Search results for: CMOS image sensors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3950

Search results for: CMOS image sensors

3860 Potentiometric Determination of Moxifloxacin in Some Pharmaceutical Formulation Using PVC Membrane Sensors

Authors: M. M. Hefnawy, A. M. A. Homoda, M. A. Abounassif, A. M. Alanazia, A. Al-Majed, Gamal A. E. Mostafa

Abstract:

PVC membrane sensors using different approach e.g. ion-pair, ionophore, and Schiff-base has been used as testing membrane sensor. Analytical applications of membrane sensors for direct measurement of variety of different ions in complex biological and environmental sample are reported. The most important step of such PVC membrane sensor is the sensing active material. The potentiometric sensors have some outstanding advantages including simple design, operation, wide linear dynamic range, relative fast response time, and rotational selectivity. The analytical applications of these techniques to pharmaceutical compounds in dosage forms are also discussed. The construction and electrochemical response characteristics of Poly (vinyl chloride) membrane sensors for moxifloxacin HCl (MOX) are described. The sensing membranes incorporate ion association complexes of moxifloxacin cation and sodium tetraphenyl borate (NaTPB) (sensor 1), phosphomolybdic acid (PMA) (sensor 2) or phosphotungstic acid (PTA) (sensor 3) as electroactive materials. The sensors display a fast, stable and near-Nernstian response over a relative wide moxifloxacin concentration range (1 ×10-2-4.0×10-6, 1 × 10-2-5.0×10-6, 1 × 10-2-5.0×10-6 M), with detection limits of 3×10-6, 4×10-6 and 4.0×10-6 M for sensor 1, 2 and 3, respectively over a pH range of 6.0-9.0. The sensors show good discrimination of moxifloxacin from several inorganic and organic compounds. The direct determination of 400 µg/ml of moxifloxacin show an average recovery of 98.5, 99.1 and 98.6 % and a mean relative standard deviation of 1.8, 1.6 and 1.8% for sensors 1, 2, and 3 respectively. The proposed sensors have been applied for direct determination of moxifloxacin in some pharmaceutical preparations. The results obtained by determination of moxifloxacin in tablets using the proposed sensors are comparable favorably with those obtained using the US Pharmacopeia method. The sensors have been used as indicator electrodes for potentiometric titration of moxifloxacin.

Keywords: potentiometry, PVC, membrane sensors, ion-pair, ionophore, schiff-base, moxifloxacin HCl, sodium tetraphenyl borate, phosphomolybdic acid, phosphotungstic acid

Procedia PDF Downloads 415
3859 Design and Implementation of Pseudorandom Number Generator Using Android Sensors

Authors: Mochamad Beta Auditama, Yusuf Kurniawan

Abstract:

A smartphone or tablet require a strong randomness to establish secure encrypted communication, encrypt files, etc. Therefore, random number generation is one of the main keys to provide secrecy. Android devices are equipped with hardware-based sensors, such as accelerometer, gyroscope, etc. Each of these sensors provides a stochastic process which has a potential to be used as an extra randomness source, in addition to /dev/random and /dev/urandom pseudorandom number generators. Android sensors can provide randomness automatically. To obtain randomness from Android sensors, each one of Android sensors shall be used to construct an entropy source. After all entropy sources are constructed, output from these entropy sources are combined to provide more entropy. Then, a deterministic process is used to produces a sequence of random bits from the combined output. All of these processes are done in accordance with NIST SP 800-22 and the series of NIST SP 800-90. The operation conditions are done 1) on Android user-space, and 2) the Android device is placed motionless on a desk.

