Search results for: Fiber Metal Laminate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3627

Search results for: Fiber Metal Laminate

3177 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network

Authors: Ashima Anurag Sharma

Abstract:

Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 500
3176 Symmetry-Protected Dirac Semi-Metallic Phases in Transition Metal Dichalcogenides

Authors: Mohammad Saeed Bahramy

Abstract:

Transition metal dichalcogenides have experienced a resurgence of interest in the past few years owing to their rich properties, ranging from metals and superconductors to strongly spin-orbit-coupled semiconductors and charge-density-wave systems. In all these cases, the transition metal d-electrons mainly determine the ground state properties. This presentation focuses on the chalcogen-derived states. Combining density-functional theory calculations with spin- and angle-resolved photoemission, it is shown that these states generically host a coexistence of type I and type II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. It will be discussed how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across many compounds. Our finding opens a new route to design topological materials with advanced functionalities.

Keywords: topology, electronic structure, Dirac semimetals, transition metal dichalcogenides

Procedia PDF Downloads 132
3175 The Batch Method Approach for Adsorption Mechanism Processes of Some Selected Heavy Metal Ions and Methylene Blue by Using Chemically Modified Luffa Cylindrica

Authors: Akanimo Emene, Mark D. Ogden, Robert Edyvean

Abstract:

Adsorption is a low cost, efficient and economically viable wastewater treatment process. Utilization of this treatment process has not been fully applied due to the complex and not fully understood nature of the adsorption system. To optimize its process is to choose a sufficient adsorbent and to study further the experimental parameters that influence the adsorption design system. Chemically modified adsorbent, Luffa cylindrica, was used to adsorb heavy metal ions and an organic pollutant, methylene blue, from aqueous environmental solution at varying experimental conditions. Experimental factors, adsorption time, initial metal ion or organic pollutant concentration, ionic strength, and pH of solution were studied. The experimental data were analyzed with kinetic and isotherm models. The antagonistic effect of the methylene and some heavy metal ions were recorded. An understanding of the use of this treated Luffa cylindrica for the removal of these toxic substances will establish and improve the commercial application of the adsorption process in treatment of contaminated waters.

Keywords: adsorption, heavy metal ions, Luffa cylindrica, wastewater treatment

Procedia PDF Downloads 168
3174 Nano-Filled Matrix Reinforced by Woven Carbon Fibers Used as a Sensor

Authors: K. Hamdi, Z. Aboura, W. Harizi, K. Khellil

Abstract:

Improving the electrical properties of organic matrix composites has been investigated in several studies. Thus, to extend the use of composites in more varied application, one of the actual barrier is their poor electrical conductivities. In the case of carbon fiber composites, organic matrix are in charge of the insulating properties of the resulting composite. However, studying the properties of continuous carbon fiber nano-filled composites is less investigated. This work tends to characterize the effect of carbon black nano-fillers on the properties of the woven carbon fiber composites. First of all, SEM observations were performed to localize the nano-particles. It showed that particles penetrated on the fiber zone (figure1). In fact, by reaching the fiber zone, the carbon black nano-fillers created network connectivity between fibers which means an easy pathway for the current. It explains the noticed improvement of the electrical conductivity of the composites by adding carbon black. This test was performed with the four points electrical circuit. It shows that electrical conductivity of 'neat' matrix composite passed from 80S/cm to 150S/cm by adding 9wt% of carbon black and to 250S/cm by adding 17wt% of the same nano-filler. Thanks to these results, the use of this composite as a strain gauge might be possible. By the way, the study of the influence of a mechanical excitation (flexion, tensile) on the electrical properties of the composite by recording the variance of an electrical current passing through the material during the mechanical testing is possible. Three different configuration were performed depending on the rate of carbon black used as nano-filler. These investigation could lead to develop an auto-instrumented material.

Keywords: carbon fibers composites, nano-fillers, strain-sensors, auto-instrumented

Procedia PDF Downloads 383
3173 Study of Self-Assembled Photocatalyst by Metal-Terpyridine Interactions in Polymer Network

Authors: Dong-Cheol Jeong, Jookyung Lee, Yu Hyeon Ro, Changsik Song

Abstract:

The design and synthesis of photo-active polymeric systems are important in regard to solar energy harvesting and utilization. In this study, we synthesized photo-active polymer, thin films, and polymer gel via iterative self-assembly using reversible metal-terpyridine (M-tpy) interactions. The photocurrent generated in the polymeric thin films with Zn(II) was much higher than those of other films. Apparent diffusion rate constant (kapp) was measured for the electron hopping process via potential-step chronoamperometry. As a result, the kapp for the polymeric thin films with Zn(II) was almost two times larger than those with other metal ions. We found that the anodic photocurrents increased with the inclusion of the multi-walled carbon nanotube (MWNT) layer. Inclusion of MWNTs can provide efficient electron transfer pathways. In addition, polymer gel based on interactions between terpyridine and metal ions was shown the photocatalytic activity. Interestingly, in the Mg-terpyridine gel, the reaction rate of benzylamine to imine photo-oxidative coupling was faster than Fe-terpyridine gel because the Mg-terpyridine gel has two steps electron transfer pathway but Fe-terpyridine gel has three steps electron transfer pathway.

