased with increase of x. It is owing to the similar but smaller ion size of La³⁺ (0.106 nm) than that of Sr²⁺. In case of SrFe₁₂₋ₓLaₓOₐ, the cell volume first decreased at x = 0.1 and then remained almost constant with increase of x from 0.2 to 0.4. These results mean that La only substitutes Sr site in the SrM structure. Besides, the microstructure and magnetic properties of these samples, and correlation between them will be revealed.

Keywords: M-type hexaferrite, substitution, cell parameter, magnetic properties

Procedia PDF Downloads 182
33 The Removal of Common Used Pesticides from Wastewater Using Golden Activated Charcoal

Authors: Saad Mohamed Elsaid Onaizah

Abstract:

One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use trated activated charcoal with gold nitrate solution; For the purpose of removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption forming complex with the gold metal immobilised on activated carbon surfaces. Also, gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.

Keywords: waste water, pesticides pollution, adsorption, activated carbon

Procedia PDF Downloads 39
32 Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes

Authors: H. Ishii, S. Araki, H. Yamamoto

Abstract:

In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature.

Keywords: membrane, perovskite structure, dual-phase, carbonate

Procedia PDF Downloads 343
31 Optimization of Adsorptive Removal of Common Used Pesticides Water Wastewater Using Golden Activated Charcoal

Authors: Saad Mohamed Elsaid, Nabil Anwar, Mahmoud Rushdi

Abstract:

One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use traded activated charcoal with gold nitrate solution; for removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption, forming a complex with the gold metal immobilized on activated carbon surfaces. In addition, the gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups, were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.

Keywords: waste water, pesticides pollution, adsorption, activated carbon

Procedia PDF Downloads 45
30 A Low-Cost Memristor Based on Hybrid Structures of Metal-Oxide Quantum Dots and Thin Films

Authors: Amir Shariffar, Haider Salman, Tanveer Siddique, Omar Manasreh

Abstract:

According to the recent studies on metal-oxide memristors, researchers tend to improve the stability, endurance, and uniformity of resistive switching (RS) behavior in memristors. Specifically, the main challenge is to prevent abrupt ruptures in the memristor’s filament during the RS process. To address this problem, we are proposing a low-cost hybrid structure of metal oxide quantum dots (QDs) and thin films to control the formation of filaments in memristors. We aim to use metal oxide quantum dots because of their unique electronic properties and quantum confinement, which may improve the resistive switching behavior. QDs have discrete energy spectra due to electron confinement in three-dimensional space. Because of Coulomb repulsion between electrons, only a few free electrons are contained in a quantum dot. This fact might guide the growth direction for the conducting filaments in the metal oxide memristor. As a result, it is expected that QDs can improve the endurance and uniformity of RS behavior in memristors. Moreover, we use a hybrid structure of intrinsic n-type quantum dots and p-type thin films to introduce a potential barrier at the junction that can smooth the transition between high and low resistance states. A bottom-up approach is used for fabricating the proposed memristor using different types of metal-oxide QDs and thin films. We synthesize QDs including, zinc oxide, molybdenum trioxide, and nickel oxide combined with spin-coated thin films of titanium dioxide, copper oxide, and hafnium dioxide. We employ fluorine-doped tin oxide (FTO) coated glass as the substrate for deposition and bottom electrode. Then, the active layer composed of one type of quantum dots, and the opposite type of thin films is spin-coated onto the FTO. Lastly, circular gold electrodes are deposited with a shadow mask by using electron-beam (e-beam) evaporation at room temperature. The fabricated devices are characterized using a probe station with a semiconductor parameter analyzer. The current-voltage (I-V) characterization is analyzed for each device to determine the conduction mechanism. We evaluate the memristor’s performance in terms of stability, endurance, and retention time to identify the optimal memristive structure. Finally, we assess the proposed hypothesis before we proceed to the optimization process for fabricating the memristor.

