Search results for: Atle Magnus Bones
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 155

Search results for: Atle Magnus Bones

35 Understanding the Information in Principal Component Analysis of Raman Spectroscopic Data during Healing of Subcritical Calvarial Defects

Authors: Rafay Ahmed, Condon Lau

Abstract:

Bone healing is a complex and sequential process involving changes at the molecular level. Raman spectroscopy is a promising technique to study bone mineral and matrix environments simultaneously. In this study, subcritical calvarial defects are used to study bone composition during healing without discomposing the fracture. The model allowed to monitor the natural healing of bone avoiding mechanical harm to the callus. Calvarial defects were created using 1mm burr drill in the parietal bones of Sprague-Dawley rats (n=8) that served in vivo defects. After 7 days, their skulls were harvested after euthanizing. One additional defect per sample was created on the opposite parietal bone using same calvarial defect procedure to serve as control defect. Raman spectroscopy (785 nm) was established to investigate bone parameters of three different skull surfaces; in vivo defects, control defects and normal surface. Principal component analysis (PCA) was utilized for the data analysis and interpretation of Raman spectra and helped in the classification of groups. PCA was able to distinguish in vivo defects from normal surface and control defects. PC1 shows that the major variation at 958 cm⁻¹, which corresponds to ʋ1 phosphate mineral band. PC2 shows the major variation at 1448 cm⁻¹ which is the characteristic band of CH2 deformation and corresponds to collagens. Raman parameters, namely, mineral to matrix ratio and crystallinity was found significantly decreased in the in vivo defects compared to surface and controls. Scanning electron microscope and optical microscope images show the formation of newly generated matrix by means of bony bridges of collagens. Optical profiler shows that surface roughness increased by 30% from controls to in vivo defects after 7 days. These results agree with Raman assessment parameters and confirm the new collagen formation during healing.

Keywords: Raman spectroscopy, principal component analysis, calvarial defects, tissue characterization

Procedia PDF Downloads 196
34 Development of a Paediatric Head Model for the Computational Analysis of Head Impact Interactions

Authors: G. A. Khalid, M. D. Jones, R. Prabhu, A. Mason-Jones, W. Whittington, H. Bakhtiarydavijani, P. S. Theobald

Abstract:

Head injury in childhood is a common cause of death or permanent disability from injury. However, despite its frequency and significance, there is little understanding of how a child’s head responds during injurious loading. Whilst Infant Post Mortem Human Subject (PMHS) experimentation is a logical approach to understand injury biomechanics, it is the authors’ opinion that a lack of subject availability is hindering potential progress. Computer modelling adds great value when considering adult populations; however, its potential remains largely untapped for infant surrogates. The complexities of child growth and development, which result in age dependent changes in anatomy, geometry and physical response characteristics, present new challenges for computational simulation. Further geometric challenges are presented by the intricate infant cranial bones, which are separated by sutures and fontanelles and demonstrate a visible fibre orientation. This study presents an FE model of a newborn infant’s head, developed from high-resolution computer tomography scans, informed by published tissue material properties. To mimic the fibre orientation of immature cranial bone, anisotropic properties were applied to the FE cranial bone model, with elastic moduli representing the bone response both parallel and perpendicular to the fibre orientation. Biofiedility of the computational model was confirmed by global validation against published PMHS data, by replicating experimental impact tests with a series of computational simulations, in terms of head kinematic responses. Numerical results confirm that the FE head model’s mechanical response is in favourable agreement with the PMHS drop test results.

Keywords: finite element analysis, impact simulation, infant head trauma, material properties, post mortem human subjects

Procedia PDF Downloads 301
33 Human Activities Damaging the Ecosystem of Isheri Ogun River, South West Nigeria

Authors: N. B. Ikenweiwe, A. A. Alimi, N. A. Bamidele, O. A. Ewumi, K. Fasina, S. O. Otubusin

Abstract:

A study on the physical, chemical and biological parameters of the lower course of Ogun River, Isheri-Olofin was carried out between January and December 2014 in order to determine the effects of the anthropogenic activities of the Kara abattoir and domestic waste depositions on the quality of the water. Water samples were taken twice each month at three selected stations A, B and C (based on characteristic features or activity levels) along the water course. Samples were analysed using standard methods for chemical and biological parameters the same day in the laboratory while physical parameters were determined in-situ with water parameters kit. Generally, results of Transparency, Dissolved Oxygen, Nitrates, TDS and Alkalinity fall below the permissible limits of WHO and FEPA standards for drinking and fish production. Results of phosphates, lead and cadmium were also low but still within the permissible limit. Only Temperature and pH were within limit. Low plankton community, (phytoplankton, zooplankton), which ranges from 3, 5 to 40, 23 were as a result of low levels of DO, transparency and phosphate. The presence of coliform bacteria of public health importance like Escherichia coli, Proteus vulgaris, Aeromonas sp., Shigella sp, Enterobacter aerogenes as well as gram negative bacteria Proteus morganii are mainly indicators of faecal pollution. Fish and other resources obtained from this water stand the risk of being contaminated with these organisms and man is at the receiving end. The results of the physical, chemical and some biological parameters of Isheri, Ogun River, according to this study showed that the live forms of aquatic and fisheries resources there are dwelling under stress as a result of deposition of bones, horns, faecal components, slurry of suspended solids, fat and blood into the water. Government should therefore establish good monitoring system against illegal waste depositions and create education programmes that will enlighten the community on the social, ecological and economic values of the river.

