Search results for: Calcium phosphate cement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1789

Search results for: Calcium phosphate cement

1759 Removal and/or Recovery of Phosphates by Precipitation as Ferric Phosphate from the Effluent of a Municipal Wastewater Treatment Plant

Authors: Kyriaki Kalaitzidou, Athanasia Tolkou, Christina Raptopoulou, Manassis Mitrakas, Anastasios Zouboulis

Abstract:

Phosphate rock is the main source of phosphorous (P) in fertilizers and is essential for high crop yield in agriculture; currently, it is considered as a critical element, phasing scarcity. Chemical precipitation, which is a commonly used method of phosphorous removal from wastewaters, finds its significance in that phosphates may be precipitated in appropriate chemical forms that can be reused-recovered. Most often phosphorous is removed from wastewaters in the form of insoluble phosphate salts, by using salts (coagulants) of multivalent metal ions, most frequently iron, aluminum, calcium, or magnesium. The removal degree is affected by various factors, such as pH, chemical agent dose, temperature, etc. In this study, phosphate precipitation from the secondary (biologically treated) effluent of a municipal wastewater treatment plant is examined. Using chlorosulfate (FeClSO4) it was attempted to either remove and/or recover PO43-. Results showed that the use of Fe3+ can achieve residual concentrations lower than the commonly applied legislation limit of PO43- (i.e. 3 mg PO43-/L) by adding 7.5 mg/L Fe3+ in the secondary effluent with an initial concentration of about 10 mg PO43-/L and at pH range between 6 to 9. In addition, the formed sediment has a percentage of almost 24% PO43- content. Therefore, simultaneous removal and recovery of PO43- as ferric phosphate can be achieved, making it possible for the ferric phosphate to be re-used as a possible (secondary) fertilizer source.

Keywords: ferric phosphate, phosphorus recovery, phosphorus removal, wastewater treatment

Procedia PDF Downloads 453
1758 High Resolution Solid State NMR Structural Study of a Ternary Hydraulic Mixture

Authors: Rym Sassi, Franck Fayon, Mohend Chaouche, Emmanuel Veron, Valerie Montouillout

Abstract:

The chemical phenomena occurring during cement hydration are complex and interdependent, and even after almost two centuries of studies, they are still difficult to solve for complex mixtures combining different hydraulic binders. Powder-XRD has been widely used for characterizing the crystalline phases in both anhydrous and hydrated cement, but only limited information is obtained in the case of strongly disordered and amorphous phases. In contrast, local spectroscopies like solid-state NMR can provide a quantitative description of noncrystalline phases. In this work, the structural modifications occurring during hydration of a fast-setting ternary binder based on white Portland cement, white calcium aluminate cement, and calcium sulfate were investigated using advanced solid-state NMR methods. We particularly focused on the early stage of the hydration up to 28 days, working with samples whose hydration was controlled and stopped. ²⁷Al MQ-MAS as well as {¹H}-²⁷Al and {¹H}-²⁹Si Cross- Polarization MAS NMR techniques were combined to distinguish all of the aluminum and silicon species formed during the hydration. The NMR quantification of the different phases was conducted in parallel with the XRD analyses. The consumption of initial products, as well as the precipitation of hydraulic phases (ettringite, monosulfate, strätlingite, CSH, and CASH), were unambiguously quantified. Finally, the drawing of the consumption and formation of phases was correlated with mechanical strength measurements.

Keywords: cement, hydration, hydrates structure, mechanical strength, NMR

Procedia PDF Downloads 134
1757 Some Characteristics and Identification of Fungi Contaminated by Alkomos Cement Factory

Authors: Abdulmajeed Bashir Mlitan, Ethan Hack

Abstract:

Soil samples were collected from and around Alkomos cement factory, Alkomos town, Libya. Soil physiochemical properties were determined. In addition, olive leaves were scanned for their fungal content. This work can conclude that the results obtained for the examined physiochemical characteristics of soil in the area studied prove that cement dust from the Alkomos cement factory in Libya has had a significant impact on the soil. The affected soil properties are pH and total calcium content. These characteristics were found to be higher than those in similar soils from the same area. The increment of soil pH in the same area may be a result of precipitation of cement dust over the years. Different responses were found in each season and each site. For instance, the dominance of fungi of soil and leaves was lowest at 100 m from the factory and the evenness and diversity increased at this site compared to the control area and 250 m from the factory.

Keywords: pollution, soil microbial, alkomos, Libya

Procedia PDF Downloads 584
1756 Production of Cement-Free Construction Materials via Fly Ash Carbonation

Authors: Zhenhua Wei, Gabriel Falzone, Bu Wang, Laurent Pilon, Gaurav Sant

Abstract:

The production of ordinary Portland cement (OPC) is a CO₂ intensive process. Specifically, cement clinkering reactions require not only substantial energy in the form of heat, but also result in the release of CO₂, from limestone decarbonation and the combustion of fuel. To overcome this CO₂ intensive process, clinkering-free cementation is demonstrated by the carbonation of fly ash; i.e., a by-product of coal combustion. It is shown that in moist environments and at sub-boiling temperatures, calcium-rich fly ashes readily react with gas-phase CO₂ to provide cementation. After seven days of CO₂ exposure at 75°C, such formulations achieve a compressive strength on the order of 35 MPa and take-up 9% CO₂ (by mass of the solid). On the other hand, calcium-deficient fly ashes, due to their lack of alkalinity (i.e., abundance of mobile Ca or Mg), show little if any potential for CO₂ uptake and strength gain. The role of the CO₂ concentration and processing temperature are discussed and linked to the progress of reactions, and the development of microstructure. The outcomes demonstrate a means for enabling clinkering-free cementation while enabling beneficial utilization of CO₂ and fly ash; i.e., two abundant but underutilized industrial by-products.