Keywords: Android hardware-based sensor, deterministic process, entropy source, random number generation/generators

Procedia PDF Downloads 341
3858 Low Power Glitch Free Dual Output Coarse Digitally Controlled Delay Lines

Authors: K. Shaji Mon, P. R. John Sreenidhi

Abstract:

In deep-submicrometer CMOS processes, time-domain resolution of a digital signal is becoming higher than voltage resolution of analog signals. This claim is nowadays pushing toward a new circuit design paradigm in which the traditional analog signal processing is expected to be progressively substituted by the processing of times in the digital domain. Within this novel paradigm, digitally controlled delay lines (DCDL) should play the role of digital-to-analog converters in traditional, analog-intensive, circuits. Digital delay locked loops are highly prevalent in integrated systems.The proposed paper addresses the glitches present in delay circuits along with area,power dissipation and signal integrity.The digitally controlled delay lines(DCDL) under study have been designed in a 90 nm CMOS technology 6 layer metal Copper Strained SiGe Low K Dielectric. Simulation and synthesis results show that the novel circuits exhibit no glitches for dual output coarse DCDL with less power dissipation and consumes less area compared to the glitch free NAND based DCDL.

Keywords: glitch free, NAND-based DCDL, CMOS, deep-submicrometer

Procedia PDF Downloads 223
3857 Digital Image Forensics: Discovering the History of Digital Images

Authors: Gurinder Singh, Kulbir Singh

Abstract:

Digital multimedia contents such as image, video, and audio can be tampered easily due to the availability of powerful editing softwares. Multimedia forensics is devoted to analyze these contents by using various digital forensic techniques in order to validate their authenticity. Digital image forensics is dedicated to investigate the reliability of digital images by analyzing the integrity of data and by reconstructing the historical information of an image related to its acquisition phase. In this paper, a survey is carried out on the forgery detection by considering the most recent and promising digital image forensic techniques.

Keywords: Computer Forensics, Multimedia Forensics, Image Ballistics, Camera Source Identification, Forgery Detection

Procedia PDF Downloads 214
3856 Gray Level Image Encryption

Authors: Roza Afarin, Saeed Mozaffari

Abstract:

The aim of this paper is image encryption using Genetic Algorithm (GA). The proposed encryption method consists of two phases. In modification phase, pixels locations are altered to reduce correlation among adjacent pixels. Then, pixels values are changed in the diffusion phase to encrypt the input image. Both phases are performed by GA with binary chromosomes. For modification phase, these binary patterns are generated by Local Binary Pattern (LBP) operator while for diffusion phase binary chromosomes are obtained by Bit Plane Slicing (BPS). Initial population in GA includes rows and columns of the input image. Instead of subjective selection of parents from this initial population, a random generator with predefined key is utilized. It is necessary to decrypt the coded image and reconstruct the initial input image. Fitness function is defined as average of transition from 0 to 1 in LBP image and histogram uniformity in modification and diffusion phases, respectively. Randomness of the encrypted image is measured by entropy, correlation coefficients and histogram analysis. Experimental results show that the proposed method is fast enough and can be used effectively for image encryption.

Keywords: correlation coefficients, genetic algorithm, image encryption, image entropy

Procedia PDF Downloads 302
3855 Data Hiding in Gray Image Using ASCII Value and Scanning Technique

Authors: R. K. Pateriya, Jyoti Bharti

Abstract:

This paper presents an approach for data hiding methods which provides a secret communication between sender and receiver. The data is hidden in gray-scale images and the boundary of gray-scale image is used to store the mapping information. In this an approach data is in ASCII format and the mapping is in between ASCII value of hidden message and pixel value of cover image, since pixel value of an image as well as ASCII value is in range of 0 to 255 and this mapping information is occupying only 1 bit per character of hidden message as compared to 8 bit per character thus maintaining good quality of stego image.

Keywords: ASCII value, cover image, PSNR, pixel value, stego image, secret message

Procedia PDF Downloads 387
3854 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks

Authors: Amal Khalifa, Nicolas Vana Santos

Abstract:

Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.