Keywords: damage, ecosystem, human activities, Isheri ogun river

Procedia PDF Downloads 509
32 Age Estimation and Sex Determination by CT-Scan Analysis of the Hyoid Bone: Application on a Tunisian Population

Authors: N. Haj Salem, M. Belhadj, S. Ben Jomâa, R. Dhouieb, S. Saadi, M. A. Mesrati, A. Chadly

Abstract:

Introduction: The hyoid bone is considered as one of many bones used to identify a missed person. There is a specificity of each population group in human identifications. Objective: To analyze the relationship between age, sex and metric parameters of hyoid bone in Tunisian population sample, using CT-scan. Materials and Methods: A prospective study was conducted in the Department of Forensic Medicine of FattoumaBourguiba Hospital of Monastir-Tunisia during 4 years. A total of 240 samples of hyoid bone were studied. The age of cases ranged from 18 days to 81 years. The specimens were collected only from the deceased of known age. Once dried, each hyoid bone was scanned using CT scan. For each specimen, 10 measurements were taken using a computer program. The measurements consisted of 6 lengths and 4 widths. A regression analysis was used to estimate the relationship between age, sex, and different measurements. For age estimation, a multiple logistic regression was carried out for samples ≤ 35 years. For sex determination, ROC curve was performed. Discriminant value finally retained was based on the best specificity with the best sensitivity. Results: The correlation between real age and estimated age was good (r²=0.72) for samples aged 35 years or less. The unstandardised canonical function equation was estimated using three variables: maximum length of the right greater cornua, length from the middle of the left joint space to the middle of the right joint space and perpendicular length from the centre point of a line between the distal ends of the right and left greater cornua to the centre point of the anterior view of the body of the hyoid bone. For sex determination, the ROC curve analysis reveals that the area under curve was at 81.8%. Discriminant value was 0.451 with a specificity of 73% and sensibility of 79%. The equation function was estimated based on two variables: maximum length of the greater cornua and maximum length of the hyoid bone. Conclusion: The findings of the current study suggest that metric analysis of the hyoid bone may predict the age ≤ 35 years. Sex estimation seems to be more reliable. Further studies dealing with the fusion of the hyoid bone and the current study could help to achieve more accurate age estimation rates.

Keywords: anthropology, age estimation, CT scan, sex determination, Tunisia

Procedia PDF Downloads 146
31 Free Fibular Flaps in Management of Sternal Dehiscence

Authors: H. N. Alyaseen, S. E. Alalawi, T. Cordoba, É. Delisle, C. Cordoba, A. Odobescu

Abstract:

Sternal dehiscence is defined as the persistent separation of sternal bones that are often complicated with mediastinitis. Etiologies that lead to sternal dehiscence vary, with cardiovascular and thoracic surgeries being the most common. Early diagnosis in susceptible patients is crucial to the management of such cases, as they are associated with high mortality rates. A recent meta-analysis of more than four hundred thousand patients concluded that deep sternal wound infections were the leading cause of mortality and morbidity in patients undergoing cardiac procedures. Long-term complications associated with sternal dehiscence include increased hospitalizations, cardiac infarctions, and renal and respiratory failures. Numerous osteosynthesis methods have been described in the literature. Surgical materials offer enough rigidity to support the sternum and can be flexible enough to allow physiological breathing movements of the chest; however, these materials fall short when managing patients with extensive bone loss, osteopenia, or general poor bone quality, for such cases, flaps offer a better closure system. Early utilization of flaps yields better survival rates compared to delayed closure or to patients treated with sternal rewiring and closed drainage. The utilization of pectoralis major flaps, rectus abdominus, and latissimus muscle flaps have all been described in the literature as great alternatives. Flap selection depends on a variety of factors, mainly the size of the sternal defect, infection, and the availability of local tissues. Free fibular flaps are commonly harvested flaps utilized in reconstruction around the body. In cases regarding sternal reconstruction with free fibular flaps, the literature exclusively discussed the flap applied vertically to the chest wall. We present a different technique applying the free fibular triple barrel flap oriented in a transverse manner, in parallel to the ribs. In our experience, this method could have enhanced results and improved prognosis as it contributes to the normal circumferential shape of the chest wall.