Keywords: fly ash, carbonation, concrete, strength

Procedia PDF Downloads 227
1755 Diversity of Microbial Ground Improvements

Authors: V. Ivanov, J. Chu, V. Stabnikov

Abstract:

Low cost, sustainable, and environmentally friendly microbial cements, grouts, polysaccharides and bioplastics are useful in construction and geotechnical engineering. Construction-related biotechnologies are based on activity of different microorganisms: urease-producing, acidogenic, halophilic, alkaliphilic, denitrifying, iron- and sulphate-reducing bacteria, cyanobacteria, algae, microscopic fungi. The bio-related materials and processes can be used for the bioaggregation, soil biogrouting and bioclogging, biocementation, biodesaturation of water-satured soil, bioencapsulation of soft clay, biocoating, and biorepair of the concrete surface. Altogether with the most popular calcium- and urea based biocementation, there are possible and often are more effective such methods of ground improvement as calcium- and magnesium based biocementation, calcium phosphate strengthening of soil, calcium bicarbonate biocementation, and iron- or polysaccharide based bioclogging. The construction-related microbial biotechnologies have a lot of advantages over conventional construction materials and processes.

Keywords: ground improvement, biocementation, biogrouting, microorganisms

Procedia PDF Downloads 201
1754 Characterization of Cement Mortar Based on Fine Quartz

Authors: K. Arroudj, M. Lanez, M. N. Oudjit

Abstract:

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Keywords: mineralogical structure, pozzolanic reactivity, Quartz, mechanical strength

Procedia PDF Downloads 257
1753 Laboratory Investigation on the Waste Road Construction Material Using Conventional and Chemical Additives

Authors: Paulos Meles Yihdego

Abstract:

To address the environmental impact of the cement industry and road building waste, the use of chemical stabilizers in conjunction with recycled asphalt and cement components was investigated. The silica-based chemical stabilizers and their potential effects on the base layer stabilized by cement are discussed in this paper. Strength, moisture compaction interaction, and microstructural characteristics are all examined. According to the outcome, using this stabilizer has improved the mechanical properties. The inclusion of chemical stabilizers in the combination, which is responsible for the mixture's improved strength, raised the intensity of the C-S-H (Calcium Silicate Hydrate) gel, according to a microstructural study. The design was demonstrated to be durable by the little ettringites found in the later phases. The application of this stabilizer ensures a strong, eco-friendly, durable base layer.

Keywords: ettringites, microstructure analysis, durability properties, cement stabilized base

Procedia PDF Downloads 37
1752 The Biocompatibility and Osteogenic Potential of Experimental Calcium Silicate Based Root Canal Sealer, Capseal

Authors: Seok Woo Chang

Abstract:

Aim: Capseal I and Capseal II are calcium silicate and calcium phosphate based experimental root canal sealer. The aim of this study was to evaluate the biocompatibility and mineralization potential of Capseal I and Capseal II. Materials and Methods: The biocompatibility and mineralization-related gene expression (alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OCN)) of Capseal I and Capseal II were compared using methylthiazol tetrazolium assay and reverse transcription-polymerization chain reaction analysis, respectively. The results were analyzed by Kruskal-Wallis test. P-value of < 0.05 was considered significant. Result: Both Capseal I and Capseal II were favorable in biocompatibility and influenced the messenger RNA expression of ALP and BSP. Conclusion: Within the limitation of this study, Capseal is biocompatible and have mineralization promoting potential, and thus could be a promising root canal sealer.

Keywords: biocompatibility, mineralization-related gene expression, Capseal I, Capseal II

Procedia PDF Downloads 249
1751 Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering

Authors: Ekaterina S. Marchenko, Gulsharat A. Baigonakova, Kirill M. Dubovikov, Igor A. Khlusov

Abstract:

NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure.

Keywords: calcium phosphate coating, cytotoxicity, NiTi alloy, two-layer coating

Procedia PDF Downloads 49
1750 Cytotoxicity of Nano β–Tricalcium Phosphate (β-TCP) on Human Osteoblast (hFOB1.19)

Authors: Jer Ping Ooi, Shah Rizal Bin Kasim, Nor Aini Saidin

Abstract:

The objective of this study was to synthesize nano-sized β-tricalcium phosphate (β-TCP) powder and assess its cytotoxic effects on human osteoblast (hFOB1.19) by using four cytotoxicity assays, namely, lactose dehydrogenase (LDHe), tetrazolium hydroxide (XTT), neutral red (NR), and sulforhodamine B (SRB) assays. β-tricalcium phosphate (β-TCP) is a calcium phosphate compound commonly used as an implant material. To date, bulk-sized β-TCP is reported to be readily tolerated by the osteogenic cells and body based on in vitro, in vivo experiments and clinical studies. However, to what extent of nano-sized β-TCP will react in models as compared to bulk β-TCP is yet to be investigated. Thus, in this project, the cells were treated with nano β-TCP powder within a range of concentrations from 0 to 1000 μg/mL for 24, 48, and 72 h. The cytotoxicity tests showed that loss of cell viability ( > 50%) was high for hFOB1.19 cells in all assays. Cell cycle and apoptosis analysis of hFOB1.19 cells revealed that 50 μg/mL of the compound led to 30.5% of cells being apoptotic after 72 h of incubation, and the percentage was increased to 58.6% when the concentration was increased to 200 μg/mL. When the incubation time was increased from 24 to 72 h, the percentage of apoptotic cells increased from 17.3% to 58.6% when the hFOB1.19 were exposed with 200 μg/mL of nano β-TCP powder. Thus, both concentration and exposure duration affected the cytotoxicity effects of the nano β-TCP powder on hFOB1.19. We hypothesize that these cytotoxic effects on hFOB1.19 are related to the nano-scale size of the β-TCP.