Keywords: deep learning, steganography, image, discrete wavelet transform, fusion

Procedia PDF Downloads 44
3853 Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation

Authors: Muhaned Zaidi, Ian Grout, Abu Khari bin A’ain

Abstract:

In this paper, a two-stage op-amp design is considered using both Miller and negative Miller compensation techniques. The first op-amp design uses Miller compensation around the second amplification stage, whilst the second op-amp design uses negative Miller compensation around the first stage and Miller compensation around the second amplification stage. The aims of this work were to compare the gain and phase margins obtained using the different compensation techniques and identify the ability to choose either compensation technique based on a particular set of design requirements. The two op-amp designs created are based on the same two-stage rail-to-rail output CMOS op-amp architecture where the first stage of the op-amp consists of differential input and cascode circuits, and the second stage is a class AB amplifier. The op-amps have been designed using a 0.35mm CMOS fabrication process.

Keywords: op-amp, rail-to-rail output, Miller compensation, Negative Miller capacitance

Procedia PDF Downloads 312
3852 Image Segmentation Techniques: Review

Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo

Abstract:

Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.

Keywords: clustering-based, convolution-network, edge-based, region-growing

Procedia PDF Downloads 58
3851 Improvement Image Summarization using Image Processing and Particle swarm optimization Algorithm

Authors: Hooman Torabifard

Abstract:

In the last few years, with the progress of technology and computers and artificial intelligence entry into all kinds of scientific and industrial fields, the lifestyles of human life have changed and in general, the way of humans live on earth has many changes and development. Until now, some of the changes has occurred in the context of digital images and image processing and still continues. However, besides all the benefits, there have been disadvantages. One of these disadvantages is the multiplicity of images with high volume and data; the focus of this paper is on improving and developing a method for summarizing and enhancing the productivity of these images. The general method used for this purpose in this paper consists of a set of methods based on data obtained from image processing and using the PSO (Particle swarm optimization) algorithm. In the remainder of this paper, the method used is elaborated in detail.

Keywords: image summarization, particle swarm optimization, image threshold, image processing

Procedia PDF Downloads 106
3850 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network

Authors: Pawan Kumar Mishra, Ganesh Singh Bisht

Abstract:

Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.

Keywords: resolution, deep-learning, neural network, de-blurring

Procedia PDF Downloads 485
3849 High Secure Data Hiding Using Cropping Image and Least Significant Bit Steganography

Authors: Khalid A. Al-Afandy, El-Sayyed El-Rabaie, Osama Salah, Ahmed El-Mhalaway

Abstract:

This paper presents a high secure data hiding technique using image cropping and Least Significant Bit (LSB) steganography. The predefined certain secret coordinate crops will be extracted from the cover image. The secret text message will be divided into sections. These sections quantity is equal the image crops quantity. Each section from the secret text message will embed into an image crop with a secret sequence using LSB technique. The embedding is done using the cover image color channels. Stego image is given by reassembling the image and the stego crops. The results of the technique will be compared to the other state of art techniques. Evaluation is based on visualization to detect any degradation of stego image, the difficulty of extracting the embedded data by any unauthorized viewer, Peak Signal-to-Noise Ratio of stego image (PSNR), and the embedding algorithm CPU time. Experimental results ensure that the proposed technique is more secure compared with the other traditional techniques.

Keywords: steganography, stego, LSB, crop

Procedia PDF Downloads 241
3848 The Impact of Artificial Intelligence on Textiles Technology

Authors: Ramy Kamel Fekrey Gadelrab

Abstract:

Textile sensors have gained a lot of interest in recent years as it is instrumental in monitoring physiological and environmental changes, for a better diagnosis that can be useful in various fields like medical textiles, sports textiles, protective textiles, agro textiles, and geo-textiles. Moreover, with the development of flexible textile-based wearable sensors, the functionality of smart clothing is augmented for a more improved user experience when it comes to technical textiles. In this context, conductive textiles using new composites and nanomaterials are being developed while considering its compatibility with the textile manufacturing processes. This review aims to provide a comprehensive and detailed overview of the contemporary advancements in textile-based wearable physical sensors, used in the field of medical, security, surveillance, and protection, from a global perspective. The methodology used is through analysing various examples of integration of wearable textile-based sensors with clothing for daily use, keeping in mind the technological advances in the same. By comparing various case studies, it come across various challenges textile sensors, in terms of stability, the comfort of movement, and reliable sensing components to enable accurate measurements, in spite of progress in the engineering of the wearable. Addressing such concerns is critical for the future success of wearable sensors.