Keywords: terpyridine, photocatalyst, self-assebly, metal-ligand

Procedia PDF Downloads 284
3172 Effective Removal of Tetrodotoxin with Fiber Mat Containing Activated Charcoal

Authors: Min Sik Kim, Hwa Sung Shin

Abstract:

From 2013, small eel farms, which are located in Han River Estuary, South Korea suffer damage because of unknown massive perish. In the middle of discussion that the cause of perish could be environmental changes or waste water, a large amount of unknown nemertean was discovered during that time. Some nemerteans are known releasing neurotoxin substance. In this study, we isolated intestinal bacteria using selective media and conducted 16s rDNA microbial identification by gene alignment. As a result, there was a type of bacteria producing TTX, blocks sodium-channel inducing organism’s death. TTX production from the bacteria was confirmed by ELISA and liquid chromatography coupled with mass spectrometer. Additionally, the activated-charcoal which has an ability to absorb small molecules like toxin was applied to fibrous mesh to prevent ingestion of aquatic organisms and increase applicable area. The viability of zebrafish in the water with TTX and charcoal fiber mat were not decreased meaning it could be used for solving the perishing problem in fish farm.

Keywords: nemertean, TTX, fiber mat, activated charcoal, zebrafish

Procedia PDF Downloads 180
3171 Modifiable Poly Methacrylic Acid-Co-Acrylonitrile Microgels Fabricated with Cu and Co Nanoparticles for Simultaneous Catalytic Reduction of Multiple Compounds

Authors: Muhammad Ajmal, Muhammad Siddiq, Nurettin Sahiner

Abstract:

We prepared poly(methacrylic acid-co-acrylonitrile) (p(MAc-co-AN)) microgels by inverse suspension polymerization, and converted the nitrile groups into amidoxime groups to obtain more hydrophilic amidoximated poly(methacrylic acid-co-acrylonitile) (amid-p(MAc-co-AN)) microgels. Amid-microgels were used as microreactors for in situ synthesis of copper and cobalt nanoparticles. Cu (II) and Co (II) ions were loaded into microgels from their aqueous metal salt solutions and then converted to corresponding metal nanoparticle (MNP) by treating the loaded metal ions with sodium borohydride (NaBH4). The characterization of the prepared microgels and microgel metal nanoparticle composites was carried out by SEM, TEM and TG analysis. The amounts of metal nanoparticles within microgels were estimated by AAS measurements by dissolving the MNP entrapped within microgels by concentrated HCl acid treatment. Catalytic performances of the prepared amid-p(MAc-co-AN)-M (M: Cu, Co) microgel composites were investigated by using them as catalyst for the degradation of cationic and anionic organic dyes such as eosin Y (EY), methylene blue (MB) and methyl Orange (MO), and for the reduction of nitro aromatic pollutants like 2-nitrophenol (2-NP) and 4-nitrophenol (4-NP) to their corresponding amino phenols. Here, we also report for the first time, the simultaneous degradation/reduction of MB, EY, and 4-NP by amid-p(MAc-co-AN)-Cu microgel composites. Different parameters affecting the reduction rates such as metal types, amount of catalysts, temperature and the amount of reducing agent were investigated.

Keywords: microgels, nanoparticles, catalyst, pollutants

Procedia PDF Downloads 331
3170 Atomic Layer Deposition Of Metal Oxide Inverse Opals: A Promising Strategy For Photocatalytic Applications

Authors: Hamsasew Hankebo Lemago, Dóra Hessz, Tamás Igricz, Zoltán Erdélyi, , Imre Miklós Szilágyi

Abstract:

Metal oxide inverse opals are a promising class of photocatalysts with a unique hierarchical structure. Atomic layer deposition (ALD) is a versatile technique for the synthesis of high-precision metal oxide thin films, including inverse opals. In this study, we report the synthesis of TiO₂, ZnO, and Al₂O₃ inverse opal and their composites photocatalysts using thermal or plasma-enhanced ALD. The synthesized photocatalysts were characterized using a variety of techniques, including scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL), ellipsometry, and UV-visible spectroscopy. The results showed that the ALD-synthesized metal oxide inverse opals had a highly ordered structure and a tunable pore size. The PL spectroscopy results showed low recombination rates of photogenerated electron-hole pairs, while the ellipsometry and UV-visible spectroscopy results showed tunable optical properties and band gap energies. The photocatalytic activity of the samples was evaluated by the degradation of methylene blue under visible light irradiation. The results showed that the ALD-synthesized metal oxide inverse opals exhibited high photocatalytic activity, even under visible light irradiation. The composites photocatalysts showed even higher activity than the individual metal oxide inverse opals. The enhanced photocatalytic activity of the composites can be attributed to the synergistic effect between the different metal oxides. For example, Al₂O₃ can act as a charge carrier scavenger, which can reduce the recombination of photogenerated electron-hole pairs. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production.