Keywords: sternal dehiscence, management, free fibular flaps, novel surgical techniques

Procedia PDF Downloads 66
30 Status of Physical, Chemical and Biological Attributes of Isheri, Ogun River, in Relation to the Surrounding Anthropogenic Activities of Kara Abattoir, South West Nigeria

Authors: N. B. Ikenweiwe, A. A. Alimi, N. A. Bamidele, A. O. Ewumi, J. Dairo, I. A. Akinnubi, S. O. Otubusin

Abstract:

A study on the physical, chemical and biological parameters of the lower course of Ogun River, Isheri-Olofin was carried out between January and December 2014 in order to determine the effects of the anthropogenic activities of the Kara abattoir and domestic waste depositions on the quality of the water. Water samples were taken twice each month at three selected stations A, B and C (based on characteristic features or activity levels) along the water course. Samples were analysed using standard methods for chemical and biological parameters the same day in the laboratory while physical parameters were determined in-situ with water parameters kit. Generally, results of Transparency, Dissolved Oxygen, Nitrates, TDS and Alkalinity fall below the permissible limits of WHO and FEPA standards for drinking and fish production. Results of phosphates, lead and cadmium were also low but still within the permissible limit. Only Temperature and pH were within limit. Low plankton community, (phytoplankton, zooplankton), which ranges from 3, 5 to 40, 23 were as a result of low levels of DO, transparency and phosphate. The presence of coliform bacteria of public health importance like Escherichia coli, Proteus vulgaris, Aeromonas sp., Shigella sp, Enterobacter aerogenes as well as gram negative bacteria Proteus morganii are mainly indicators of faecal pollution. Fish and other resources obtained from this water stand the risk of being contaminated with these organisms and man is at the receiving end. The results of the physical, chemical and some biological parameters of Isheri, Ogun River, according to this study showed that the live forms of aquatic and fisheries resources there are dwelling under stress as a result of deposition of bones, horns, faecal components, slurry of suspended solids, fat and blood into the water. Government should therefore establish good monitoring system against illegal waste depositions and create education programmes that will enlighten the community on the social, ecological and economic values of the river.

Keywords: water parameters, Isheri Ogun river, anthropogenic activities, Kara abattoir

Procedia PDF Downloads 501
29 Age Estimation from Upper Anterior Teeth by Pulp/Tooth Ratio Using Peri-Apical X-Rays among Egyptians

Authors: Fatma Mohamed Magdy Badr El Dine, Amr Mohamed Abd Allah

Abstract:

Introduction: Age estimation of individuals is one of the crucial steps in forensic practice. Different traditional methods rely on the length of the diaphysis of long bones of limbs, epiphyseal-diaphyseal union, fusion of the primary ossification centers as well as dental eruption. However, there is a growing need for the development of precise and reliable methods to estimate age, especially in cases where dismembered corpses, burnt bodies, purified or fragmented parts are recovered. Teeth are the hardest and indestructible structure in the human body. In recent years, assessment of pulp/tooth area ratio, as an indirect quantification of secondary dentine deposition has received a considerable attention. However, scanty work has been done in Egypt in terms of applicability of pulp/tooth ratio for age estimation. Aim of the Work: The present work was designed to assess the Cameriere’s method for age estimation from pulp/tooth ratio of maxillary canines, central and lateral incisors among a sample from Egyptian population. In addition, to formulate regression equations to be used as population-based standards for age determination. Material and Methods: The present study was conducted on 270 peri-apical X-rays of maxillary canines, central and lateral incisors (collected from 131 males and 139 females aged between 19 and 52 years). The pulp and tooth areas were measured using the Adobe Photoshop software program and the pulp/tooth area ratio was computed. Linear regression equations were determined separately for canines, central and lateral incisors. Results: A significant correlation was recorded between the pulp/tooth area ratio and the chronological age. The linear regression analysis revealed a coefficient of determination (R² = 0.824 for canine, 0.588 for central incisor and 0.737 for lateral incisor teeth). Three regression equations were derived. Conclusion: As a conclusion, the pulp/tooth ratio is a useful technique for estimating age among Egyptians. Additionally, the regression equation derived from canines gave better result than the incisors.

Keywords: age determination, canines, central incisors, Egypt, lateral incisors, pulp/tooth ratio

Procedia PDF Downloads 156
28 Inertial Motion Capture System for Biomechanical Analysis in Rehabilitation and Sports

Authors: Mario Sandro F. Rocha, Carlos S. Ande, Anderson A. Oliveira, Felipe M. Bersotti, Lucas O. Venzel

Abstract:

The inertial motion capture systems (mocap) are among the most suitable tools for quantitative clinical analysis in rehabilitation and sports medicine. The inertial measuring units (IMUs), composed by accelerometers, gyroscopes, and magnetometers, are able to measure spatial orientations and calculate displacements with sufficient precision for applications in biomechanical analysis of movement. Furthermore, this type of system is relatively affordable and has the advantages of portability and independence from external references. In this work, we present the last version of our inertial motion capture system, based on the foregoing technology, with a unity interface designed for rehabilitation and sports. In our hardware architecture, only one serial port is required. First, the board client must be connected to the computer by a USB cable. Next, an available serial port is configured and opened to establish the communication between the client and the application, and then the client starts scanning for the active MOCAP_S servers around. The servers play the role of the inertial measuring units that capture the movements of the body and send the data to the client, which in turn create a package composed by the ID of the server, the current timestamp, and the motion capture data defined in the client pre-configuration of the capture session. In the current version, we can measure the game rotation vector (grv) and linear acceleration (lacc), and we also have a step detector that can be abled or disabled. The grv data are processed and directly linked to the bones of the 3D model, and, along with the data of lacc and step detector, they are also used to perform the calculations of displacements and other variables shown on the graphical user interface. Our user interface was designed to calculate and present variables that are important for rehabilitation and sports, such as cadence, speed, total gait cycle, gait cycle length, obliquity and rotation, and center of gravity displacement. Our goal is to present a low-cost portable and wearable system with a friendly interface for application in biomechanics and sports, which also performs as a product of high precision and low consumption of energy.

Keywords: biomechanics, inertial sensors, motion capture, rehabilitation

Procedia PDF Downloads 113
27 Material Response Characterisation of a PolyJet 3D Printed Human Infant Skull

Authors: G. A. Khalid, R. Prabhu, W. Whittington, M. D. Jones

Abstract:

To establish a causal relationship of infant head injury consequences, this present study addresses the necessary challenges of cranial geometry and the physical response complexities of the paediatric head tissues. Herein, we describe a new approach to characterising and understanding infant head impact mechanics by developing printed head models, using high resolution clinical postmortem imaging, to provide the most complete anatomical representation currently available, and biological material response data-matched polypropylene polymers, to replicate the relative mechanical response properties of immature cranial bone, sutures and fontanelles. Additive manufacturing technology was applied to creating a physical polymeric model of a newborn infant skull, using PolyJet printed materials. Infant skull materials responses, were matched by a response characterisation study, utilising uniaxial tensile testing (1 mm min-1 loading rate), to determine: the stiffness, ultimate tensile strength and maximum strain of rigid and rubber additively manufactured acrylates. The results from the mechanical experiments confirm that the polymeric materials RGD835 Vero White Plus (White), representing the frontal and parietal bones; RGD8510- DM Rigid Light Grey25 (Grey), representing the occipital bone; and FLX9870-DM (Black) representing the suture and fontanelles, were found to show a close stiffness -correlation (E) at ambient temperatures. A 3D physical model of infant head was subsequently printed from the matched materials and subsequently validated against results obtained from a series of Post Mortem Human Surrogate (PMHS) tests. A close correlation was demonstrated between the model impact tests and the PMHS. This study, therefore, represents a key step towards applying printed physical models to understanding head injury biomechanics and is useful in the efforts to predict and mitigate head injury consequences in infants, whether accidental or by abuse.

Keywords: infant head trauma, infant skull, material response, post mortem human subjects, polyJet printing

Procedia PDF Downloads 116
26 Creating a Digital Map to Monitor the Care of People Living with HIV/Aids in Porto Alegre, Brazil: An Experience Report

Authors: Tiago Sigal Linhares, Ana Amélia Nascimento da Silva Bones, Juliana Miola, McArthur Alexander Barrow, Airton Tetelbom Stein

Abstract:

Introduction: As a result of increased globalization and changing migration trends, it is expected that a significant portion of People Living with HIV/AIDS (PLWHA) will change their place of residence over time. In order to provide better health care, monitor the HIV epidemic and plan urban public health care and policies, there is a growing need to formulate a strategy for monitoring PLWHA care, location and migration patterns. The Porto Alegre District is characterized by a high prevalence of PLWHA and is considered one of the epicenters of HIV epidemic in Latin America. Objectives: The aim of this study is to create a digital and easily editable map in order to create a visual representation of the location of PLWHA and to monitor their migration within the city and the country in an effort to promote longitudinal care. Methods: This Experience Report used Google Maps Map Creator to generate an active digital map showing the location and changes in residence of 165 PLWHA who received care at two Primary Health Care (PHC) clinics, which attended an estimated population of five thousand patients, in downtown Porto Alegre over the last four years. Their current addresses were discovered in the unified Brazilian health care system digital records (e-SUS) and updated on the map. Results: A digital map with PLWHA current residence location was created. It was possible to demonstrate visually areas with a large concentration of PLWHA and the migration of the population within the city as wells as other cities, regions and states. Conclusions: An easily reproducible and free map could aid in PLWHA monitoring, urban public health planning, target interventions and situational diagnosis. Moreover, a visual representation of PLWHA location and migration could help bring more attention and investments to areas with geographic inequities or higher prevalence of PLWHA. It also enables notification of local PHC units of monitored patients inside their area, which are in clinical risk or with treatment abandonment through active case findings, improving the care of PLWHA.