Keywords: nanoparticles, enzymes, immobilization, textilesconductive yarn, e-textiles, smart textiles, thermal analysisflexible textile-based wearable sensors, contemporary advancements, conductive textiles, body conformal design

Procedia PDF Downloads 13
3847 Secure E-Pay System Using Steganography and Visual Cryptography

Authors: K. Suganya Devi, P. Srinivasan, M. P. Vaishnave, G. Arutperumjothi

Abstract:

Today’s internet world is highly prone to various online attacks, of which the most harmful attack is phishing. The attackers host the fake websites which are very similar and look alike. We propose an image based authentication using steganography and visual cryptography to prevent phishing. This paper presents a secure steganographic technique for true color (RGB) images and uses Discrete Cosine Transform to compress the images. The proposed method hides the secret data inside the cover image. The use of visual cryptography is to preserve the privacy of an image by decomposing the original image into two shares. Original image can be identified only when both qualified shares are simultaneously available. Individual share does not reveal the identity of the original image. Thus, the existence of the secret message is hard to be detected by the RS steganalysis.

Keywords: image security, random LSB, steganography, visual cryptography

Procedia PDF Downloads 306
3846 Noise Detection Algorithm for Skin Disease Image Identification

Authors: Minakshi Mainaji Sonawane, Bharti W. Gawali, Sudhir Mendhekar, Ramesh R. Manza

Abstract:

People's lives and health are severely impacted by skin diseases. A new study proposes an effective method for identifying the different forms of skin diseases. Image denoising is a technique for improving image quality after it has been harmed by noise. The proposed technique is based on the usage of the wavelet transform. Wavelet transform is the best method for analyzing the image due to the ability to split the image into the sub-band, which has been used to estimate the noise ratio at the noisy image. According to experimental results, the proposed method presents the best values for MSE, PSNR, and Entropy for denoised images. we can found in Also, by using different types of wavelet transform filters is make the proposed approach can obtain the best results 23.13, 20.08, 50.7 for the image denoising process

Keywords: MSE, PSNR, entropy, Gaussian filter, DWT

Procedia PDF Downloads 192
3845 Design and Study of a Low Power High Speed 8 Transistor Based Full Adder Using Multiplexer and XOR Gates

Authors: Biswarup Mukherjee, Aniruddha Ghoshal

Abstract:

In this paper, we propose a new technique for implementing a low power high speed full adder using 8 transistors. Full adder circuits are used comprehensively in Application Specific Integrated Circuits (ASICs). Thus it is desirable to have high speed operation for the sub components. The explored method of implementation achieves a high speed low power design for the full adder. Simulated results indicate the superior performance of the proposed technique over conventional 28 transistor CMOS full adder. Detailed comparison of simulated results for the conventional and present method of implementation is presented.

Keywords: high speed low power full adder, 2-T MUX, 3-T XOR, 8-T FA, pass transistor logic, CMOS (complementary metal oxide semiconductor)

Procedia PDF Downloads 319
3844 Study on Intensity Modulated Non-Contact Optical Fiber Vibration Sensors of Different Configurations

Authors: Dinkar Dantala, Kishore Putha, Padmavathi Manchineelu

Abstract:

Optical fibers are widely used in the measurement of several physical parameters like temperature, pressure, vibrations etc. Measurement of vibrations plays a vital role in machines. In this paper, three fiber optic non-contact vibration sensors were discussed, which are designed based on the principle of light intensity modulation. The Dual plastic optical fiber, Fiber optic fused 1x2 coupler and Fiber optic fused 2x2 coupler vibration sensors are compared based on range of frequency, resolution and sensitivity. It is to conclude that 2x2 coupler configuration shows better response than other two sensors.

