Search results for: Fourier%20type%20integral
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 884

Search results for: Fourier%20type%20integral

584 Effects of Different Calcination Temperature on the Geopolymerization of Fly Ash

Authors: Nurcan Tugrul, Funda Demir, Hilal Ozkan, Nur Olgun, Emek Derun

Abstract:

Geopolymers are aluminosilicate-containing materials. The raw materials of the geopolymerization can be natural material such as kaolinite, metakaolin (calcined kaolinite), clay, diatomite, rock powder or can also be industrial by-products such as fly ash, silica fume, blast furnace slag, rice-husk ash, mine tailing, red mud, waste slag, etc. Reactivity of raw materials in geopolymer production is very important for achieving high reaction grade. Fly ash used in geopolymer production has been calcined to obtain tetrahedral SiO₂ and Al₂O₃ structures. In this study, fly ash calcined at different temperatures (700, 800 and 900 °C), and Al₂O₃ addition (Al₂O₃ at min (0%) and max (100%)) were used to produce geopolymers. HCl dissolution method was applied to determine the geopolymerization percentage of samples and Fourier Transform Infrared (FTIR) Spectroscopy was used to find out the optimum calcination temperature for geopolymerization. According to obtained results, the highest geopolymerization percentage (0% alumina added geopolymer equal to 35.789%; 100% alumina added geopolymer equal to 40.546%) was obtained in samples using fly ash calcined at 800 °C.

Keywords: geopolymer, fly ash, Al₂O₃ addition, calcination

Procedia PDF Downloads 151
583 Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks

Abstract:

Metal-enhanced luminescence of silicon nano crystals (SiNCs) was determined using two different particle sizes of silver nano particles (AgNPs). SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. AgNPs were synthesized using photochemical reduction of AgNO3 with sodium dodecyl sulphate (SDS). The enhanced luminescence of SiNCs by AgNPs was evaluated by confocal Raman microspectroscopy. Enhancement up to ×9 and ×3 times were observed for SiNCs that mixed with AgNPs which have an average particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced luminescence of SiNCs occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs.

Keywords: silver nanoparticles, surface enhanced raman spectroscopy (SERS), silicon nanocrystals, luminescence

Procedia PDF Downloads 398
582 Removal of Methyl Green by an Algerian Calcic Clay

Authors: Feddal Imene, Boumediene Youssra, Mimanne Goussem

Abstract:

The history of the environment and its chemistry is above all the history of its pollution. For a large part, it is the changes made in the air, water and soil by human beings. From there, we can define that pollution is an unfavorable modification of the natural environment that appears as a by-product of human action, through direct and indirect effects. The protection and preservation of the environment is one of the pillars of sustainable development, which is currently a major issue for the future of man and the planet. Currently, humanity is facing an alarming increase in the pollution of the natural environment by various organic or inorganic materials. The objective of our work is to study the adsorption of a textile dye which is known in the industrial environment, methyl green, on raw calcic clay. Our material was characterized by X-ray diffraction (XRD) Fourier transform infrared (FTIR), we also determined its cation exchange capacity (CEC), pHzc and specific surface by Methylene Blue method. The kinetic and thermodynamic study of the adsorption of methyl green was studied, these experiments resulted that the adsorption of the dye follows pseudo second order kinetics, and according to the thermodynamic study and the study of the probability we can say that we have a physisorption.

Keywords: calcic clay, dye, materials, environment

Procedia PDF Downloads 35
581 Development and Characterization of Biodegradable Films Based on Biopolymer Extracted From Natural Sources

Authors: Dalila Hammiche, Lisa Klaai, Sonia Imzi, Amar Boukerrou

Abstract:

The fight against plastic pollution implies the development of polymers as alternatives to synthetic polymers. Starch is a natural polymer that can easily be plasticized by means of additives. The objective of this work is to develop and characterize biodegradable biofilms based on starch, plasticized by glycerol (20 and 30%). The elaboration of the biofilms was carried out by the casting method under simple conditions. The samples were characterized by infrared spectroscopy analysis with Fourier transform (FTIR), thermogravimetric analysis, and biodegradability test. Infrared spectral analysis showed that the 30% and 20% glycerol films have the same chemical structure and no functional group changes occurred. Thermogravimetric analysis showed that a 30% glycerol film has higher thermal stability than a 20% glycerol film. Biodegradability test showed that the lower the percentage of glycerol, the more easily the biofilm degrades.