Keywords: health care, medical public health, theoretical and conceptual innovations, urban public health

Procedia PDF Downloads 94
25 Valorization of Seafood and Poultry By-Products as Gelatin Source and Quality Assessment

Authors: Elif Tugce Aksun Tumerkan, Umran Cansu, Gokhan Boran, Fatih Ozogul

Abstract:

Gelatin is a mixture of peptides obtained from collagen by partial thermal hydrolysis. It is an important and useful biopolymer that is used in the food, pharmacy, and photography products. Generally, gelatins are sourced from pig skin and bones, beef bone and hide, but within the last decade, using alternative gelatin resources has attracted some interest. In this study, functional properties of gelatin extracted from seafood and poultry by-products were evaluated. For this purpose, skins of skipjack tuna (Katsuwonus pelamis) and frog (Rana esculata) were used as seafood by-products and chicken skin as poultry by-product as raw material for gelatin extraction. Following the extraction of gelatin, all samples were lyophilized and stored in plastic bags at room temperature. For comparing gelatins obtained; chemical composition, common quality parameters including bloom value, gel strength, and viscosity in addition to some others like melting and gelling temperatures, hydroxyproline content, and colorimetric parameters were determined. The results showed that the highest protein content obtained in frog gelatin with 90.1% and the highest hydroxyproline content was in chicken gelatin with 7.6% value. Frog gelatin showed a significantly higher (P < 0.05) melting point (42.7°C) compared to that of fish (29.7°C) and chicken (29.7°C) gelatins. The bloom value of gelatin from frog skin was found higher (363 g) than chicken and fish gelatins (352 and 336 g, respectively) (P < 0.05). While fish gelatin had higher lightness (L*) value (92.64) compared to chicken and frog gelatins, redness/greenness (a*) value was significantly higher in frog skin gelatin. Based on the results obtained, it can be concluded that skins of different animals with high commercial value may be utilized as alternative sources to produce gelatin with high yield and desirable functional properties. Functional and quality analysis of gelatin from frog, chicken, and tuna skin showed by-product of poultry and seafood can be used as an alternative gelatine source to mammalian gelatine. The functional properties, including bloom strength, melting points, and viscosity of gelatin from frog skin were more admirable than that of the chicken and tuna skin. Among gelatin groups, significant characteristic differences such as gel strength and physicochemical properties were observed based on not only raw material but also the extraction method.

Keywords: chicken skin, fish skin, food industry, frog skin, gel strength

Procedia PDF Downloads 133
24 Reconsidering the Palaeo-Environmental Reconstruction of the Wet Zone of Sri Lanka: A Zooarchaeological Perspective

Authors: Kelum N. Manamendra-Arachchi, Kalangi Rodrigo

Abstract:

Bones, teeth, and shells have been acknowledged over the last two centuries as evidence of chronology, Palaeo-environment, and human activity. Faunal traces are valid evidence of past situations because they have properties that have not changed over long periods of time. Sri Lanka has been known as an Island, which has a diverse variation of prehistoric occupation among ecological zones. Defining the Paleoecology of the past societies has been an archaeological thought developed in the 1960s. It is mainly concerned with the reconstruction from available geological and biological evidence of past biota, populations, communities, landscapes, environments, and ecosystems. Sri Lanka has dealt with this subject and considerable research has been already undertaken. The fossil and material record of Sri Lanka’s Wet Zone tropical forests continues from c. 38,000–34,000 ybp. This early and persistent human fossil, technical, and cultural florescence, as well as a collection of well-preserved tropical-forest rock shelters with associated ' on-site ' Palaeoenvironmental records, makes Sri Lanka a central and unusual case study to determine the extent and strength of early human tropical forest encounters. Excavations carried out in prehistoric caves in the low country wet zone has shown that in the last 50,000 years, the temperature in the lowland rainforests has not exceeded 5 degrees. Based on Semnopithecus Priam (Gray Langur) remains unearned from wet zone prehistoric caves, it has been argued that periods of momentous climate changes during the LGM and Terminal Pleistocene/Early Holocene boundary, with a recognizable preference for semi-open ‘Intermediate’ rainforest or edges. Continuous Genus Acavus and Oligospira occupation along with uninterrupted horizontal pervasive of Canarium sp. (‘kekuna’ nut) have proven that temperatures in the lowland rain forests have not changed by at least 5 oC over the last 50,000 years. Site Catchment or Territorial analysis cannot be no longer defensible, due to time-distance based factors as well as optimal foraging theory failed as a consequences of prehistoric people were aware of the decrease in cost-benefit ratio and located sites, and generally played out a settlement strategy that minimized the ratio of energy expanded to energy produced.