Keywords: β-tricalcium phosphate, hFOB1.19, adipose-derived mesenchymal stem cells, cytotoxicity

Procedia PDF Downloads 290
1749 Investigation of Zeolite and Silica Fume Addition on Durability of Cement Composites

Authors: Martina Kovalcikova, Adriana Estokova

Abstract:

Today, concrete belongs to the most frequently used materials in the civil engineering industry for many years. Consuming energy in cement industry is very high and CO₂ emissions generated during the production of Portland cement has serious environmental threatens. Therefore, utilization of pozzolanic material as a supplementary cementitious material has a direct relationship with the sustainable development. The paper presents the results of the comparative study of the resistance of the Slovak origin zeolite based cement composites with addition of silica fume exposed to the sulfate environment. The various aggressive media were used for the experiment: sulfuric acid with pH 4, distilled water and magnesium sulfate solution with a concentration of 3 g/L of SO₄²−. The laboratory experiment proceeded during 180 days under model conditions. The changes in the elemental concentrations of calcium and silicon in liquid leachates were observed.

Keywords: concrete, leaching, silica fume, sulfuric acid, zeolite

Procedia PDF Downloads 241
1748 A Ratiometric Inorganic Phosphate Sensor Based on CdSe/ZnS QDs and Rhodamine 6G-Doped Nanofibers

Authors: Hong Dinh Duong, Jong Il Rhee

Abstract:

In this study, a ratiometric inorganic phosphate sensor was fabricated by a double layer of the rhodamine 6G-doped nanofibers and the CdSe/ZnS QDs-captured polymer. In which, CdSe/ZnS QDs with emission wavelengths of 595nm were synthesized and ligands on their surface were exchanged with mercaptopropionic acid (MPA). The synthesized MPA-QDs were combined with the mixture of sol-gel of 3-glycidoxypropyl trimethoxysilane (GPTMS), 3-aminopropyltrimethoxysilane (APTMS) and polyurethane (PU) to build a layer for sensing inorganic phosphate. Another sensing layer was of nanofibers doped R6G which were produced from poly(styrene-co-acrylonitrile) by electrospining. The ratio of fluorescence intensities between rhodamin 6G (R6G) and CdSe/ZnS QDs exposed at different phosphate concentrations was used for calculating a linear phosphate concentration range of 0-10mM.

Keywords: nanofiber, QDs, ratiometric phosphate sensor, rhodamine 6G, sol-gel

Procedia PDF Downloads 388
1747 Eco-Efficient Cementitious Materials for Construction Applications in Ireland

Authors: Eva Ujaczki, Rama Krishna Chinnam, Ronan Courtney, Syed A. M. Tofail, Lisa O'Donoghue

Abstract:

Concrete is the second most widely used material in the world and is made of cement, sand, and aggregates. Cement is a hydraulic binder which reacts with water to form a solid material. In the cement manufacturing process, the right mix of minerals from mined natural rocks, e.g., limestone is melted in a kiln at 1450 °C to form a new compound, clinker. In the final stage, the clinker is milled into a fine cement powder. The principal cement types manufactured in Ireland are: 1) CEM I – Portland cement; 2) CEM II/A – Portland-fly ash cement; 3) CEM II/A – Portland-limestone cement and 4) CEM III/A – Portland-round granulated blast furnace slag (GGBS). The production of eco-efficient, blended cement (CEM II, CEM III) reduces CO₂ emission and improves energy efficiency compared to traditional cements. Blended cements are produced locally in Ireland and more than 80% of produced cement is blended. These eco-efficient, blended cements are a relatively new class of construction materials and a kind of geopolymer binders. From a terminological point of view, geopolymer cement is a binding system that is able to harden at room temperature. Geopolymers do not require calcium-silicate-hydrate gel but utilize the polycondensation of SiO₂ and Al₂O₃ precursors to achieve a superior strength level. Geopolymer materials are usually synthesized using an aluminosilicate raw material and an activating solution which is mainly composed of NaOH or KOH and Na₂SiO₃. Cement is the essential ingredient in concrete which is vital for economic growth of countries. The challenge for the global cement industry is to reach to increasing demand at the same time recognize the need for sustainable usage of resources. Therefore, in this research, we investigated the potential for Irish wastes to be used in geopolymer cement type applications through a national stakeholder workshop with the Irish construction sector and relevant stakeholders. This paper aims at summarizing Irish stakeholder’s perspective for introducing new secondary raw materials, e.g., bauxite residue or increasing the fly ash addition into cement for eco-efficient cement production.