Keywords: ALD, metal oxide inverse opals, photocatalysis, composites

Procedia PDF Downloads 53
3169 Large Core Silica Few-Mode Optical Fibers with Reduced Differential Mode Delay and Enhanced Mode Effective Area over 'C'-Band

Authors: Anton V. Bourdine, Vladimir A. Burdin, Oleg R. Delmukhametov

Abstract:

This work presents a fast and simple method for the design of large core silica optical fibers with differential mode delay (DMD) management. Some results are reported concerned with refractive index profile optimization for 42 µm core 16-LP-mode optical fiber for next-generation optical networks. Here special refractive index profile form provides total DMD reducing over all mode staff under desired enhanced mode effective area. Method for the simulation of 'real manufactured' few-mode optical fiber (FMF) core geometry differing from the desired optimized structure by core non-symmetrical ellipticity and refractive index profile deviation including local fluctuations is proposed. Results of the following analysis of optimized FMF with inserted geometry distortions performed by earlier on developed modification of rigorous mixed finite-element method showed strong DMD degradation that requires additional higher-order mode management. In addition, this work also presents a method for design mode division multiplexer channel precision spatial positioning scheme at FMF core end that provides one of the potentiality solutions of described DMD degradation problem concerned with 'distorted' core geometry due to features of optical fiber manufacturing techniques.

Keywords: differential mode delay, few-mode optical fibers, nonlinear Shannon limit, optical fiber non-circularity, ‘real manufactured’ optical fiber core geometry simulation, refractive index profile optimization

Procedia PDF Downloads 128
3168 Comparison Study on Characterization of Various Fly Ashes for Heavy Metal Adsorption

Authors: E. Moroydor Derun, N. Tugrul, N. Baran Acarali, A. S. Kipcak, S. Piskin

Abstract:

Fly ash is a waste material of coal firing thermal plants that is released from thermal power plants. It was defined as very fine particles that are drifted upward which are taken up by the flue gases. The emerging amount of fly ash in the world is approximately 600 million tons per year. In our country, it is expected that will be occurred 50 million tons of waste ash per year until 2020. The fly ashes can be evaluated by using as adsorbent material. The purpose of this study is to investigate the possibility of use of various fly ashes (Tuncbilek, Catalagzi, Orhaneli) like low-cost adsorbents for heavy metal adsorption. First of all, fly ashes were characterized. For this purpose; analyses such as XRD, XRF, SEM and FT-IR were performed.

Keywords: adsorbent, fly ash, heavy metal, waste

Procedia PDF Downloads 232
3167 Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fiber Ion-Exchanged with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher, I. Musbah

Abstract:

Cs-type nanocomposite zeolite membrane was successfully synthesized on an alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm; cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.

Keywords: MFI membrane, nanocomposite, ceramic hollow fibre, CO2, ion-exchange

Procedia PDF Downloads 264
3166 Effect of Chemical Modifier on the Properties of Polypropylene (PP) / Coconut Fiber (CF) in Automotive Application

Authors: K. Shahril, A. Nizam, M. Sabri, A. Siti Rohana, H. Salmah

Abstract:

Chemical modifier (Acrylic Acid) is used as filler treatment to improve mechanical properties and swelling behavior of polypropylene/coconut fiber (PP/CF) composites by creating more adherent bonding between CF filler and PP Matrix. Treated (with chemical modifier) and untreated (without chemical modifier) composites were prepared in the formulation of 10 wt%, 20 wt%, 30 wt%, and 40 wt%. The mechanical testing indicates that composite with 10 wt% of untreated composite has the optimum value of tensile strength, and the composite with chemical modifier shows the tensile strength was increased. By increasing of filler loading, elastic modulus was increased while the elongation at brake was decreased. Meanwhile, the swelling test discerned that the increase of filler loading increased the water absorption of composites and the presence of chemical modifier reduced the equilibrium water absorption percentage.

Keywords: coconut fiber, polypropylene, acid acrylic, ethanol, chemical modifier, composites

Procedia PDF Downloads 429
3165 Rheological and Sensory Attributes of Dough and Crackers Including Amaranth Flour (Amaranthus spp.)