Keywords: fiber optic, PMMA, vibration sensor, intensity-modulated

Procedia PDF Downloads 338
3843 Red Green Blue Image Encryption Based on Paillier Cryptographic System

Authors: Mamadou I. Wade, Henry C. Ogworonjo, Madiha Gul, Mandoye Ndoye, Mohamed Chouikha, Wayne Patterson

Abstract:

In this paper, we present a novel application of the Paillier cryptographic system to the encryption of RGB (Red Green Blue) images. In this method, an RGB image is first separated into its constituent channel images, and the Paillier encryption function is applied to each of the channels pixel intensity values. Next, the encrypted image is combined and compressed if necessary before being transmitted through an unsecured communication channel. The transmitted image is subsequently recovered by a decryption process. We performed a series of security and performance analyses to the recovered images in order to verify their robustness to security attack. The results show that the proposed image encryption scheme produces highly secured encrypted images.

Keywords: image encryption, Paillier cryptographic system, RBG image encryption, Paillier

Procedia PDF Downloads 208
3842 An Object-Based Image Resizing Approach

Authors: Chin-Chen Chang, I-Ta Lee, Tsung-Ta Ke, Wen-Kai Tai

Abstract:

Common methods for resizing image size include scaling and cropping. However, these two approaches have some quality problems for reduced images. In this paper, we propose an image resizing algorithm by separating the main objects and the background. First, we extract two feature maps, namely, an enhanced visual saliency map and an improved gradient map from an input image. After that, we integrate these two feature maps to an importance map. Finally, we generate the target image using the importance map. The proposed approach can obtain desired results for a wide range of images.

Keywords: energy map, visual saliency, gradient map, seam carving

Procedia PDF Downloads 456
3841 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: rough sets, rough neural networks, cellular automata, image processing

Procedia PDF Downloads 401
3840 Design of Wireless and Traceable Sensors for Internally Illuminated Photoreactors

Authors: Alexander Sutor, David Demetz

Abstract:

We present methods for developing wireless and traceable sensors for photobioreactors or photoreactors in general. The main focus of application are reactors which are wirelessly powered. Due to the promising properties of the propagation of magnetic fields under water we implemented an inductive link with an on/off switched hartley-oscillator as transmitter and an LC-tank as receiver. For this inductive link we used a carrier frequency of 298 kHz. With this system we performed measurements to demonstrate the independence of the magnetic field from water or salty water. In contrast we showed the strongly reduced range of RF-transmitter-receiver systems at higher frequencies (433 MHz and 2.4 GHz) in water and in salty water. For implementing the traceability of the sensors, we performed measurements to show the well defined orientation of the magnetic field of a coil. This information will be used in future work for implementing an inductive link based traceability system for our sensors.

Keywords: wireless sensors, photoreactor, internal illumination, wireless power

Procedia PDF Downloads 122
3839 Cavitas Sensors into Human Cavities: Soft-Contact Lens and Mouthguard Sensors

Authors: Kohji Mitsubayashi, Takahiro Arakawa, Kohji Mitsubayashi

Abstract:

‘Cavitas sensors’ attached to human body cavities such as a contact lens type and a mouthguard (‘no implantable', ‘no wearable’) attracted attention as self-detachable devices for daily medicine. In this contribution, the soft contact lens glucose sensor for tear sugar monitoring will be introduced. And the mouthguard sensor with dental materials integrated with Bluetooth low energy (BLE) wireless module for real-time monitoring of saliva glucose would also be demonstrated. In the near future, those self-detachable cavitas sensors are expected to improve quality of life in view of the aging of society.