Keywords: eco-efficient, cement, geopolymer, blending

Procedia PDF Downloads 133
1746 The Effect of Application of Biological Phosphate Fertilizer (Fertile 2) and Triple Super Phosphate Chemical Fertilizers on Some Morphological Traits of Corn (SC704)

Authors: M. Mojaddam, M. Araei, T. Saki Nejad, M. Soltani Howyzeh

Abstract:

In order to study the effect of different levels of triple super phosphate chemical fertilizer and biological phosphate fertilizer (fertile 2) on some morphological traits of corn this research was carried out in Ahvaz in 2002 as a factorial experiment in randomized complete block design with 4 replications.) The experiment included two factors: first, biological phosphate fertilizer (fertile 2) at three levels of 0, 100, 200 g/ha; second, triple super phosphate chemical fertilizer at three levels of 0, 60, 90 kg/ha of pure phosphorus (P2O5). The obtained results indicated that fertilizer treatments had a significant effect on some morphological traits at 1% probability level. In this regard, P2B2 treatment (100 g/ha biological phosphate fertilizer (fertile 2) and 60 kg/ha triple super phosphate fertilizer) had the greatest plan height, stem diameter, number of leaves and ear length. It seems that in Ahvaz weather conditions, decrease of consumption of triple superphosphate chemical fertilizer to less than a half along with the consumption of biological phosphate fertilizer (fertile 2) is highly important in order to achieve optimal results. Therefore, it can be concluded that biological fertilizers can be used as a suitable substitute for some of the chemical fertilizers in sustainable agricultural systems.

Keywords: biological phosphate fertilizer (fertile 2), triple super phosphate, corn, morphological traits

Procedia PDF Downloads 409
1745 Can Bone Resorption Reduce with Nanocalcium Particles in Astronauts?

Authors: Ravi Teja Mandapaka, Prasanna Kumar Kukkamalla

Abstract:

Poor absorption of calcium, elevated levels in serum and loss of bone are major problems of astronauts during space travel. Supplementation of calcium could not reveal this problem. In normal condition only 33% of calcium is absorbed from dietary sources. In this paper effect of space environment on calcium metabolism was discussed. Many surprising study findings were found during literature survey. Clinical trials on ovariectomized mice showed that reduction of calcium particles to nano level make them more absorbable and bioavailable. Control of bone loss in astronauts in critical important In Fortification of milk with nana calcium particles showed reduces urinary pyridinoline, deoxypyridinoline levels. Dietary calcium and supplementation do not show much retention of calcium in zero gravity environment where absorption is limited. So, the fortification of foods with nano calcium particles seemed beneficial for astronauts during and after space travel in their speedy recovery.

Keywords: nano calcium, astronauts, fortification, supplementation

Procedia PDF Downloads 465
1744 Mechanical Strengths of Self-Compacting Mortars Prepared with the Pozzolanic Cement in Aggressive Environments

Authors: M. Saidi, I. Djefour, F. Ait Medjber, A. Melouane, A. Gacem

Abstract:

The objective of this research is to study the physical and mechanical properties and durability of self-compacting mortars prepared by substituting a part of cement up to a percentage of 30% pozzolan according to different Blaine specific surface area (SSB1=7000 cm2/g and SSB=9000 cm2/g)). Order to evaluate durability, mortars were subjected to chemical attacks in various aggressive environments, a solution of a mixture of nitric acid and ammonium nitrate (HNO3 + NH4NO3) and a magnesium sulfate salt solution (MgSO4)) with a concentration of 10%, for a period of one month. This study is complemented by a comparative study of the durability of mortars elaborated with sulphate resistant cement (SRC). The results show that these mortars develop long-term, mechanical and chemical resistance better than mortars based Portland cement with 5% gypsum (CEM 1) and SRC. We found that the mass losses are lowest in mortars elaborated with pozzolanic cement (30% substitution with SSB2) in both of chemical attack solutions (3.28% in the solution acid and 1.16% in the salt solution) and the compressive strength gains of 14.68% and 8.5% respectively in the two media. This is due to the action of pozzolan which fixes portlandite to form hydrated calcium silicate (CSH) from the hydration of tricalcic silicate (C3S).

Keywords: aggressive environments, durability, mechanical strengths, pozzolanic cement, self-compacting mortar

Procedia PDF Downloads 211
1743 A Highly Sensitive Dip Strip for Detection of Phosphate in Water

Authors: Hojat Heidari-Bafroui, Amer Charbaji, Constantine Anagnostopoulos, Mohammad Faghri

Abstract:

Phosphorus is an essential nutrient for plant life which is most frequently found as phosphate in water. Once phosphate is found in abundance in surface water, a series of adverse effects on an ecosystem can be initiated. Therefore, a portable and reliable method is needed to monitor the phosphate concentrations in the field. In this paper, an inexpensive dip strip device with the ascorbic acid/antimony reagent dried on blotting paper along with wet chemistry is developed for the detection of low concentrations of phosphate in water. Ammonium molybdate and sulfuric acid are separately stored in liquid form so as to improve significantly the lifetime of the device and enhance the reproducibility of the device’s performance. The limit of detection and quantification for the optimized device are 0.134 ppm and 0.472 ppm for phosphate in water, respectively. The device’s shelf life, storage conditions, and limit of detection are superior to what has been previously reported for the paper-based phosphate detection devices.