Authors: Claudia Cabezas-Zabala, Jairo Lindarte-Artunduaga, Carlos Mario Zuluaga-Dominguez

Abstract:

Amaranth is an emerging pseudocereal rich in such essential nutrients as protein and dietary fiber, which was employed as an ingredient in the formulation of crackers to evaluate the rheological performance and sensory acceptability of the obtained food. A completely randomized factorial design was used with two factors: (A) ratio of wheat and amaranth flour used in the preparation of the dough, in proportion 90:10 and 80:20 (% w/w) and (B) two levels of inulin addition of 8.4% and 16.7 %, having two control doughs made from amaranth and wheat flour, respectively. Initially, the functional properties of the formulations mentioned were measured, showing no significant differences in the water absorption capacity (WAC) and swelling power (SP), having mean values between 1.66 and 1.81 g/g for WAC and between 1.75 and 1.86 g/g for SP, respectively. The amaranth flour had the highest water holding capacity (WHR) of 8.41 ± 0.15 g/g and emulsifying activity (EA) of 74.63 ± 1.89 g/g. Moreover, the rheological behavior, measured through the use of farinograph, extensograph, Mixolab, and falling index, showed that the formulation containing 20% of amaranth flour and 7.16% of inulin had a rheological behavior similar to the control produced exclusively with wheat flour, being the former, the one selected for the preparation of crackers. For this formulation, the farinograph showed a mixing tolerance index of 11 UB, indicating a strong and cohesive dough; likewise, the Mixolab showed dough reaches stability at 6.47 min, indicating a good resistance to mixing. On the other hand, the extensograph exhibited a dough resistance of 637 UB, as well as extensibility of 13.4 mm, which corresponds to a strong dough capable of resisting the laminate. Finally, the falling index was 318 s, which indicates the crumb will retain enough air to enhance the crispness of a characteristic cracker. Finally, a sensory consumer test did not show significant differences in the evaluation of aroma between the control and the selected formulation, while this latter had a significantly lower rating in flavor. However, a purchase intention of 70 % was observed among the population surveyed. The results obtained in this work give perspectives for the industrial use of amaranth in baked goods. Additionally, amaranth has been a product typically linked to indigenous populations in the Andean South American countries; therefore, the search for diversification and alternatives of use for this pseudocereal has an impact on the social and economic conditions of such communities. The technological versatility and nutritional quality of amaranth is an advantage for consumers, favoring the consumption of healthy products with important contributions of dietary fiber and protein.

Keywords: amaranth, crackers, rheology, pseudocereals, kneaded products

Procedia PDF Downloads 95
3164 A Review on the Mechanism Removal of Pesticides and Heavy Metal from Agricultural Runoff in Treatment Train

Authors: N. A. Ahmad Zubairi, H. Takaijudin, K. W. Yusof

Abstract:

Pesticides have been used widely over the world in agriculture to protect from pests and reduce crop losses. However, it affects the environment with toxic chemicals. Exceed of toxic constituents in the ecosystem will result in bad side effects. The hydrological cycle is related to the existence of pesticides and heavy metal which it can penetrate through varieties of sources into the soil or water bodies, especially runoff. Therefore, proper mechanisms of pesticide and heavy metal removal should be studied to improve the quality of ecosystem free or reduce from unwanted substances. This paper reviews the use of treatment train and its mechanisms to minimize pesticides and heavy metal from agricultural runoff. Organochlorine (OCL) is a common pesticide that was found in the agricultural runoff. OCL is one of the toxic chemicals that can disturb the ecosystem such as inhibiting plants' growth and harm human health by having symptoms as asthma, active cancer cell, vomit, diarrhea, etc. Thus, this unwanted contaminant gives disadvantages to the environment and needs treatment system. Hence, treatment train by bioretention system is suitable because removal efficiency achieves until 90% of pesticide removal with selected vegetated plant and additive.

Keywords: pesticides, heavy metal, agricultural runoff, bioretention, mechanism removal, treatment train

Procedia PDF Downloads 125
3163 Evaluation of Fire Resistance of High Strength Reinforced Concrete Columns with Spiral Wire Rope

Authors: Ki-Seok Kwon, Heung-Youl Kim

Abstract:

This research evaluated fire resistances of high-strengthened reinforced concrete (RC) column, spiral wire rope which applied with 60, and 100MPa. The fire resistance test of RC column with loading condition was conducted following the ISO 834 (3 hours). This experiment set mixing of fiber (PP fiber, Steel fiber) and types of horizontal reinforcement as a variable of reinforcement method. The fire resistance test measured the main steel bar’s max and mean temperatures also the shrinkage and shrinking ratio of columns(500 X 500 X 3,000mm) with loadings. As a result, the specimen of 60MPa attained three hours fire resistance with only spiral wire rope. Also, the specimen of 100MPa must be reinforced with fibers and spiral wire rope to attain three hours fire resistance.