Keywords: cavitas sensor, biosensor, contact lens, mouthguard

Procedia PDF Downloads 260
3838 2.4 GHz 0.13µM Multi Biased Cascode Power Amplifier for ISM Band Wireless Applications

Authors: Udayan Patankar, Shashwati Bhagat, Vilas Nitneware, Ants Koel

Abstract:

An ISM band power amplifier is a type of electronic amplifier used to convert a low-power radio-frequency signal into a larger signal of significant power, typically used for driving the antenna of a transmitter. Due to drastic changes in telecommunication generations may lead to the requirements of improvements. Rapid changes in communication lead to the wide implementation of WLAN technology for its excellent characteristics, such as high transmission speed, long communication distance, and high reliability. Many applications such as WLAN, Bluetooth, and ZigBee, etc. were evolved with 2.4GHz to 5 GHz ISM Band, in which the power amplifier (PA) is a key building block of RF transmitters. There are many manufacturing processes available to manufacture a power amplifier for desired power output, but the major problem they have faced is about the power it consumed for its proper working, as many of them are fabricated on the GaN HEMT, Bi COMS process. In this paper we present a CMOS Base two stage cascode design of power amplifier working on 2.4GHz ISM frequency band. To lower the costs and allow full integration of a complete System-on-Chip (SoC) we have chosen 0.13µm low power CMOS technology for design. While designing a power amplifier, it is a real task to achieve higher power efficiency with minimum resources. This design showcase the Multi biased Cascode methodology to implement a two-stage CMOS power amplifier using ADS and LTSpice simulating tool. Main source is maximum of 2.4V which is internally distributed into different biasing point VB driving and VB driven as required for distinct stages of two stage RF power amplifier. It shows maximum power added efficiency near about 70.195% whereas its Power added efficiency calculated at 1 dB compression point is 44.669 %. Biased MOSFET is used to reduce total dc current as this circuit is designed for different wireless applications comes under 2.4GHz ISM Band.

Keywords: RFIC, PAE, RF CMOS, impedance matching

Procedia PDF Downloads 194
3837 CMOS Solid-State Nanopore DNA System-Level Sequencing Techniques Enhancement

Authors: Syed Islam, Yiyun Huang, Sebastian Magierowski, Ebrahim Ghafar-Zadeh

Abstract:

This paper presents system level CMOS solid-state nanopore techniques enhancement for speedup next generation molecular recording and high throughput channels. This discussion also considers optimum number of base-pair (bp) measurements through channel as an important role to enhance potential read accuracy. Effective power consumption estimation offered suitable rangeof multi-channel configuration. Nanopore bp extraction model in statistical method could contribute higher read accuracy with longer read-length (200 < read-length). Nanopore ionic current switching with Time Multiplexing (TM) based multichannel readout system contributed hardware savings.

Keywords: DNA, nanopore, amplifier, ADC, multichannel

Procedia PDF Downloads 425
3836 Automatic Classification Using Dynamic Fuzzy C Means Algorithm and Mathematical Morphology: Application in 3D MRI Image

Authors: Abdelkhalek Bakkari

Abstract:

Image segmentation is a critical step in image processing and pattern recognition. In this paper, we proposed a new robust automatic image classification based on a dynamic fuzzy c-means algorithm and mathematical morphology. The proposed segmentation algorithm (DFCM_MM) has been applied to MR perfusion images. The obtained results show the validity and robustness of the proposed approach.

Keywords: segmentation, classification, dynamic, fuzzy c-means, MR image

Procedia PDF Downloads 443
3835 A Survey on Types of Noises and De-Noising Techniques

Authors: Amandeep Kaur

Abstract:

Digital Image processing is a fundamental tool to perform various operations on the digital images for pattern recognition, noise removal and feature extraction. In this paper noise removal technique has been described for various types of noises. This paper comprises discussion about various noises available in the image due to different environmental, accidental factors. In this paper, various de-noising approaches have been discussed that utilize different wavelets and filters for de-noising. By analyzing various papers on image de-noising we extract that wavelet based de-noise approaches are much effective as compared to others.