Keywords: phosphate detection, paper-based device, molybdenum blue method, colorimetric assay

Procedia PDF Downloads 144
1742 Effect of Primer on Bonding between Resin Cement and Zirconia Ceramic

Authors: Deog-Gyu Seo, Jin-Soo Ahn

Abstract:

Objectives: Recently, the development of adhesive primers on stable bonding between zirconia and resin cement has been on the increase. The bond strength of zirconia-resin cement can be effectively increased with the treatment of primer composed of the adhesive monomer that can chemically bond with the oxide layer, which forms on the surface of zirconia. 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) that contains phosphate ester and acidic monomer 4-methacryloxyethyl trimellitic anhydride(4-META) have been suggested as monomers that can form chemical bond with the surface oxide layer of zirconia. Also, these suggested monomers have proved to be effective zirconia surface treatment for bonding to resin cement. The purpose of this study is to evaluate the effects of primer treatment on the bond strength of Zirconia-resin cement by using three different kinds of primers on the market. Methods: Zirconia blocks were prepared into 60 disk-shaped specimens by using a diamond saw. Specimens were divided into four different groups: first three groups were treated with zirconiaLiner(Sun Medical Co., Ltd., Furutaka-cho, Moriyama, Shiga, Japan), Alloy primer (Kuraray Noritake Dental Inc., Sakaju, Kurashiki, Okayama, Japan), and Universal primer (Tokuyama dental Corp., Taitou, Taitou-ku, Tokyo, Japan) respectively. The last group was the control with no surface treatment. Dual cured resin cement (Biscem, Bisco Inc., Schaumburg, IL, USA) was luted to each group of specimens. And then, shear bond strengths were measured by universal tesing machine. The significance of the result was statistically analyzed by one-way ANOVA and Tukey test. The failure sites in each group were inspected under a magnifier. Results: Mean shear bond strength were 0.60, 1.39, 1.03, 1.38 MPa for control, Zirconia Liner (ZL), Alloy primer (AP), Universal primer (UP), respectively. Groups with application of each of the three primers showed significantly higher shear bond strength compared to the control group (p < 0.05). Among the three groups with the treatment, ZL and UP showed significantly higher shear bond strength than AP (p < 0.05), and there were no significant differences in mean shear bond strength between ZL and UP (p < 0.05). While the most specimens of control groups showed adhesive failure (80%), the most specimens of three primer-treated groups showed cohesive or mixed failure (80%).

Keywords: primer, resin cement, shear bond strength, zirconia

Procedia PDF Downloads 178
1741 Numerical Model to Study Calcium and Inositol 1,4,5-Trisphosphate Dynamics in a Myocyte Cell

Authors: Nisha Singh, Neeru Adlakha

Abstract:

Calcium signalling is one of the most important intracellular signalling mechanisms. A lot of approaches and investigators have been made in the study of calcium signalling in various cells to understand its mechanisms over recent decades. However, most of existing investigators have mainly focussed on the study of calcium signalling in various cells without paying attention to the dependence of calcium signalling on other chemical ions like inositol-1; 4; 5 triphosphate ions, etc. Some models for the independent study of calcium signalling and inositol-1; 4; 5 triphosphate signalling in various cells are present but very little attention has been paid by the researchers to study the interdependence of these two signalling processes in a cell. In this paper, we propose a coupled mathematical model to understand the interdependence of inositol-1; 4; 5 triphosphate dynamics and calcium dynamics in a myocyte cell. Such studies will provide the deeper understanding of various factors involved in calcium signalling in myocytes, which may be of great use to biomedical scientists for various medical applications.

Keywords: calcium signalling, coupling, finite difference method, inositol 1, 4, 5-triphosphate

Procedia PDF Downloads 261
1740 Using Recycled Wastes (Glass Powder) as Partially Replacement for Cement

Authors: Passant Youssef, Ahmed El-Tair, Amr El-Nemr

Abstract:

Lately, with the environmental changes, enthusiasts trigger to stop the contamination of environment. Thus, various efforts were exerted for innovating environmental friendly concrete to sustain as a ‘Green Building’ material. Green building materials consider the cement industry as one of the most sources of air pollutant with high rate of carbon dioxide (CO₂) emissions. Several methods were developed to extensively reduce the influence of cement industry on environment. These methods such as using supplementary cementitious material or improving the cement manufacturing process are still under investigation. However, with the presence of recycled wastes from construction and finishing materials, the use of supplementary cementitious materials seems to provide an economic solution. Furthermore, it improves the mechanical properties of cement paste, in addition to; it modulates the workability and durability of concrete. In this paper, the glass powder was considered to be used as partial replacement of cement. This study provided the mechanical influence for using the glass powder as partial replacement of cement. In addition, it examines the microstructure of cement mortar using scanning electron microscope and X-ray diffraction. The cement in concrete is replaced by waste glass powder in steps of 5%, 10%, 15%, 20% and 25% by weight of cement and its effects on compressive and flexure strength were determined after 7 and 28 days. It was found that the 5% glass powder replacement increased the 7 days compressive strength by 20.5%, however, there was no increase in compressive strength after 28 days; which means that the glass powder did not react in the cement mortar due to its amorphous nature on the long run, and it can act as fine aggregate better that cement replacement. As well as, the 5% and 10% glass powder replacement increased the 28 days flexural strength by 46.9%. SEM micrographs showed very dense matrix for the optimum specimen compared to control specimen as well; some glass particles were clearly observed. High counts of silica were optimized from XRD while amorphous materials such as calcium silicate cannot be directly detected.

Keywords: supplementary materials, glass powder, concrete, cementitious materials

Procedia PDF Downloads 189
1739 Using Morlet Wavelet Filter to Denoising Geoelectric ‘Disturbances’ Map of Moroccan Phosphate Deposit ‘Disturbances’

Authors: Saad Bakkali

Abstract:

Morocco is a major producer of phosphate, with an annual output of 19 million tons and reserves in excess of 35 billion cubic meters. This represents more than 75% of world reserves. Resistivity surveys have been successfully used in the Oulad Abdoun phosphate basin. A Schlumberger resistivity survey over an area of 50 hectares was carried out. A new field procedure based on analytic signal response of resistivity data was tested to deal with the presence of phosphate deposit disturbances. A resistivity map was expected to allow the electrical resistivity signal to be imaged in 2D. 2D wavelet is standard tool in the interpretation of geophysical potential field data. Wavelet transform is particularly suitable in denoising, filtering and analyzing geophysical data singularities. Wavelet transform tools are applied to analysis of a moroccan phosphate deposit ‘disturbances’. Wavelet approach applied to modeling surface phosphate “disturbances” was found to be consistently useful.