Keywords: reinforced concrete column, high strength concrete, wire rope, fire resistance test

Procedia PDF Downloads 297
3162 Homoleptic Complexes of a Tetraphenylporphyrinatozinc(II)-conjugated 2,2':6',6"-Terpyridine

Authors: Angelo Lanzilotto, Martin Kuss-Petermann, Catherine E. Housecroft, Edwin C. Constable, Oliver S. Wenger

Abstract:

We recently described the synthesis of a new tetraphenylporphyrinatozinc(II)-conjugated 2,2':6',6"-terpyridine (1) in which the tpy domain enables the molecule to act as a metalloligand. The synthetic route to 1 has been optimized, the importance of selecting a particular sequence of synthetic steps will be discussed. Three homoleptic complexes have been prepared, [Zn(1)₂]²⁺, [Fe(1)₂]²⁺ and [Ru(1)₂]²⁺, and have been isolated as the hexafluoridophosphate salts. Spectroelectrochemical measurements have been performed and the spectral changes ascribed to redox processes are partitioned on either the porphyrin or the terpyridine units. Compound 1 undergoes a reversible one-electron oxidation/reduction. The removal/gain of a second electron leads to a further irreversible chemical transformation. For the homoleptic [M(1)₂]²⁺ complexes, a suitable potential can be chosen at which both the oxidation and the reduction of the {ZnTPP} core are reversible. When the homoleptic complex contains a redox active metal such as Fe or Ru, spectroelectrochemistry has been used to investigate the metal to ligand charge transfer (MLCT) transition. The latter is sensitive to the oxidation state of the metal, and electrochemical oxidation of the metal center suppresses it. Detailed spectroelectrochemical studies will be presented.

Keywords: homoleptic complexes, spectroelectrochemistry, tetraphenylporphyrinatozinc(II), 2, 2':6', 6"-terpyridine

Procedia PDF Downloads 190
3161 Metal Ions Cross-Linking of Epoxidized Natural Rubber

Authors: Kriengsak Damampai, Skulrat Pichaiyut, Amit Das, Charoen Nacason

Abstract:

The curing of epoxidized natural rubber (ENR) was performed by using metal ions (Ferric chloride, FeCl₃). Two different mole% of epoxide were used there are 25 mole% (ENR-25) and 50 mole% (ENR-50) epoxizied natural rubber. The main aim of this work was investigated the influence of metal ions on the coordination reaction of epoxidized natural rubber. Also, cure characteristics and mechanical properties of the rubber compounds were investigated. It was found that the ENR-50 compounds indicated superior modulus and tensile strength than the ENR-25 compounds. This was attributed to higher the cross-linking in the rubber via coordination linkages between the oxidation groups in ENR molecule and FeCl₃of metal ions. Various quantities of FeCl3 were also investigated. It is seen that the ENR-25 and 50 mole% compounds with FeCl₃ of more than 3 mmol exhibited higher modulus and tensile strength compare to the pure ENR. Furthermore, the FTIR spectra was used to confirm the cross-linked of ENR with FeCl₃.

Keywords: Epoxidized natural rubber, Ferric chloride, cross-linking, Coordination

Procedia PDF Downloads 57
3160 The Investigation of Cadmium Pollution in the Metal Production Factory in Relation to Environmental Health

Authors: Seyed Armin Hashemi, Somayeh Rahimzadeh

Abstract:

Toxic metals such as lead and cadmium are among the pollutants that are created by the metal production factories and disseminated in the nature. In order to study the quantity of cadmium pollution in the environment of the metal production factories, 50 saplings of the spruce species at the peripheries of the metal production factories were examined and the samples of the leaves, roots and stems of saplings planted around the factory and the soil of the environment of the factory were studied to investigate pollution with cadmium. They were compared to the soil and saplings of the spruce trees planted outside the factory as observer region. The results showed that the quantity of pollution in the leaves, stem, and roots of the trees planted inside the factory environment were estimated at 1.1 milligram/kilogram, 1.5 milligram/kilogram and 2.5 milligram/kilogram respectively and this indicated a significant difference with the observer region (P < 0.05). The quantity of cadmium in the soil of the peripheries of the metal production factory was estimated at 6.8 milligram/kilogram in the depth of 0-10 centimeters beneath the level of the soil. The length of roots in the saplings planted around the factory of metal production stood at 11 centimeters and 14.5 centimeters in the observer region which had a significant difference with the observer region (P < 0.05). The quantity of soil resources and spruce species’ pollution with cadmium in the region has been influenced by the production processes in the factory.