Keywords: starch, natural sources, FTIR, thermogravimetric analysis, biodegradability test

Procedia PDF Downloads 74
580 Effect of Polyethylene Glycol on Physiochemical Properties of Spherical Agglomerates of Pioglitazone Hydrochloride

Authors: S. V. Patil , S. K. Sahoo, K. Y. Chougule, S. S. Patil

Abstract:

Spherically agglomerated crystals of Pioglitazone hydrochloride (PGH) with improved flowability and compactibility were successfully prepared by emulsion solvent diffusion method. Plane agglomerates and agglomerates with additives: polyethylene glycol 6000 (PEG), polyvinyl pyrrolidone (PVP) and β cyclodextrin (β-CD) were prepared using methanol, chloroform and water as good solvent, bridging liquid and poor solvent respectively. Particle size, flowability, compactibility and packability of plane, PEG and β-CD agglomerates were preferably improved for direct tableting compared with raw crystals and PVP agglomerates of PGH. These improved properties of spherically agglomerated crystals were due to their large and spherical shape and enhanced fragmentation during compaction which was well supported by increased tensile strength and less elastic recovery of its compact. X-ray powder diffraction and differential scanning calorimetry study were indicated polymorphic transition of PGH from form II to I during recrystallization but not associated with chemical transition indicated by fourier transforms infrared spectra.

Keywords: spherical crystallization, pioglitazone hydrochloride, compactibility, packability

Procedia PDF Downloads 327
579 One-Step Synthesis of Fluorescent Carbon Dots in a Green Way as Effective Fluorescent Probes for Detection of Iron Ions and pH Value

Authors: Mostafa Ghasemi, Andrew Urquhart

Abstract:

In this study, fluorescent carbon dots (CDs) were synthesized in a green way using a one-step hydrothermal method. Carbon dots are carbon-based nanomaterials with a size of less than 10 nm, unique structure, and excellent properties such as low toxicity, good biocompatibility, tunable fluorescence, excellent photostability, and easy functionalization. These properties make them a good candidate to use in different fields such as biological sensing, photocatalysis, photodynamic, and drug delivery. Fourier transformed infrared (FTIR) spectra approved OH/NH groups on the surface of the as-synthesized CDs, and UV-vis spectra showed excellent fluorescence quenching effect of Fe (III) ion on the as-synthesized CDs with high selectivity detection compared with other metal ions. The probe showed a linear response concentration range (0–2.0 mM) to Fe (III) ion, and the limit of detection was calculated to be about 0.50 μM. In addition, CDs also showed good sensitivity to the pH value in the range from 2 to 14, indicating great potential as a pH sensor.

Keywords: carbon dots, fluorescence, pH sensing, metal ions sensor

Procedia PDF Downloads 43
578 Photocatalytic Activity of Polypyrrole/ZnO Composites for Degradation of Dye Reactive Red 45 in Wastewater

Authors: Ljerka Kratofil Krehula, Vanja Gilja, Andrea Husak, Sniježana Šuka, Zlata Hrnjak-Murgić

Abstract:

Zinc oxide (ZnO) can be used as photocatalysts for water purification. However, one particular interest is given on the integration of inorganic ZnO nanoclusters with conducting polymers because the resulting nanocomposites may possess unique properties and enhanced photocatalytic activity in comparison to pure ZnO, using UV and also visible light. It is needed to explore the appropriate structure of polypyrrole that can induce activation of ZnO photocatalyst since the synthesis of organic/inorganic hybrid materials can result in a synergistic and complementary feature, increasing ZnO photocatalytic efficiency. In this paper several different composites of polypyrrole/zinc oxide (ZnO) were studied. Composite samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and scanning electron microscopy (SEM). The photocatalytic efficiency of prepared samples was studied as a decomposition of Reactive Red 45 (RR 45) dye, which was monitored by UV-Vis spectroscopy as a change in absorbance of characteristic wavelength at 542 nm. Results show good photocatalytic efficiency of all nanocomposite samples.

Keywords: photocatalysis, polypyrrole, wastewater, zinc oxide

Procedia PDF Downloads 240
577 Emperical Correlation for Measurement of Thermal Diffusivity of Spherical Shaped Food Products under Forced Convection Environment

Authors: M. Riaz, Inamur Rehman, Abhishek Sharma

Abstract:

The present work is the development of an experimental method for determining the thermal diffusivity variations with temperature of selected regular shaped solid fruits and vegetables subjected to forced convection cooling. Experimental investigations were carried on the sample chosen (potato and brinjal), which is approximately of spherical geometry. The variation of temperature within the food product is measured at several locations from centre to skin, under forced convection environment using a deep freezer, maintained at -10°C.This method uses one dimensional Fourier equation applied to regular shapes. For this, the experimental temperature data obtained from cylindrical and spherical shaped products during pre-cooling was utilised. Such temperature and thermal diffusivity profiles can be readily used with other information such as degradation rate, etc. to evaluate thermal treatments based on cold air cooling methods for storage of perishable food products.