Keywords: palaeo-environment, prehistory, palaeo-ecology, zooarchaeology

Procedia PDF Downloads 97
23 Palaeo-Environmental Reconstruction of the Wet Zone of Sri Lanka: A Zooarchaeological Perspective

Authors: Kalangi Rodrigo

Abstract:

Sri Lanka has been known as an island which has a diverse variety of prehistoric occupation among ecological zones. Defining the paleoecology of the past societies has been an archaeological thought developed in the 1960s. It is mainly concerned with the reconstruction from available geological and biological evidence of past biota, populations, communities, landscapes, environments, and ecosystems. Sri Lanka has dealt with this subject, and considerable research has been already undertaken. The fossil and material record of Sri Lanka’s Wet Zone tropical forests continues from c. 38,000–34,000 ybp. This early and persistent human fossil, technical, and cultural florescence, as well as a collection of well-preserved tropical-forest rock shelters with associated 'on-site' palaeoenvironmental records, makes Sri Lanka a central and unusual case study to determine the extent and strength of early human tropical forest encounters. Excavations carried out in prehistoric caves in the low country wet zone has shown that in the last 50,000 years, the temperature in the lowland rainforests has not exceeded 5°C. When taking Batadombalena alone, the entire seven layers have yielded an uninterrupted occupation of Acavus sp and Canerium zeylanicum, a plant that grows in the middle of the rainforest. Acavus, which is highly sensitive to rainforest ecosystems, has been well documented in many of the lowland caves, confirming that the wetland rainforest environment has remained intact at least for the last 50,000 years. If the dry and arid conditions in the upper hills regions affected the wet zone, the Tufted Gray Lunger (semnopithecus priam), must also meet with the prehistoric caves in the wet zone thrown over dry climate. However, the bones in the low country wet zone do not find any of the fragments belonging to Turfed Gray Lunger, and prehistoric human consumption is bestowed with purple-faced leaf monkey (Trachypithecus vetulus) and Toque Macaque (Macaca Sinica). The skeletal remains of Lyriocephalus scutatus, a full-time resident in rain forests, have also been recorded among lowland caves. But, in zoological terms, these remains may be the remains of the Barking deer (Muntiacus muntjak), which is currently found in the wet zone. For further investigations, the mtDNA test of genetic diversity (Bottleneck effect) and pollen study from lowland caves should determine whether the wet zone climate has persisted over the last 50,000 years, or whether the dry weather affected in the mountainous region has invaded the wet zone.

Keywords: paleoecology, prehistory, zooarchaeology, reconstruction, palaeo-climate

Procedia PDF Downloads 114
22 Study of the Combinatorial Impact of Substrate Properties on Mesenchymal Stem Cell Migration Using Microfluidics

Authors: Nishanth Venugopal Menon, Chuah Yon Jin, Samantha Phey, Wu Yingnan, Zhang Ying, Vincent Chan, Kang Yuejun

Abstract:

Cell Migration is a vital phenomenon that the cells undergo in various physiological processes like wound healing, disease progression, embryogenesis, etc. Cell migration depends primarily on the chemical and physical cues available in the cellular environment. The chemical cue involves the chemokines secreted and gradients generated in the environment while physical cues indicate the impact of matrix properties like nanotopography and stiffness on the cells. Mesenchymal Stem Cells (MSCs) have been shown to have a role wound healing in vivo and its migration to the site of the wound has been shown to have a therapeutic effect. In the field of stem cell based tissue regeneration of bones and cartilage, one approach has been to introduce scaffold laden with MSCs into the site of injury to enable tissue regeneration. In this work, we have studied the combinatorial impact of the substrate physical properties on MSC migration. A microfluidic in vitro model was created to perform the migration studies. The microfluidic model used is a three compartment device consisting of two cell seeding compartments and one migration compartment. Four different PDMS substrates with varying substrate roughness, stiffness and hydrophobicity were created. Its surface roughness and stiffness was measured using Atomic Force Microscopy (AFM) while its hydrphobicity was measured from the water contact angle using an optical tensiometer. These PDMS substrates are sealed to the microfluidic chip following which the MSCs are seeded and the cell migration is studied over the period of a week. Cell migration was quantified using fluorescence imaging of the cytoskeleton (F-actin) to find out the area covered by the cells inside the migration compartment. The impact of adhesion proteins on cell migration was also quantified using a real-time polymerase chain reaction (qRT PCR). These results suggested that the optimal substrate for cell migration would be one with an intermediate level of roughness, stiffness and hydrophobicity. A higher or lower value of these properties affected cell migration negatively. These observations have helped us in understanding that different substrate properties need to be considered in tandem, especially while designing scaffolds for tissue regeneration as cell migration is normally impacted by the combinatorial impact of the matrix. These observations may lead us to scaffold optimization in future tissue regeneration applications.