Keywords: cadmium pollution, spruce, soil pollution, the factory of producing alloy metals

Procedia PDF Downloads 308
3159 Composite Electrodes Containing Ni-Fe-Cr as an Activatable Oxygen Evolution Catalyst

Authors: Olga A. Krysiak, Grzegorz Cichowicz, Wojciech Hyk, Michal Cyranski, Jan Augustynski

Abstract:

Metal oxides are known electrocatalyst in water oxidation reaction. Due to the fact that it is desirable for efficient oxygen evolution catalyst to contain numerous redox-active metal ions to guard four electron water oxidation reaction, mixed metal oxides exhibit enhanced catalytic activity towards oxygen evolution reaction compared to single metal oxide systems. On the surface of fluorine doped tin oxide coated glass slide (FTO) deposited (doctor blade technique) mixed metal oxide layer composed of nickel, iron, and chromium. Oxide coating was acquired by heat treatment of the aqueous precursors' solutions of the corresponding salts. As-prepared electrodes were photosensitive and acted as an efficient oxygen evolution catalyst. Our results showed that obtained by this method electrodes can be activated which leads to achieving of higher current densities. The recorded current and photocurrent associated with oxygen evolution process were at least two orders of magnitude higher in the presence of oxide layer compared to bare FTO electrode. The overpotential of the process is low (ca. 0,2 V). We have also checked the activity of the catalyst at different known photoanodes used in sun-driven water splitting. Herein, we demonstrate that we were able to achieve efficient oxygen evolution catalysts using relatively cheap precursor consisting of earth abundant metals and simple method of preparation.

Keywords: chromium, electrocatalysis, iron, metal oxides, nickel, oxygen evolution

Procedia PDF Downloads 182
3158 Static Relaxation of Glass Fiber Reinforced Pipes

Authors: Mohammed Y. Abdellah, Mohamed K. Hassan, A. F. Mohamed, Shadi M. Munshi, A. M. Hashem

Abstract:

Pips made from glass fiber reinforced polymer has competitive role in petroleum industry. The need of evaluating the mechanical behavior of (GRP) pipes is essential objects. Stress relaxation illustrates how polymers relieve stress under constant strain. Static relaxation test is carried out at room temperature. The material gives poor static relaxation strength, two loading cycles have been observed for the tested specimen.

Keywords: GRP, sandwich composite material, static relaxation, stress relief

Procedia PDF Downloads 598
3157 Mesoporous Material Nanofibers by Electrospinning

Authors: Sh. Sohrabnezhad, A. Jafarzadeh

Abstract:

In this paper, MCM-41 mesoporous material nanofibers were synthesized by an electrospinning technique. The nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption–desorption measurement. Tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA) were used as a silica source and fiber forming source, respectively. TEM and SEM images showed synthesis of MCM-41 nanofibers with a diameter of 200 nm. The pore diameter and surface area of calcined MCM-41 nanofibers was 2.2 nm and 970 m2/g, respectively. The morphology of the MCM-41 nanofibers depended on spinning voltages.

Keywords: electrospinning, electron microscopy, fiber technology, porous materials, X-ray techniques

Procedia PDF Downloads 224
3156 A Constitutive Model of Ligaments and Tendons Accounting for Fiber-Matrix Interaction

Authors: Ratchada Sopakayang, Gerhard A. Holzapfel

Abstract:

In this study, a new constitutive model is developed to describe the hyperelastic behavior of collagenous tissues with a parallel arrangement of collagen fibers such as ligaments and tendons. The model is formulated using a continuum approach incorporating the structural changes of the main tissue components: collagen fibers, proteoglycan-rich matrix and fiber-matrix interaction. The mechanical contribution of the interaction between the fibers and the matrix is simply expressed by a coupling term. The structural change of the collagen fibers is incorporated in the constitutive model to describe the activation of the fibers under tissue straining. Finally, the constitutive model can easily describe the stress-stretch nonlinearity which occurs when a ligament/tendon is axially stretched. This study shows that the interaction between the fibers and the matrix contributes to the mechanical tissue response. Therefore, the model may lead to a better understanding of the physiological mechanisms of ligaments and tendons under axial loading.

Keywords: constitutive model, fiber-matrix, hyperelasticity, interaction, ligament, tendon

Procedia PDF Downloads 269
3155 NR/PEO Block Copolymer: A Chelating Exchanger for Metal Ions

Authors: M. S. Mrudula, M. R. Gopinathan Nair

Abstract:

In order to utilize the natural rubber for developing new green polymeric materials for specialty applications, we have prepared natural rubber and polyethylene oxide based polymeric networks by two shot method. The polymeric networks thus formed have been used as chelating exchanger for metal ion binding. Chelating exchangers are, in general, coordinating copolymers containing one or more electron donor atoms such as N, S, O, and P that can form coordinate bonds with metals. Hydrogels are water- swollen network of hydrophilic homopolymer or copolymers. They acquire a great interest due to the facility of the incorporation of different chelating groups into the polymeric networks. Such polymeric hydrogels are promising materials in the field of hydrometallurgical applications and water purification due to their chemical stability. The current study discusses the swelling response of the polymeric networks as a function of time, temperature, pH and [NaCl] and sorption studies. Equilibrium swelling has been observed to depend on both structural aspects of the polymers and environmental factors. Metal ion sorption shows that these polymeric networks can be used for removal, separation, and enrichment of metal ions from aqueous solutions and can play an important role for environmental remediation of municipal and industrial wastewater.