Keywords: thermal diffusivity, skin temperature, precooling, forced convection, regular shaped

Procedia PDF Downloads 426
576 Synthesis and Characterization of Akermanite Nanoparticles (AMN) as a Bio-Ceramic Nano Powder by Sol-Gel Method for Use in Biomedical

Authors: Seyedmahdi Mousavihashemi

Abstract:

Natural Akermanite (NAM) has been successfully prepared by a modified sol-gel method. Optimization in calcination temperature and mechanical ball milling resulted in a pure and nano-sized powder which characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared Spectroscopy (FT–IR). We hypothesized that nano-sized Akermanite (AM) would mimic more efficiently the nanocrystal structure and function of natural bone apatite, owing to the higher surface area, compare to conventional micron-size Akermanite (AM). Accordingly, we used the unique advantage of nanotechnology to improve novel nano akermanite particles as a potential candidate for bone tissue regeneration whether as a per implant filling powder or in combination with other biomaterials as a composite scaffold. Pure Akermanite (PAM) powders were successfully obtained via a simple sol-gel method followed by calcination at 1250 °C. Mechanical grinding in a ceramic ball mill for 7 hours resulted in akermanite (AM) nanoparticles in the range of about 30- 45 nm.

Keywords: biomedical engineering, nano composite, SEM, TEM

Procedia PDF Downloads 218
575 A Thermal Analysis Based Approach to Obtain High Carbonaceous Fibers from Chicken Feathers

Authors: Y. Okumuş, A. Tuna, A. T. Seyhan, H. Çelebi

Abstract:

Useful carbon fibers were derived from chicken feathers (PCFs) based on a two-step pyrolysis method. The collected PCFs were cleaned and categorized as black, white and brown. Differential scanning calorimeter (DSC) and thermo-gravimetric analyzer (TGA) were systemically used to design the pyrolysis steps. Depending on colors, feathers exhibit different glass transition (Tg) temperatures. Long-time heat treatment applied to the feathers emerged influential on the surface quality of the resulting carbon fibers. Fourier Transformation Infrared (FTIR) examination revealed that the extent of disulfide bond cleavage is highly associated with the feather melting stability. Scanning electron microscopy (SEM) examinations were employed to evaluate the morphological changes of feathers after pyrolysis. Of all, brown feathers were found to be the most promising to turn into useful carbon fibers without any trace of melting and shape distortion when pyrolysis was carried out at 230°C for 24 hours and at 450°C for 1 hour.

Keywords: poultry chicken feather, keratin protein fiber, pyrolysis, high carbonaceous fibers

Procedia PDF Downloads 301
574 Characteristics of a Dye-Entrapped Polypyrrole Film Prepared in the Presence of a Different Dye

Authors: M. Mominul Haque, Danny KY. Wong

Abstract:

In this paper, we will demonstrate the feasibility of selectively removing the azo dye, Acid Red 1, in the presence of a second dye, Indigo Carmine, at conducting polypyrrole films. A long-term goal of this work is to develop an efficient and effective electrochemical treatment of textile effluents that does not yield any toxic by-products. Specifically, pyrrole was initially electrochemically oxidised in the presence of Acid Red 1 to prepare an Acid Red 1-entrapped polypyrrole film. Next, the Acid Red 1 entrapped film was electrochemically reduced to expel the dye from the film. The film was then ready for use in removing the dye in an Acid Red 1 solution. The entrapment efficiency of the film was then studied by spectroscopically determining the change in the absorbance of the dye solution. These experiments were repeated using Indigo Carmine or a mixture of Acid Red 1 and Indigo Carmine, in place of Acid Red 1. Therefore, this has given rise to an environmentally friendly treatment method for textile effluents. In our work, we have also studied the characteristics of Acid Red 1- and Indigo Carmine-entrapped polypyrrole films by scanning electron microscopy, X-ray diffraction and Fourier transfer infrared spectroscopy.

Keywords: azo dye, electrochemical treatment, polypyrrole, Acid Red 1

Procedia PDF Downloads 379
573 Synthesis and Characterization of Carboxymethyl Cellulose from Rice Stubble Cellulose

Authors: Rungsinee Sothornvit, Pattrathip Rodsamran

Abstract:

Rice stubble consists of a high content of cellulose and can be synthesized as a cellulose derivative such as carboxymethyl cellulose (CMC) to value added products from agricultural waste. Therefore, the synthesis conditions and characterization the properties of CMC from rice stubble (CMCr) were investigated. Hemicellulose and lignin were first removed from the rice stubble using 10% NaOH at 55 C for 3 h and 5% NaOCl at 75 C for 15 min, respectively. Rice stubble cellulose was swollen in 30% NaOH and isopropanol as a solvent. The content of chloroacetic acid (5–7 g in 5 g of alkali cellulose), reaction temperature (50 and 70 C) and time (180, 270 and 360 min) were explored to obtain CMC. It was found that synthesis conditions did not affect significantly on moisture content and pH of CMCr. The best quality of CMCr was synthesized by using 7 g of chloroacetic acid and reacted at 50 C for 180 min based on 5 g of rice stubble cellulose. Degree of substitution (DS), viscosity and purity of CMCr were 0.64, 36.03 cP and 90.18 %, respectively. Furthermore, Fourier transform infrared (FT–IR) spectroscopy confirmed the presence of carboxymethyl substituents. CMCr was categorized in commercial scale as a low viscosity material and it can be used as film forming packaging materials for food and pharmaceutical product applications.

