Production of Cement-Free Construction Materials via Fly Ash Carbonation

Authors : Zhenhua Wei, Gabriel Falzone, Bu Wang, Laurent Pilon, Gaurav Sant

Abstract : The production of ordinary Portland cement (OPC) is a CO_2 intensive process. Specifically, cement clinkering reactions require not only substantial energy in the form of heat, but also result in the release of CO_2 , from limestone decarbonation and the combustion of fuel. To overcome this CO_2 intensive process, clinkering-free cementation is demonstrated by the carbonation of fly ash; i.e., a by-product of coal combustion. It is shown that in moist environments and at sub-boiling temperatures, calcium-rich fly ashes readily react with gas-phase CO_2 to provide cementation. After seven days of CO_2 exposure at 75°C, such formulations achieve a compressive strength on the order of 35 MPa and take-up 9% CO_2 (by mass of the solid). On the other hand, calcium-deficient fly ashes, due to their lack of alkalinity (i.e., abundance of mobile Ca or Mg), show little if any potential for CO_2 uptake and strength gain. The role of the CO_2 concentration and processing temperature are discussed and linked to the progress of reactions, and the development of microstructure. The outcomes demonstrate a means for enabling clinkering-free cementation while enabling beneficial utilization of CO_2 and fly ash; i.e., two abundant but underutilized industrial by-products.

Keywords : fly ash, carbonation, concrete, strength

Conference Title : ICSBMCT 2017 : International Conference on Sustainable Building Materials and Construction Technologies

Conference Location : Vancouver, Canada **Conference Dates :** August 07-08, 2017