Keywords: block copolymer, adsorption, chelating exchanger, swelling study, polymer, metal complexes

Procedia PDF Downloads 315
3154 Effects of Rations with High Amount of Crude Fiber on Rumen Fermentation in Suckler Cows

Authors: H. Scholz, P. Kuehne, G. Heckenberger

Abstract:

Problems during the calving period (December until May) often are results in a high body condition score (BCS) at this time. At the end of the grazing period (frequently after early weaning), however, an increase of BCS can often be observed under German conditions. In the last eight weeks before calving, the body condition should be reduced or at least not increased. Rations with a higher amount of crude fiber can be used (rations with straw or late mowed grass silage). Fermentative digestion of fiber is slow and incomplete; that’s why the fermentative process in the rumen can be reduced over a long feeding time. Viewed in this context, feed intake of suckler cows (8 weeks before calving) in different rations and fermentation in the rumen should be checked by taking rumen fluid. Eight suckler cows (Charolais) were feeding a Total Mixed Ration (TMR) in the last eight weeks before calving and grass silage after calving. By the addition of straw (30 % [TMR1] vs. 60 % [TMR2] of dry matter) was varied the amount of crude fiber in the TMR (grass silage, straw, mineral) before calving. After calving of the cow's grass, silage [GS] was fed ad libitum, and the last measurement of rumen fluid took place on the pasture [PS]. Rumen fluid, plasma, body weight, and backfat thickness were collected. Rumen fluid pH was assessed using an electronic pH meter. Volatile fatty acids (VFA), sedimentation, methylene-blue, and amount of infusorians were measured. From these 4 parameters, an “index of rumen fermentation” [IRF] in the rumen was formed. Fixed effects of treatment (TMR1, TMR2, GS, and PS) and a number of lactations (3-7 lactations) were analyzed by ANOVA using SPSS Version 25.0 (significant by p ≤ 5 %). Rumen fluid pH was significantly influenced by variants (TMR 1 by 6.6; TMR 2 by 6.9; GS by 6.6 and PS by 6.9) but was not affected by other effects. The IRF showed disturbed fermentation in the rumen by feeding the TMR 1+2 with a high amount of crude fiber (Score: > 10.0 points) and a very good environment for fermentation during grazing the pasture (Score: 6.9 points). Furthermore, significant differences were found for VFA, methylene blue, and the number of infusorians. The use of rations with a high amount of crude fiber from weaning to calving may cause deviations from undisturbed fermentation in the rumen and adversely affect the utilization of the feed in the rumen.

Keywords: rumen fermentation, suckler cow, digestibility organic matter, crude fiber

Procedia PDF Downloads 116
3153 Coordination Polymer Hydrogels Based on Coinage Metals and Nucleobase Derivatives

Authors: Lamia L. G. Al-Mahamad, Benjamin R. Horrocks, Andrew Houlton

Abstract:

Hydrogels based on metal coordination polymers of nucleosides and a range of metal ions (Au, Ag, Cu) have been prepared and characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and powder X-ray diffraction. AFM images of the xerogels revealed the formation of extremely long polymer molecules (> 10 micrometers, the maximum scan range). This result is also consistent with TEM images which show a fibrous morphology. Oxidative doping of the Au-nucleoside fibres produces an electrically conductive nanowire. No sharp Bragg peaks were found at the at the X-ray diffraction pattern for metal ions hydrogels indicating that the samples were amorphous, but instead the data showed broad peaks in the range 20 < Q < 40 and correspond to distances d=2μ/Q. The data was analysed using a simplified Rietveld method by fitting a regression model to obtain the distance between atoms.

Keywords: hydrogel, metal ions, nanowire, nucleoside

Procedia PDF Downloads 231
3152 Electrospinning Parameters: Effect on the Morphology of Polylactic Acid/Polybutylene Succinate Fibers

Authors: Hamad Al-Turaif, Usman Saeed

Abstract:

The development of nanofibers with the help of electrospinning is being prioritized as a method of choice because of the simplicity and efficiency of the process. The parameters of the electrospinning process effectively convert the polymer solution into an electrospun final product made of the desired diameter of nanofiber. The aim of the study presented is to recognize and analyze the effect of proposed parameters on biodegradable and biocompatible polylactic acid (PLA)/polybutylene succinate (PBS) nanofiber developed by the electrospinning process. The morphology of the fiber is characterized by implementing Scanning Electron Microscope. Studies were conducted to characterize the result of using different electrospinning parameters on the final diameter and orientation of fiber. It was determined that varying polymer solution concentration, feed rate, and applied voltage show different outcomes. The best results were obtained at 6% polymer solution concentration, 20 kV, and 0.5 ml/h, which can be applicable for biomedical applications. Finally, protein adsorption and mechanical testing were conducted on the PLA/PBS fiber.