Keywords: rice stubble, cellulose, carboxymethyl cellulose, degree of substitution, purity

Procedia PDF Downloads 367
572 Characterization and Degradation Analysis of Tapioca Starch Based Biofilms

Authors: R. R. Ali, W. A. W. A. Rahman, R. M. Kasmani, H. Hasbullah, N. Ibrahim, A. N. Sadikin, U. A. Asli

Abstract:

In this study, tapioca starch which acts as natural polymer was added in the blend in order to produce biodegradable product. Low density polyethylene (LDPE) and tapioca starch blends were prepared by extrusion and the test sample by injection moulding process. Ethylene vinyl acetate (EVA) acts as compatibilizer while glycerol as processing aid was added in the blend. The blends were characterized by using melt flow index (MFI), fourier transform infrared (FTIR) and the effects of water absorption to the sample. As the starch content increased, MFI of the blend was decreased. Tensile testing were conducted shows the tensile strength and elongation at break decreased while the modulus increased as the starch increased. For the biodegradation, soil burial test was conducted and the loss in weight was studied as the starch content increased. Morphology studies were conducted in order to show the distribution between LDPE and starch.

Keywords: biopolymers, degradable polymers, starch based polyethylene, injection moulding

Procedia PDF Downloads 254
571 Study on Microbial Pretreatment for Enhancing Enzymatic Hydrolysis of Corncob

Authors: Kessara Seneesrisakul, Erdogan Gulari, Sumaeth Chavadej

Abstract:

The complex structure of lignocellulose leads to great difficulties in converting it to fermentable sugars for the ethanol production. The major hydrolysis impediments are the crystallinity of cellulose and the lignin content. To improve the efficiency of enzymatic hydrolysis, microbial pretreatment of corncob was investigated using two bacterial strains of Bacillus subtilis A 002 and Cellulomonas sp. TISTR 784 (expected to break open the crystalline part of cellulose) and lignin-degrading fungus, Phanerochaete sordida SK7 (expected to remove lignin from lignocellulose). The microbial pretreatment was carried out with each strain under its optimum conditions. The pretreated corncob samples were further hydrolyzed to produce reducing glucose with low amounts of commercial cellulase (25 U•g-1 corncob) from Aspergillus niger. The corncob samples were determined for composition change by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). According to the results, the microbial pretreatment with fungus, P. sordida SK7 was the most effective for enhancing enzymatic hydrolysis, approximately, 40% improvement.

Keywords: corncob, enzymatic hydrolysis, glucose, microbial pretreatment

Procedia PDF Downloads 551
570 Phase Detection Using Infrared Spectroscopy: A Build up to Inline Gas–Liquid Flow Characterization

Authors: Kwame Sarkodie, William Cheung, Andrew R. Fergursson

Abstract:

The characterization of multiphase flow has gained enormous attention for most petroleum and chemical industrial processes. In order to fully characterize fluid phases in a stream or containment, there needs to be a profound knowledge of the existing composition of fluids present. This introduces a problem for real-time monitoring of fluid dynamics such as fluid distributions, and phase fractions. This work presents a simple technique of correlating absorbance spectrums of water, oil and air bubble present in containment. These spectra absorption outputs are derived by using an Fourier Infrared spectrometer. During the testing, air bubbles were introduced into static water column and oil containment and with light absorbed in the infrared regions of specific wavelength ranges. Attenuation coefficients are derived for various combinations of water, gas and oil which reveal the presence of each phase in the samples. The results from this work are preliminary and viewed as a build up to the design of a multiphase flow rig which has an infrared sensor pair to be used for multiphase flow characterization.

Keywords: attenuation, infrared, multiphase, spectroscopy

Procedia PDF Downloads 339
569 NFResNet: Multi-Scale and U-Shaped Networks for Deblurring

Authors: Tanish Mittal, Preyansh Agrawal, Esha Pahwa, Aarya Makwana

Abstract:

Multi-Scale and U-shaped Networks are widely used in various image restoration problems, including deblurring. Keeping in mind the wide range of applications, we present a comparison of these architectures and their effects on image deblurring. We also introduce a new block called as NFResblock. It consists of a Fast Fourier Transformation layer and a series of modified Non-Linear Activation Free Blocks. Based on these architectures and additions, we introduce NFResnet and NFResnet+, which are modified multi-scale and U-Net architectures, respectively. We also use three differ-ent loss functions to train these architectures: Charbonnier Loss, Edge Loss, and Frequency Reconstruction Loss. Extensive experiments on the Deep Video Deblurring dataset, along with ablation studies for each component, have been presented in this paper. The proposed architectures achieve a considerable increase in Peak Signal to Noise (PSNR) ratio and Structural Similarity Index (SSIM) value.