Keywords: resistivity, Schlumberger, phosphate, wavelet, Morocco

Procedia PDF Downloads 396
1738 Effect of Iron Oxide Addition on the Solid-State Synthesis of Ye’Elimite

Authors: F. Z. Abir, M. Mesnaoui, Y. Abouliatim, L. Nibou, Y. El Hafiane, A. Smith

Abstract:

The cement industry has been taking significant steps for years to reduce its carbon footprint by opting for an eco-friendly alternative such as Calcium Sulfoaluminate Cements (CSA). These binders, compared to Ordinary Portland Cements (OPC), have two advantages: reduction of the CO2 emissions and energy-saving because the sintering temperature of CSA cements is between 1250 and 1350 °C, which means 100 to 200 °C less than OPC. The aim of this work is to study the impurities effect, such as iron oxide, on the formation of the ye'elimite phase, which represents the main phase of Calcium Sulfoaluminate Cements and the consequence on its hydration. Several elaborations and characterization techniques were used to study the structure and microstructure of ye'elimite, such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), thermal analysis, specific surface area measurement, and electrical conductivity of diluted solutions. This study details the protocol for the solid-state synthesis of ye'elimite containing increasing amounts of iron (general formula: Ca4Al(6-2x)Fe2xSO16 with x = 0.00 to 1.13). Ye'elimite is formed by solid-state reactions between Al2O3, CaO and CaSO4 and the maximum ye'elimite content is reached at a sintering temperature of 1300 °C. The presence of iron promotes the formation of cubic ye'elimite at the expense of the orthorhombic phase. The total incorporation of iron in ye'elimite structure is possible when x < 0.12. Beyond this content, the ferritic phase (CaO)2(Al2O3,Fe2O3) appears as a minor phase and develops two different morphologies during cooling: dendritic crystals and melt morphology. The formation of the ferrous liquid phase affects the evolution of grain size of the ye’elimite and calcium aluminates.

Keywords: calcium sulfoaluminate cement, ferritic phase, sintering, solid-state synthesis, ye’elimite

Procedia PDF Downloads 165
1737 The Development of a Low Carbon Cementitious Material Produced from Cement, Ground Granulated Blast Furnace Slag and High Calcium Fly Ash

Authors: Ali Shubbar, Hassnen M. Jafer, Anmar Dulaimi, William Atherton, Ali Al-Rifaie

Abstract:

This research represents experimental work for investigation of the influence of utilising Ground Granulated Blast Furnace Slag (GGBS) and High Calcium Fly Ash (HCFA) as a partial replacement for Ordinary Portland Cement (OPC) and produce a low carbon cementitious material with comparable compressive strength to OPC. Firstly, GGBS was used as a partial replacement to OPC to produce a binary blended cementitious material (BBCM); the replacements were 0, 10, 15, 20, 25, 30, 35, 40, 45 and 50% by the dry mass of OPC. The optimum BBCM was mixed with HCFA to produce a ternary blended cementitious material (TBCM). The replacements were 0, 10, 15, 20, 25, 30, 35, 40, 45 and 50% by the dry mass of BBCM. The compressive strength at ages of 7 and 28 days was utilised for assessing the performance of the test specimens in comparison to the reference mixture using 100% OPC as a binder. The results showed that the optimum BBCM was the mix produced from 25% GGBS and 75% OPC with compressive strength of 32.2 MPa at the age of 28 days. In addition, the results of the TBCM have shown that the addition of 10, 15, 20 and 25% of HCFA to the optimum BBCM improved the compressive strength by 22.7, 11.3, 5.2 and 2.1% respectively at 28 days. However, the replacement of optimum BBCM with more than 25% HCFA have showed a gradual drop in the compressive strength in comparison to the control mix. TBCM with 25% HCFA was considered to be the optimum as it showed better compressive strength than the control mix and at the same time reduced the amount of cement to 56%. Reducing the cement content to 56% will contribute to decrease the cost of construction materials, provide better compressive strength and also reduce the CO2 emissions into the atmosphere.

Keywords: cementitious material, compressive strength, GGBS, HCFA, OPC

Procedia PDF Downloads 177
1736 Study of Pipes Scaling of Purified Wastewater Intended for the Irrigation of Agadir Golf Grass

Authors: A. Driouiche, S. Mohareb, A. Hadfi

Abstract:

In Morocco’s Agadir region, the reuse of treated wastewater for irrigation of green spaces has faced the problem of scaling of the pipes of these waters. This research paper aims at studying the phenomenon of scaling caused by the treated wastewater from the Mzar sewage treatment plant. These waters are used in the irrigation of golf turf for the Ocean Golf Resort. Ocean Golf, located about 10 km from the center of the city of Agadir, is one of the most important recreation centers in Morocco. The course is a Belt Collins design with 27 holes, and is quite open with deep challenging bunkers. The formation of solid deposits in the irrigation systems has led to a decrease in their lifetime and, consequently, a loss of load and performance. Thus, the sprinklers used in golf turf irrigation are plugged in the first weeks of operation. To study this phenomenon, the wastewater used for the irrigation of the golf turf was taken and analyzed at various points, and also samples of scale formed in the circuits of the passage of these waters were characterized. This characterization of the scale was performed by X-ray fluorescence spectrometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy (SEM). The results of the physicochemical analysis of the waters show that they are full of bicarbonates (653 mg/L), chloride (478 mg/L), nitrate (412 mg/L), sodium (425 mg/L) and calcium (199mg/L). Their pH is slightly alkaline. The analysis of the scale reveals that it is rich in calcium and phosphorus. It is formed of calcium carbonate (CaCO₃), silica (SiO₂), calcium silicate (Ca₂SiO₄), hydroxylapatite (Ca₁₀P₆O₂₆), calcium carbonate and phosphate (Ca₁₀(PO₄) 6CO₃) and silicate calcium and magnesium (Ca₅MgSi₃O₁₂).