Keywords: cell migration, microfluidics, in vitro model, stem cell migration, scaffold, substrate properties

Procedia PDF Downloads 530
21 Determination of Activation Energy for Thermal Decomposition of Selected Soft Tissues Components

Authors: M. Ekiert, T. Uhl, A. Mlyniec

Abstract:

Tendons are the biological soft tissue structures composed of collagen, proteoglycan, glycoproteins, water and cells of extracellular matrix (ECM). Tendons, which primary function is to transfer force generated by the muscles to the bones causing joints movement, are exposed to many micro and macro damages. In fact, tendons and ligaments trauma are one of the most numerous injuries of human musculoskeletal system, causing for many people (particularly for athletes and physically active people), recurring disorders, chronic pain or even inability of movement. The number of tendons reconstruction and transplantation procedures is increasing every year. Therefore, studies on soft tissues storage conditions (influencing i.e. tissue aging) seem to be an extremely important issue. In this study, an atomic-scale investigation on the kinetics of decomposition of two selected tendon components – collagen type I (which forms a 60-85% of a tendon dry mass) and elastin protein (which combine with ECM creates elastic fibers of connective tissues) is presented. A molecular model of collagen and elastin was developed based on crystal structure of triple-helical collagen-like 1QSU peptide and P15502 human elastin protein, respectively. Each model employed 4 linear strands collagen/elastin strands per unit cell, distributed in 2x2 matrix arrangement, placed in simulation box filled with water molecules. A decomposition phenomena was simulated with molecular dynamics (MD) method using ReaxFF force field and periodic boundary conditions. A set of NVT-MD runs was performed for 1000K temperature range in order to obtained temperature-depended rate of production of decomposition by-products. Based on calculated reaction rates activation energies and pre-exponential factors, required to formulate Arrhenius equations describing kinetics of decomposition of tested soft tissue components, were calculated. Moreover, by adjusting a model developed for collagen, system scalability and correct implementation of the periodic boundary conditions were evaluated. An obtained results provide a deeper insight into decomposition of selected tendon components. A developed methodology may also be easily transferred to other connective tissue elements and therefore might be used for further studies on soft tissues aging.

Keywords: decomposition, molecular dynamics, soft tissue, tendons

Procedia PDF Downloads 184
20 Estimating Age In Deceased Persons From The North Indian Population Using Ossification Of The Sternoclavicular Joint

Authors: Balaji Devanathan, Gokul G, Raveena Divya, Abhishek Yadav, Sudhir K.Gupta

Abstract:

Background: Age estimation is a common problem in administrative settings, medico legal cases, and among athletes competing in different sports. Age estimation is a problem in medico legal problems that arise in hospitals when there has been a criminal abortion, when consenting to surgery or a general physical examination, when there has been infanticide, impotence, sterility, etc. Medical imaging progress has benefited forensic anthropology in various ways, most notably in the area of determining bone age. An efficient method for researching the epiphyseal union and other differences in the body's bones and joints is multi-slice computed tomography. There isn't a significant database on Indians available. So to obtain an Indian based database author has performed this original study. Methodologies: The appearance and fusion of ossification centre of sternoclavicular joint is evaluated, and grades were assigned accordingly. Using MSCT scans, we examined the relationship between the age of the deceased and alterations in the sternoclavicular joint during the appearance and union in 500 instances, 327 men and 173 females, in the age range of 0 to 25 years. Results: According to our research in both the male and female groups, the ossification centre for the medial end of the clavicle first appeared between the ages of 18.5 and 17.1 respectively. The age range of the partial union was 20.4 and 20.2 years old. The earliest age of complete fusion was 23 years for males and 22 years for females. For fusion of their sternebrae into one, age range is 11–24 years for females and 17–24 years. The fusion of the third and fourth sternebrae was completed by 11 years. The fusions of the first and second and second and third sternebrae occur by the age of 17 years. Furthermore, correlation and reliability were carried out which yielded significant results. Conclusion: With numerous exceptions, the projected values are consistent with a large number of the previously developed age charts. These variations may be caused by the ethnic or regional heterogeneity in the ossification pattern among the population under study. The pattern of bone maturation did not significantly differ between the sexes, according to the study. The study's age range was 0 to 25 years, and for obvious reasons, the majority of the occurrences occurred in the last five years, or between 20 and 25 years of age. This resulted in a comparatively smaller study population for the 12–18 age group, where age estimate is crucial because of current legal requirements. It will require specialized PMCT research in this age range to produce population standard charts for age estimate. The medial end of the clavicle is one of several ossification foci that are being thoroughly investigated since they are challenging to assess with a traditional X-ray examination. Combining the two has been shown to be a valid result when it comes to raising the age beyond eighteen.