Keywords: multi-scale, Unet, deblurring, FFT, resblock, NAF-block, nfresnet, charbonnier, edge, frequency reconstruction

Procedia PDF Downloads 95
568 Treatment of Industrial Effluents by Using Polyethersulfone/Chitosan Membrane Derived from Fishery Waste

Authors: Suneeta Kumari, Abanti Sahoo

Abstract:

Industrial effluents treatment is a major problem in the world. All wastewater treatment methods have some problems in the environment. Due to this reason, today many natural biopolymers are being used in the waste water treatment because those are safe for our environment. In this study, synthesis and characterization of polyethersulfone/chitosan membranes (Thin film composite membrane) are carried out. Fish scales are used as raw materials. Different characterization techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM) and Thermal gravimetric analysis (TGA) are analysed for the synthesized membrane. The performance of membranes such as flux, rejection, and pore size are also checked. The synthesized membrane is used for the treatment of steel industry waste water where Biochemical oxygen demand (BOD), Chemical Oxygen Demand (COD), pH, colour, Total dissolved solids (TDS), Total suspended solids (TSS), Electrical conductivity (EC) and Turbidity aspects are analysed.

Keywords: fish scale, membrane synthesis, treatment of industrial effluents, chitosan

Procedia PDF Downloads 295
567 Investigating Geopolymerization Process of Aluminosilicates and its Impact on the Compressive Strength of the Produced Geopolymers

Authors: Heba Fouad, Tarek M. Madkour, Safwan A. Khedr

Abstract:

This paper investigates multiple factors that impact the formation of geopolymers and their compressive strength to be utilized in construction as an environmentally-friendly material. Bentonite and Kaolinite were thermally calcinated at 750 °C to obtain Metabentonite and Metakaolinite with higher reactivity. Both source materials were activated using a solution of sodium hydroxide (NaOH). Thereafter, samples were cured at different temperatures. The samples were analyzed chemically using a host of spectroscopic techniques. The bulk density and compressive strength of the produced Geopolymer pastes were studied. Findings indicate that the ratio of NaOH solution to source material affects the compressive strength, being optimal at 0.54. Moreover, controlled heat curing was proven effective to improve compressive strength. The existence of characteristic Fourier Transform Infrared Spectroscopy (FTIR) peaks at approximately 1020 cm-1 and 460 cm-1 which corresponds to the asymmetric stretching vibration of Si-O-T and bending vibration of Si-O-Si, hence, confirming the formation of the target geopolymer.

Keywords: calcination of metakaolinite, compressive strength, FTIR analysis, geopolymer, green cement

Procedia PDF Downloads 140
566 Multifunctional Nanofiber Based Aerogels: Bridging Electrospinning with Aerogel Fabrication

Authors: Tahira Pirzada, Zahra Ashrafi, Saad Khan

Abstract:

We present a facile and sustainable solid templating approach to fabricate highly porous, flexible and superhydrophobic aerogels of composite nanofibers of cellulose diacetate and silica which are produced through sol gel electrospinning. Scanning electron microscopy, contact angle measurement, and attenuated total reflection-Fourier transform infrared spectrometry are used to understand the structural features of the resultant aerogels while thermogravimetric analysis and differential scanning calorimetry demonstrate their thermal stability. These aerogels exhibit a self-supportive three-dimensional network abundant in large secondary pores surrounded by primary pores resulting in a highly porous structure. Thermal crosslinking of the aerogels has further stabilized their structure and flexibility without compromising on the porosity. Ease of processing, thermal stability, high porosity and oleophilic nature of these aerogels make them promising candidate for a wide variety of applications including acoustic and thermal insulation and oil and water separation.

Keywords: hybrid aerogels, sol-gel electrospinning, oil-water separation, nanofibers

Procedia PDF Downloads 133
565 Magnetite Nanoparticles Immobilized Pectinase: Preparation, Characterization and Application for the Fruit Juices Clarification

Authors: Leila Mosafa, Majid Moghadam, Mohammad Shahedi

Abstract:

In this work, pectinase was immobilized on the surface of silica-coated magnetite nanoparticles via covalent attachment. The magnetite-immobilized enzyme was characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and vibrating sample magnetometry techniques. Response surface methodology using Minitab Software was applied for statistical designing of operating conditions in order to immobilize pectinase on magnetic nanoparticles. The optimal conditions were obtained at 30°C and pH 5.5 with 42.97 µl pectinase for 2 h. The immobilization yield was 50.6% at optimized conditions. Compared to the free pectinase, the immobilized pectinase was found to exhibit enhanced enzyme activity, better tolerance to the variation of pH and temperature, and improved storage stability. Both free and immobilized samples reduced the viscosity of apple juice from 1.12 to 0.88 and 0.92 mm2s-1, respectively, after 30 min at their optimum temperature. Furthermore, the immobilized enzyme could be reused six consecutive cycles and the efficiency loss in viscosity reduction was found to be only 8.16%.