Keywords: de-noising techniques, edges, image, image processing

Procedia PDF Downloads 304
3834 Detect Circles in Image: Using Statistical Image Analysis

Authors: Fathi M. O. Hamed, Salma F. Elkofhaifee

Abstract:

The aim of this work is to detect geometrical shape objects in an image. In this paper, the object is considered to be as a circle shape. The identification requires find three characteristics, which are number, size, and location of the object. To achieve the goal of this work, this paper presents an algorithm that combines from some of statistical approaches and image analysis techniques. This algorithm has been implemented to arrive at the major objectives in this paper. The algorithm has been evaluated by using simulated data, and yields good results, and then it has been applied to real data.

Keywords: image processing, median filter, projection, scale-space, segmentation, threshold

Procedia PDF Downloads 401
3833 Adaptive Dehazing Using Fusion Strategy

Authors: M. Ramesh Kanthan, S. Naga Nandini Sujatha

Abstract:

The goal of haze removal algorithms is to enhance and recover details of scene from foggy image. In enhancement the proposed method focus into two main categories: (i) image enhancement based on Adaptive contrast Histogram equalization, and (ii) image edge strengthened Gradient model. Many circumstances accurate haze removal algorithms are needed. The de-fog feature works through a complex algorithm which first determines the fog destiny of the scene, then analyses the obscured image before applying contrast and sharpness adjustments to the video in real-time to produce image the fusion strategy is driven by the intrinsic properties of the original image and is highly dependent on the choice of the inputs and the weights. Then the output haze free image has reconstructed using fusion methodology. In order to increase the accuracy, interpolation method has used in the output reconstruction. A promising retrieval performance is achieved especially in particular examples.

Keywords: single image, fusion, dehazing, multi-scale fusion, per-pixel, weight map

Procedia PDF Downloads 440
3832 Digital Image Steganography with Multilayer Security

Authors: Amar Partap Singh Pharwaha, Balkrishan Jindal

Abstract:

In this paper, a new method is developed for hiding image in a digital image with multilayer security. In the proposed method, the secret image is encrypted in the first instance using a flexible matrix based symmetric key to add first layer of security. Then another layer of security is added to the secret data by encrypting the ciphered data using Pythagorean Theorem method. The ciphered data bits (4 bits) produced after double encryption are then embedded within digital image in the spatial domain using Least Significant Bits (LSBs) substitution. To improve the image quality of the stego-image, an improved form of pixel adjustment process is proposed. To evaluate the effectiveness of the proposed method, image quality metrics including Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), entropy, correlation, mean value and Universal Image Quality Index (UIQI) are measured. It has been found experimentally that the proposed method provides higher security as well as robustness. In fact, the results of this study are quite promising.

Keywords: Pythagorean theorem, pixel adjustment, ciphered data, image hiding, least significant bit, flexible matrix

Procedia PDF Downloads 311
3831 Quick Similarity Measurement of Binary Images via Probabilistic Pixel Mapping

Authors: Adnan A. Y. Mustafa

Abstract:

In this paper we present a quick technique to measure the similarity between binary images. The technique is based on a probabilistic mapping approach and is fast because only a minute percentage of the image pixels need to be compared to measure the similarity, and not the whole image. We exploit the power of the Probabilistic Matching Model for Binary Images (PMMBI) to arrive at an estimate of the similarity. We show that the estimate is a good approximation of the actual value, and the quality of the estimate can be improved further with increased image mappings. Furthermore, the technique is image size invariant; the similarity between big images can be measured as fast as that for small images. Examples of trials conducted on real images are presented.

Keywords: big images, binary images, image matching, image similarity

Procedia PDF Downloads 165