Keywords: Agadir, irrigation, scaling water, wastewater

Procedia PDF Downloads 99
1735 The Effect of Calcium Phosphate Composite Scaffolds on the Osteogenic Differentiation of Rabbit Dental Pulp Stem Cells

Authors: Ling-Ling E, Lin Feng, Hong-Chen Liu, Dong-Sheng Wang, Zhanping Shi, Juncheng Wang, Wei Luo, Yan Lv

Abstract:

The objective of this study was to compare the effects of the two calcium phosphate composite scaffolds on the attachment, proliferation and osteogenic differentiation of rabbit dental pulp stem cells (DPSCs). One nano-hydroxyapatite/collagen/poly (L-lactide) (nHAC/PLA), imitating the composition and the micro-structure characteristics of the natural bone, was made by Beijing Allgens Medical Science & Technology Co., Ltd. (China). The other beta-tricalcium phosphate (β-TCP), being fully interoperability globular pore structure, was provided by Shanghai Bio-lu Biomaterials Co, Ltd. (China). We compared the absorption water rate and the protein adsorption rate of two scaffolds and the characterization of DPSCs cultured on the culture plate and both scaffolds under osteogenic differentiation media (ODM) treatment. The constructs were then implanted subcutaneously into the back of severe combined immunodeficient (SCID) mice for 8 and 12 weeks to compare their bone formation capacity. The results showed that the ODM-treated DPSCs expressed osteocalcin (OCN), bone sialoprotein (BSP), type I collagen (COLI) and osteopontin (OPN) by immunofluorescence staining. Positive alkaline phosphatase (ALP) staining, calcium deposition and calcium nodules were also observed on the ODM-treated DPSCs. The nHAC/PLA had significantly higher absorption water rate and protein adsorption rate than ß-TCP. The initial attachment of DPSCs seeded onto nHAC/PLA was significantly higher than that onto ß-TCP; and the proliferation rate of the cells was significantly higher than that of ß-TCP on 1, 3 and 7 days of cell culture. DPSCs+ß-TCP had significantly higher ALP activity, calcium/phosphorus content and mineral formation than DPSCs+nHAC/PLA. When implanted into the back of SCID mice, nHAC/PLA alone had no new bone formation, newly formed mature bone and osteoid were only observed in β-TCP alone, DPSCs+nHAC/PLA and DPSCs+β-TCP, and this three groups displayed increased bone formation over the 12-week period. The percentage of total bone formation area had no difference between DPSCs+β-TCP and DPSCs+nHAC/PLA at each time point,but the percentage of mature bone formation area of DPSCs+β-TCP was significantly higher than that of DPSCs+nHAC/PLA. Our results demonstrated that the DPSCs on nHAC/PLA had a better proliferation and that the DPSCs on β-TCP had a more mineralization in vitro, much more newly formed mature bones in vivo were presented in DPSCs+β-TCP group. These findings have provided a further knowledge that scaffold architecture has a different influence on the attachment, proliferation and differentiation of cells. This study may provide insight into the clinical periodontal bone tissue repair with DPSCs+β-TCP construct.

Keywords: dental pulp stem cells, nano-hydroxyapatite/collagen/poly(L-lactide), beta-tricalcium phosphate, periodontal tissue engineering, bone regeneration

Procedia PDF Downloads 306
1734 Combinatory Nutrition Supplementation: A Case of Synergy for Increasing Calcium Bioavailability

Authors: Daniel C. S. Lim, Eric Y. M. Yeo, W. Y. Tan

Abstract:

This paper presents an overview of how calcium interacts with the various essential nutrients within an environment of cellular and hormonal interactions for the purpose of increasing bioavailability to the human body. One example of such interactions can be illustrated with calcium homeostasis. This paper gives an in-depth discussion on the possible interactive permutations with various nutrients and factors leading to the promotion of calcium bioavailability to the body. The review hopes to provide further insights into how calcium supplement formulations can be improved to better influence its bioavailability in the human body.

Keywords: bioavailability, environment of cellular and hormonal interactions, nutritional combinations, synergistic

Procedia PDF Downloads 373
1733 Percentages of Alumina Phase and Different Ph on The Ha- Al2o3 Nano Composite

Authors: S. Tayyebi, F. Mirjalili, H. Samadi, A. Nemati

Abstract:

In this study, hydroxyapatite-Alumina nano composite powder, containing 15,20 and 25% weight percent of reinforced alumina were prepared by chemical precipitation from the reaction between calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate with ratio of Ca / p = 1.67 and different percentage of aluminum nitrate nona hydrate in different pH of 9,10 and 11. The microstructure and thermal stability of samples were measured by X-ray diffraction (XRD), infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The results showed that the presence of reinforced alumina phase reduced the degree of crystallinity of hydroxyapatite phase and increased its decomposition to tricalcium phosphate phase. Microstructural analysis showed that the hydroxyapatite-alumina nano composite powder was obtained with spherical shape and size of less than 100 nm.