Keywords: magnetite nanoparticles, pectinase enzyme, immobilization, juice clarification, enzyme activity

Procedia PDF Downloads 384
564 Cr³⁺/SiO₄⁴⁻ Codoped Hydroxyapatite Nanorods: Fabrication and Microstructure Analysis

Authors: Ammar Z. Alshemary, Zafer Evis

Abstract:

In this study, nanorods of Cr³⁺/SiO₄⁴⁻ codoped hydroxyapatite (Cr³⁺/SiO₄⁴⁻-HA) were synthesized successfully and rapidly through microwave irradiation technique, using (Ca(NO₃)₂•4H₂O), ((NH₄)₂HPO₄), (SiC₈H₂₀O₄) and (Cr(NO₃)₃.9H₂O) as source materials for Ca²⁺, PO₄³⁻, SiO₄⁴⁻ and Cr³⁺ ions, respectively. The impact of dopants on the phase formation and microstructure of the powders were investigated by means of X-ray diffraction (XRD), Fourier transform infrared spectrum analysis (FT-IR) and Field emission electron microscopy (FESEM) techniques. XRD analysis showed that with an incorporation of Cr³⁺/SiO₄⁴⁻ ions into HA structure resulted in peak broadening and reduced peak height due to the amorphous nature and reduced crystallinity of the resulting HA powder. FTIR spectroscopy revealed the existence of the different vibrational modes matching to phosphates and hydroxyl groups. The FESEM analysis showed a change in the crystal shape from spherical to rod shaped particles upon Cr³⁺ doping into the crystal structure. Acknowledgments: This study was supported by Karabük University (Project no. KBÜBAP-17-YD-144). The authors would like to thank for support.

Keywords: nano-hydroxyapatite, microwave, dopants, characterization, microstructure

Procedia PDF Downloads 199
563 One-Pot Synthesis and Characterization of Magnesium Oxide Nanoparticles Prepared by Calliandra Calothyrsus Leaf Extract

Authors: Indah Kurniawaty, Yoki Yulizar, Haryo Satriya Oktaviano, Adam Kusuma Rianto

Abstract:

Magnesium oxide nanoparticles (MgO NP) were successfully synthesized in this study using a one-pot green synthesis mediated by Calliandra Calothyrsus leaf extract (CLE). CLE was prepared by maceration of the leaf using methanol with a ratio of 1:5 for 7 days. Secondary metabolites in CLE, such as alkaloids and flavonoids, served as a weak base provider and capping agent in the formation of MgO NP. CLE Fourier Transform Infra-Red (FTIR) spectra peak at 3255, 1600, 1384, 1205, 1041, and 667 cm-1 showing the presence of vibrations O-H stretching, N-H bending, C-C stretching, C-N stretching and N-H wagging. During the experiment, different CLE volumes and calcined temperatures were used, resulting in a variety of structures. Energy Dispersive X-ray Spectrometer (EDS) and FTIR were used to characterize metal oxide particles. MgO diffraction pattern at 2θ of 36.9°; 42.9°; 62.2°; 74.6°; and 78.5° which can be assigned to crystal planes (111), (200), (220), (311), and (222), respectively. Scanning Electron Microscopy (SEM) was used to characterize the surface morphology. The morphology ranged from sphere to flower-like resulting in crystallite sizes of 28, 23, 12, and 9 nm.

Keywords: MgO, nanoparticle, calliandra calothyrsus, green-synthesis

Procedia PDF Downloads 55
562 Starch-Based Systems for the Nano-Delivery of Quercetin

Authors: Fernando G. Torres, Omar P. Troncoso

Abstract:

Quercetin is a naturally occurring polyphenol found in many vegetables, such as onion, with antioxidant properties. It is a dietary component with a documented role in reducing different human cancers. However, its low bioavailability, poor water solubility, and chemical instability limit its applications. Different nano-delivery systems such as nanoparticles, micelles, and nanohydrogels have been studied in order to improve the bioavailability of quercetin. Nanoparticles based on natural polymers such as starch have the advantage of being biocompatible, biodegradable, and non-toxic. In this study, quercetin was loaded into starch nanoparticles using a nanoprecipitation method. Different routes, using sodium tripolyphosphate and Tween® 80 as tensioactive agents, were tested in order to obtain an optimized starch-based nano-delivery system. The characterization of the nanoparticles loaded with quercetin was assessed by Fourier Transform Infrared Spectroscopy, Dynamic Light Scattering, Zeta potential, and Differential scanning calorimetry. UV-vis spectrophotometry was used to evaluate the loading efficiency and capacity of the samples. The results showed that starch-based systems could be successfully used for the nano-delivery of quercetin.