Keywords: memristor, quantum dot, resistive switching, thin film

Procedia PDF Downloads 95
29 Structure and Tribological Properties of Moisture Insensitivity Si Containing Diamond-Like Carbon Film

Authors: Mingjiang Dai, Qian Shi, Fang Hu, Songsheng Lin, Huijun Hou, Chunbei Wei

Abstract:

A diamond-like carbon (DLC) is considered as a promising protective film since its high hardness and excellent tribological properties. However, DLC films are very sensitive to the environmental condition, its friction coefficient could dramatic change in high humidity, therefore, limited their further application in aerospace, the watch industry, and micro/nano-electromechanical systems. Therefore, most studies focus on the low friction coefficient of DLC films at a high humid environment. However, this is out of satisfied in practical application. An important thing was ignored is that the DLC coated components are usually used in the diversed environment, which means its friction coefficient may evidently change in different humid condition. As a result, the invalidation of DLC coated components or even sometimes disaster occurred. For example, DLC coated minisize gears were used in the watch industry, and the customer may frequently transform their locations with different weather and humidity even in one day. If friction coefficient is not stable in dry and high moisture conditions, the watch will be inaccurate. Thus, it is necessary to investigate the stable tribological behavior of DLC films in various environments. In this study, a-C:H:Si films were deposited by multi-function magnetron sputtering system, containing one ion source device and a pair of SiC dual mid-frequent targets and two direct current Ti/C targets. Hydrogenated carbon layers were manufactured by sputtering the graphite target in argon and methane gasses. The silicon was doped in DLC coatings by sputtering silicon carbide targets and the doping content were adjusted by mid-frequent sputtering current. The microstructure of the film was characterized by Raman spectrometry, X-ray photoelectron spectroscopy, and transmission electron microscopy while its friction behavior under different humidity conditions was studied using a ball-on-disc tribometer. The a-C:H films with Si content from 0 to 17at.% were obtained and the influence of Si content on the structure and tribological properties under the relative humidity of 50% and 85% were investigated. Results show that the a-C:H:Si film has typical diamond-like characteristics, in which Si mainly existed in the form of Si, SiC, and SiO2. As expected, the friction coefficient of a-C:H films can be effectively changed after Si doping, from 0.302 to 0.176 in RH 50%. The further test shows that the friction coefficient value of a-C:H:Si film in RH 85% is first increase and then decrease as a function of Si content. We found that the a-C:H:Si films with a Si content of 3.75 at.% show a stable friction coefficient of 0.13 in different humidity environment. It is suggestion that the sp3/sp2 ratio of a-C:H films with 3.75 at.% Si was higher than others, which tend to form the silica-gel-like sacrificial layers during friction tests. Therefore, the films deliver stable low friction coefficient under controlled RH value of 50 and 85%.

Keywords: diamond-like carbon, Si doping, moisture environment, table low friction coefficient

Procedia PDF Downloads 335
28 Electronic Structure Studies of Mn Doped La₀.₈Bi₀.₂FeO₃ Multiferroic Thin Film Using Near-Edge X-Ray Absorption Fine Structure

Authors: Ghazala Anjum, Farooq Hussain Bhat, Ravi Kumar

Abstract:

Multiferroic materials are vital for new application and memory devices, not only because of the presence of multiple types of domains but also as a result of cross correlation between coexisting forms of magnetic and electrical orders. In spite of wide studies done on multiferroic bulk ceramic materials their realization in thin film form is yet limited due to some crucial problems. During the last few years, special attention has been devoted to synthesis of thin films like of BiFeO₃. As they allow direct integration of the material into the device technology. Therefore owing to the process of exploration of new multiferroic thin films, preparation, and characterization of La₀.₈Bi₀.₂Fe₀.₇Mn₀.₃O₃ (LBFMO3) thin film on LaAlO₃ (LAO) substrate with LaNiO₃ (LNO) being the buffer layer has been done. The fact that all the electrical and magnetic properties are closely related to the electronic structure makes it inevitable to study the electronic structure of system under study. Without the knowledge of this, one may never be sure about the mechanism responsible for different properties exhibited by the thin film. Literature review reveals that studies on change in atomic and the hybridization state in multiferroic samples are still insufficient except few. The technique of x-ray absorption (XAS) has made great strides towards the goal of providing such information. It turns out to be a unique signature to a given material. In this milieu, it is time honoured to have the electronic structure study of the elements present in the LBFMO₃ multiferroic thin film on LAO substrate with buffer layer of LNO synthesized by RF sputtering technique. We report the electronic structure studies of well characterized LBFMO3 multiferroic thin film on LAO substrate with LNO as buffer layer using near-edge X-ray absorption fine structure (NEXAFS). Present exploration has been performed to find out the valence state and crystal field symmetry of ions present in the system. NEXAFS data of O K- edge spectra reveals a slight shift in peak position along with growth in intensities of low energy feature. Studies of Mn L₃,₂- edge spectra indicates the presence of Mn³⁺/Mn⁴⁺ network apart from very small contribution from Mn²⁺ ions in the system that substantiates the magnetic properties exhibited by the thin film. Fe L₃,₂- edge spectra along with spectra of reference compound reveals that Fe ions are present in +3 state. Electronic structure and valence state are found to be in accordance with the magnetic properties exhibited by LBFMO/LNO/LAO thin film.

Keywords: magnetic, multiferroic, NEXAFS, x-ray absorption fine structure, XMCD, x-ray magnetic circular dichroism

Procedia PDF Downloads 125
27 Effect of Self-Lubricating Carbon Materials on the Tribological Performance of Ultra-High Molecular Weight Polyethylene

Authors: Nayeli Camacho, Fernanda Lara-Perez, Carolina Ortega-Portilla, Diego G. Espinosa-Arbelaez, Juan M. Alvarado-Orozco, Guillermo C. Mondragon-Rodriguez

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) has been the gold standard material for total knee replacements for almost five decades. Wear damage to UHMWPE articulating surface is inevitable due to the natural sliding and rolling movements of the knee. This generates a considerable amount of wear debris, which results in mechanical instability of the joint, reduces joint mobility, increases pain with detrimental biologic responses, and causes component loosening. The presence of wear particles has been closely related to adverse reactions in the knee joint surrounding tissue, especially for particles in the range of 0.3 to 2 μm. Carbon-based materials possess excellent mechanical properties and have shown great promise in tribological applications. In this study, diamond-like carbon coatings (DLC) and carbon nanotubes (CNTs) were used to decrease the wear rate of ultra-high molecular weight polyethylene. A titanium doped DLC (Ti-DLC) was deposited by magnetron sputtering on stainless steel precision spheres while CNTs were used as a second phase reinforcement in UHMWPE at a concentration of 1.25 wt.%. A comparative tribological analysis of the wear of UHMWPE and UHMWPE-CNTs with a stainless steel counterpart with and without Ti-DLC coating is presented. The experimental wear testing was performed on a pin-on-disc tribometer under dry conditions, using a reciprocating movement with a load of 1 N at a frequency of 2 Hz for 100,000 and 200,000 cycles. The wear tracks were analyzed with high-resolution scanning electron microscopy to determine wear modes and observe the size and shape of the wear debris. Furthermore, profilometry was used to study the depth of the wear tracks and to map the wear of the articulating surface. The wear tracks at 100,000 and 200,000 cycles on all samples were relatively shallow, and they were in the range of average roughness. It was observed that the Ti-DLC coating decreases the mass loss in the UHMWPE and the depth of the wear track. The combination of both carbon-based materials decreased the material loss compared to the system of stainless steel and UHMWPE. Burnishing of the surface was the predominant wear mode observed with all the systems, more subtle for the systems with Ti-DLC coatings. Meanwhile, in the system composed of stainless steel-UHMWPE, the intrinsic surface roughness of the material was completely replaced by the wear tracks.

Keywords: CNT reinforcement, self-lubricating materials, Ti-DLC, UHMWPE tribological performance

Procedia PDF Downloads 87