Keywords: biomaterial, hydroxyapatite, alumina, nano composite, precipitation method

Procedia PDF Downloads 514
1732 Proprotein Convertase Subtilisin/Kexin Type 9 Enhances Arterial Medial Calcification in a Uremic Rat Model of Chronic Kidney Disease

Authors: Maria Giovanna Lupo, Marina Camera, Marcello Rattazzi, Nicola Ferri

Abstract:

A complex interplay among chronic kidney disease, lipid metabolism and aortic calcification has been recognized starting from results of many clinical and experimental studies. Here we investigated the influence of kidney function on PCSK9 levels, both in uremic rats and in clinical observation study, and its potential direct action on cultured smooth muscle cells (SMCs) calcification. In a cohort of 594 subjects enrolled in a single centre, observational, cross-sectional and longitudinal study, a negative association between GFR and plasma PCSK9 was found. Atherosclerotic cardiovascular disease (ASCVD), as co-morbidity, further increased PCSK9 plasma levels. Diet-induced uremic condition in rats, induced aortic calcification and increased total cholesterol and PCSK9 levels in plasma, livers and kidneys. Immunohistochemical analysis confirmed PCSK9 expression in aortic SMCs. SMCs overexpressing PCSK9 (SMCsPCSK9), cultured for 7-days in a pro-calcification environment (2.0mM or 2.4mM inorganic phosphate, Pi) showed a significantly higher extracellular calcium (Ca2+) deposition compared to mocked SMCs. Under the same experimental conditions, the addition of exogenous recombinant PCSK9 did not increase the extracellular calcification of SMCs. By flow cytometry analysis we showed that SMCsPCSK9, in response to 2.4mM Pi, released higher number of extracellular vesicles (EVs) positive for three tetraspanin molecules, such as CD63, CD9, and CD81. EVs derived from SMCsPCSK9 tended to be more enriched in calcium and alkaline phosphatase (ALPL), compared to EVs from mocks SMCs. In conclusion, our study reveals a direct role of PCSK9 on vascular calcification induced by higher inorganic phosphate levels associated to CKD condition. This effect appears to be mediated by a positive effect of endogenous PCSK9 on the release of EVs containing Ca2+ and ALP, which facilitate the deposition inorganic calcium phosphate crystals.

Keywords: PCSK9, calcification, extracellular vesicles, chronic kidney disease

Procedia PDF Downloads 86
1731 Development of Green Cement, Based on Partial Replacement of Clinker with Limestone Powder

Authors: Yaniv Knop, Alva Peled

Abstract:

Over the past few years there has been a growing interest in the development of Portland Composite Cement, by partial replacement of the clinker with mineral additives. The motivations to reduce the clinker content are threefold: (1) Ecological - due to lower emission of CO2 to the atmosphere; (2) Economical - due to cost reduction; and (3) Scientific\Technology – improvement of performances. Among the mineral additives being used and investigated, limestone is one of the most attractive, as it is considered natural, available, and with low cost. The goal of the research is to develop green cement, by partial replacement of the clinker with limestone powder while improving the performances of the cement paste. This work studied blended cements with three limestone powder particle diameters: smaller than, larger than, and similarly sized to the clinker particle. Blended cement with limestone consisting of one particle size distribution and limestone consisting of a combination of several particle sizes were studied and compared in terms of hydration rate, hydration degree, and water demand to achieve normal consistency. The performances of these systems were also compared with that of the original cement (without added limestone). It was found that the ability to replace an active material with an inert additive, while achieving improved performances, can be obtained by increasing the packing density of the cement-based particles. This may be achieved by replacing the clinker with limestone powders having a combination of several different particle size distributions. Mathematical and physical models were developed to simulate the setting history from initial to final setting time and to predict the packing density of blended cement with limestone having different sizes and various contents. Besides the effect of limestone, as inert additive, on the packing density of the blended cement, the influence of the limestone particle size on three different chemical reactions were studied; hydration of the cement, carbonation of the calcium hydroxide and the reactivity of the limestone with the hydration reaction products. The main results and developments will be presented.

Keywords: packing density, hydration degree, limestone, blended cement

Procedia PDF Downloads 260
1730 Effect of Nano-CaCO₃ Addition on the Nano-Mechanical Properties of Cement Paste

Authors: Muzeyyen Balcikanli, Selma Ozaslan, Osman Sahin, Burak Uzal, Erdogan Ozbay

Abstract:

In this study, the effect of nano-CaCO3 replacement with cement on the nano-mechanical properties of cement paste was investigated. Hydrophobic and hydrophilic characteristics Two types of nano CaCO3 were replaced with Portland cement at 0, 0.5 and 1%. Water to (cement+nano-CaCO3) ratio was kept constant at 0.5 for all mixtures. 36 indentations were applied on each cement paste, and the values of nano-hardness and elastic modulus of cement pastes were determined from the indentation depth-load graphs. Then, by getting the average of them, nano-hardness and elastic modulus were identified for each mixture. Test results illustrate that replacement of hydrophilic n-CaCO3 with cement lead to a significant increase in nano-mechanical properties, however, replacement of hydrophobic n-CaCO3 with cement worsened the nano-mechanical properties considerably.

Keywords: nanoindenter, CaCO3, nano-hardness, nano-mechanical properties

Procedia PDF Downloads 259