Keywords: starch nanoparticles, nanoprecipitation, quercetin, biomedical applications

Procedia PDF Downloads 105
561 Structural, Magnetic and Electrical Properties of Gd3+ Doped CoFe2O4 Nanoparticles Synthesized by Sonochemical Method

Authors: Raghvendra Singh Yadav, Ivo Kuřitka

Abstract:

In this report, we studied the impact of Gd3+ substitution on structural, magnetic and electrical properties of CoFe2O4 nanoparticles synthesized by sonochemical method. X-ray diffraction pattern confirmed the formation of cubic spinel structure at low concentration of Gd3+ ions, however, GdFeO3 additional phase was observed at higher concentration of Gd3+ ions. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of Gd3+ substituted CoFe2O4 nanoparticles. The field emission scanning electron microscopy study revealed that Gd3+ substituted CoFe2O4 nanoparticles were in the range of 5-20 nm. The magnetic properties of Gd3+ substituted CoFe2O4 nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with Gd3+ concentration in CoFe2O4 nanoparticles was observed. The variation of real and imaginary part of dielectric constant, tan δ, and AC conductivity were studied at room temperature.

Keywords: spinel ferrites, nanoparticles, sonochemical method, magnetic properties

Procedia PDF Downloads 273
560 Physico‑chemical Behavior and Microstructural Manipulation of Nanocomposites Containing Hydroxyapatite, Alumina, and Graphene Oxide

Authors: Reim A. Almotiri, Manal M. Alkhamisi

Abstract:

Ternary nanocomposites based on hydroxyapatite (HAP) and alumina (Al2O3) were embedded through graphene oxide (GO) nanosheets to be investigated for medical applications. The composition of the preparations has been confirmed by X-ray photoelectron spectroscopy, energy-dispersive X-ray analysis, and Fourier-Transform infrared spectroscopy. Scanning and transmission electron microscopy have shown the typical morphologies of the components of the nanocomposites with hydroxyapatite nanorods reaching an average diameter of 22.26±2 nm and an average length of 69.56±19.25 nm in the ternary nanocomposites. The ternary nanocomposite has a microhardness of 5.8±0.1 GPa and a higher average roughness of 6.5 nm compared to pure HAP preparation with an average roughness of 2.7 nm. All preparations have shown an acceptable cytotoxicity profile with a percent osteoblasts cell viability of 98.6±1.3% after culturing with the ternary nanocomposite. The TNC has also shown the highest antibacterial activity compared to preparations of each of its constituents and their nanocomposites, with a zone of inhibition’s diameter of 14.1±0.8 mm and 13.6±0.6 mm against Staphylococcus aureus and Escherichia coli, respectively, compared to no zone of inhibition for the pure hydroxyapatite preparation.

Keywords: hydroxypatite, cytotoxicity, nanocomposites, X-ray analysis

Procedia PDF Downloads 56
559 Environmentally Friendly Palm Oil-Based Polymeric Plasticiser for Poly (Vinyl Chloride)

Authors: Nur Zahidah Rozaki, Desmond Ang Teck Chye

Abstract:

Environment-friendly polymeric plasticisers for poly(vinyl chloride), PVC were synthesised using palm oil as the main raw material. The synthesis comprised of 2 steps: (i) transesterification of palm oil, followed by (ii) polycondensation between the products of transesterification with diacids. The synthesis involves four different formulations to produce plasticisers with different average molecular weight. Chemical structures of the plasticiser were studied using FTIR (Fourier-Transformed Infra-Red) and 1H-NMR (Proton-Nuclear Magnetic Resonance).The molecular weights of these palm oil-based polymers were obtained using GPC (Gel Permeation Chromatography). PVC was plasticised with the polymeric plasticisers through solvent casting technique using tetrahydrofuran, THF as the mutual solvent. Some of the tests conducted to evaluate the effectiveness of the plasticiser in the PVC film including thermal stability test using thermogravimetric analyser (TGA), differential scanning calorimetry (DSC) analysis to determine the glass transition temperature, Tg, and mechanical test to determine tensile strength, modulus and elongation at break of plasticised PVC using standard test method ASTM D882.

Keywords: alkyd, palm oil, plasticiser, pvc

Procedia PDF Downloads 259
558 Robust Medical Image Watermarking Using Frequency Domain and Least Significant Bits Algorithms

Authors: Volkan Kaya, Ersin Elbasi

Abstract:

Watermarking and stenography are getting importance recently because of copyright protection and authentication. In watermarking we embed stamp, logo, noise or image to multimedia elements such as image, video, audio, animation and text. There are several works have been done in watermarking for different purposes. In this research work, we used watermarking techniques to embed patient information into the medical magnetic resonance (MR) images. There are two methods have been used; frequency domain (Digital Wavelet Transform-DWT, Digital Cosine Transform-DCT, and Digital Fourier Transform-DFT) and spatial domain (Least Significant Bits-LSB) domain. Experimental results show that embedding in frequency domains resist against one type of attacks, and embedding in spatial domain is resist against another group of attacks. Peak Signal Noise Ratio (PSNR) and Similarity Ratio (SR) values are two measurement values for testing. These two values give very promising result for information hiding in medical MR images.