Keywords: electrospinning, polylactic acid, polybutylene succinate, morphology

Procedia PDF Downloads 83
3151 FEM Study of Different Methods of Fiber Reinforcement Polymer Strengthening of a High Strength Concrete Beam-Column Connection

Authors: Talebi Aliasghar, Ebrahimpour Komeleh Hooman, Maghsoudi Ali Akbar

Abstract:

In reinforced concrete (RC) structures, beam-column connection region has a considerable effect on the behavior of structures. Using fiber reinforcement polymer (FRP) for the strengthening of connections in RC structures can be one of the solutions to retrofitting this zone which result in the enhanced behavior of structure. In this paper, these changes in behavior by using FRP for high strength concrete beam-column connection have been studied by finite element modeling. The concrete damage plasticity (CDP) model has been used to analyze the RC. The results illustrated a considerable development in load-bearing capacity but also a noticeable reduction in ductility. The study also assesses these qualities for several modes of strengthening and suggests the most effective mode of strengthening. Using FRP in flexural zone and FRP with 45-degree oriented fibers in shear zone of joint showed the most significant change in behavior.

Keywords: HSC, beam-column connection, Fiber Reinforcement Polymer, FRP, Finite Element Modeling, FEM

Procedia PDF Downloads 131
3150 A Review on Enhancing Heat Transfer Processes by Open-Cell Metal Foams and Industrial Applications

Authors: S. Cheragh Dar, M. Saljooghi, A. Babrgir

Abstract:

In the last couple of decades researchers' attitudes were focused on developing and enhancing heat transfer processes by using new components or cellular solids that divide into stochastic structures and periodic structures. Open-cell metal foams are part of stochastic structures families that they can be considered as an avant-garde technology and they have unique properties, this porous media can have tremendous achievements in thermal processes. This paper argues and surveys postulating possible in industrial thermal issues which include: compact electronic cooling, heat exchanger, aerospace, fines, turbo machinery, automobiles, crygen tanks, biomechanics, high temperature filters and etc. Recently, by surveying exponential rate of publications in thermal open-cell metal foams, all can be demonstrated in a holistic view which can lead researchers to a new level of understanding in different industrial thermal sections.

Keywords: heat transfer, industrial thermal, cellular solids, open cell metal foam

Procedia PDF Downloads 275
3149 Analysis of Dust Particles in Snow Cover in the Surroundings of the City of Ostrava: Particle Size Distribution, Zeta Potential and Heavy Metal Content

Authors: Roman Marsalek

Abstract:

In this paper, snow samples containing dust particles from several sampling points around the city of Ostrava were analyzed. The pH values of sampled snow were measured and solid particles analyzed. Particle size, zeta potential and content of selected heavy metals were determined in solid particles. The pH values of most samples lay in the slightly acid region. Mean values of particle size ranged from 290.5 to 620.5 nm. Zeta potential values varied between -5 and -26.5 mV. The following heavy metal concentration ranges were found: copper 0.08-0.75 mg/g, lead 0.05-0.9 mg/g, manganese 0.45-5.9 mg/g and iron 25.7-280.46 mg/g. The highest values of copper and lead were found in the vicinity of busy crossroads, and on the contrary, the highest levels of manganese and iron were detected close to a large steelworks. The proportion between pH values, zeta potentials, particle sizes and heavy metal contents was established. Zeta potential decreased with rising pH values and, simultaneously, heavy metal content in solid particles increased. At the same time, higher metal content corresponded to lower particle size.

Keywords: dust, snow, zeta potential, particles size distribution, heavy metals

Procedia PDF Downloads 342
3148 The Lubrication Regimes Recognition of a Pressure-Fed Journal Bearing by Time and Frequency Domain Analysis of Acoustic Emission Signals

Authors: S. Hosseini, M. Ahmadi Najafabadi, M. Akhlaghi

Abstract:

The health of the journal bearings is very important in preventing unforeseen breakdowns in rotary machines, and poor lubrication is one of the most important factors for producing the bearing failures. Hydrodynamic lubrication (HL), mixed lubrication (ML), and boundary lubrication (BL) are three regimes of a journal bearing lubrication. This paper uses acoustic emission (AE) measurement technique to correlate features of the AE signals to the three lubrication regimes. The transitions from HL to ML based on operating factors such as rotating speed, load, inlet oil pressure by time domain and time-frequency domain signal analysis techniques are detected, and then metal-to-metal contacts between sliding surfaces of the journal and bearing are identified. It is found that there is a significant difference between theoretical and experimental operating values that are obtained for defining the lubrication regions.

Keywords: acoustic emission technique, pressure fed journal bearing, time and frequency signal analysis, metal-to-metal contact

Procedia PDF Downloads 128