Keywords: watermarking, medical image, frequency domain, least significant bits, security

Procedia PDF Downloads 262
557 Synthesis and Characterization of Biodegradable Elastomeric Polyester Amide for Tissue Engineering Applications

Authors: Abdulrahman T. Essa, Ahmed Aied, Omar Hamid, Felicity R. A. J. Rose, Kevin M. Shakesheff

Abstract:

Biodegradable poly(ester amide)s are promising polymers for biomedical applications such as drug delivery and tissue engineering because of their optimized chemical and physical properties. In this study, we developed a biodegradable polyester amide elastomer poly(serinol sebacate) (PSS) composed of crosslinked networks based on serinol and sebacic acid. The synthesized polymers were characterized to evaluate their chemical structures, mechanical properties, degradation behaviors and in vitro cytocompatibility. Analysis of proton nuclear magnetic resonance and Fourier transform infrared spectroscopy revealed the structure of the polymer. The PSS exhibit excellent solubility in a variety of solvents such as methanol, dimethyl sulfoxide and dimethylformamide. More importantly, the mechanical properties of PSS could be tuned by changing the curing conditions. In addition, the 3T3 fibroblast cells cultured on the PSS demonstrated good cell attachment and high viability.

Keywords: biodegradable, biomaterial, elastomer, mechanical properties, poly(serinol sebacate)

Procedia PDF Downloads 320
556 Study of Interaction between Ascorbic Acid and Bovine Hemoglobin by Multispectroscopic Methods

Authors: Krishnamoorthy Shanmugaraj, Malaichamy Ilanchelian

Abstract:

Ascorbic acid is an essential component in the diet of humans, and also is a typical long used pharmaceutical agent. In the present contribution, we have carried out a detailed study on the binding interaction of ascorbic acid (AA) with bovine hemoglobin (BHb) using steady state emission, time resolved fluorescence, UV-Vis absorption, circular dichroism (CD), Fourier transform infra-red (FT-IR) and three dimensional emission (3D) spectral studies. The results from the emission spectral studies unveiled that the quenching of BHb emission by AA is attributed to the formation of a complex in the ground state (static in nature) after correcting for inner filter effect. The binding parameters calculated from corrected emission quenching data revealed that BHb exhibited a significant binding affinity towards AA. Moreover, AA induced tertiary and secondary conformational changes of BHb were monitored by UV-Vis absorption, CD, FT-IR and 3D emission spectral studies. The results presented here will help to further understand the credible mechanism of BHb-AA system which is expected to provide insights into conformational and microenvironmental changes of BHb.

Keywords: ascorbic acid, bovine hemoglobin, circular dichroism, three dimensional emission spectral studies

Procedia PDF Downloads 937
555 Preparation of Polyethylene/Cashewnut Flour/ Gum Arabic Polymer Blends Through Melt-blending and Determination of Their Biodegradation by Composting Method for Possible Reduction of Polyethylene-based Wastes from the Environment

Authors: Abubakar Umar Birnin-yauri

Abstract:

Plastic wastes arising from Polyethylene (PE)-based materials are increasingly becoming environmental problem, this is owed to the fact that these PE waste materials will only decompose over hundreds, or even thousands of years, during which they cause serious environmental problems. In this research, Polymer blends prepared from PE, Cashewnut flour (CNF) and Gum Arabic (GA) were studied in order to assay their biodegradation potentials via composting method. Different sample formulations were made i.e., X1= (70% PE, 25% CNF and 5% GA, X2= (70% PE, 20% CNF and 10% GA), X3= (70% PE, 15% CNF and 15% GA), X4 = (70% PE, 10% CNF and 20% GA) and X5 = (70% PE, 5% CNF and 25% GA) respectively. The results obtained showed that X1 recorded weight loss of 9.89% of its original weight after the first 20 days and 37.45% after 100 day, and X2 lost 12.67 % after the first 20 days and 42.56% after 100day, sample X5 experienced the greatest weight lost in the two methods adopted which are 52.9% and 57.89%. Instrumental analysis such as Fourier Transform Infrared Spectroscopy, Thermogravimetric analysis and Scanning electron microscopy were performed on the polymer blends before and after biodegradation. The study revealed that the biodegradation of the polymer blends is influenced by the contents of both the CNF and GA added into the blends.

Keywords: polyethylene, cashewnut, gum Arabic, biodegradation, blend, environment

Procedia PDF Downloads 44