Keywords: age estimation, sternoclavicular joint, medial clavicle, computed tomography

Procedia PDF Downloads 4
19 Integrating Computational Modeling and Analysis with in Vivo Observations for Enhanced Hemodynamics Diagnostics and Prognosis

Authors: Shreyas S. Hegde, Anindya Deb, Suresh Nagesh

Abstract:

Computational bio-mechanics is developing rapidly as a non-invasive tool to assist the medical fraternity to help in both diagnosis and prognosis of human body related issues such as injuries, cardio-vascular dysfunction, atherosclerotic plaque etc. Any system that would help either properly diagnose such problems or assist prognosis would be a boon to the doctors and medical society in general. Recently a lot of work is being focused in this direction which includes but not limited to various finite element analysis related to dental implants, skull injuries, orthopedic problems involving bones and joints etc. Such numerical solutions are helping medical practitioners to come up with alternate solutions for such problems and in most cases have also reduced the trauma on the patients. Some work also has been done in the area related to the use of computational fluid mechanics to understand the flow of blood through the human body, an area of hemodynamics. Since cardio-vascular diseases are one of the main causes of loss of human life, understanding of the blood flow with and without constraints (such as blockages), providing alternate methods of prognosis and further solutions to take care of issues related to blood flow would help save valuable life of such patients. This project is an attempt to use computational fluid dynamics (CFD) to solve specific problems related to hemodynamics. The hemodynamics simulation is used to gain a better understanding of functional, diagnostic and theoretical aspects of the blood flow. Due to the fact that many fundamental issues of the blood flow, like phenomena associated with pressure and viscous forces fields, are still not fully understood or entirely described through mathematical formulations the characterization of blood flow is still a challenging task. The computational modeling of the blood flow and mechanical interactions that strongly affect the blood flow patterns, based on medical data and imaging represent the most accurate analysis of the blood flow complex behavior. In this project the mathematical modeling of the blood flow in the arteries in the presence of successive blockages has been analyzed using CFD technique. Different cases of blockages in terms of percentages have been modeled using commercial software CATIA V5R20 and simulated using commercial software ANSYS 15.0 to study the effect of varying wall shear stress (WSS) values and also other parameters like the effect of increase in Reynolds number. The concept of fluid structure interaction (FSI) has been used to solve such problems. The model simulation results were validated using in vivo measurement data from existing literature

Keywords: computational fluid dynamics, hemodynamics, blood flow, results validation, arteries

Procedia PDF Downloads 376
18 Design of a Low-Cost, Portable, Sensor Device for Longitudinal, At-Home Analysis of Gait and Balance

Authors: Claudia Norambuena, Myissa Weiss, Maria Ruiz Maya, Matthew Straley, Elijah Hammond, Benjamin Chesebrough, David Grow

Abstract:

The purpose of this project is to develop a low-cost, portable sensor device that can be used at home for long-term analysis of gait and balance abnormalities. One area of particular concern involves the asymmetries in movement and balance that can accompany certain types of injuries and/or the associated devices used in the repair and rehabilitation process (e.g. the use of splints and casts) which can often increase chances of falls and additional injuries. This device has the capacity to monitor a patient during the rehabilitation process after injury or operation, increasing the patient’s access to healthcare while decreasing the number of visits to the patient’s clinician. The sensor device may thereby improve the quality of the patient’s care, particularly in rural areas where access to the clinician could be limited, while simultaneously decreasing the overall cost associated with the patient’s care. The device consists of nine interconnected accelerometer/ gyroscope/compass chips (9-DOF IMU, Adafruit, New York, NY). The sensors attach to and are used to determine the orientation and acceleration of the patient’s lower abdomen, C7 vertebra (lower neck), L1 vertebra (middle back), anterior side of each thigh and tibia, and dorsal side of each foot. In addition, pressure sensors are embedded in shoe inserts with one sensor (ESS301, Tekscan, Boston, MA) beneath the heel and three sensors (Interlink 402, Interlink Electronics, Westlake Village, CA) beneath the metatarsal bones of each foot. These sensors measure the distribution of the weight applied to each foot as well as stride duration. A small microntroller (Arduino Mega, Arduino, Ivrea, Italy) is used to collect data from these sensors in a CSV file. MATLAB is then used to analyze the data and output the hip, knee, ankle, and trunk angles projected on the sagittal plane. An open-source program Processing is then used to generate an animation of the patient’s gait. The accuracy of the sensors was validated through comparison to goniometric measurements (±2° error). The sensor device was also shown to have sufficient sensitivity to observe various gait abnormalities. Several patients used the sensor device, and the data collected from each represented the patient’s movements. Further, the sensors were found to have the ability to observe gait abnormalities caused by the addition of a small amount of weight (4.5 - 9.1 kg) to one side of the patient. The user-friendly interface and portability of the sensor device will help to construct a bridge between patients and their clinicians with fewer necessary inpatient visits.

Keywords: biomedical sensing, gait analysis, outpatient, rehabilitation

Procedia PDF Downloads 255
17 Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering

Authors: Ekaterina S. Marchenko, Gulsharat A. Baigonakova, Kirill M. Dubovikov, Igor A. Khlusov

Abstract:

NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure.

Keywords: calcium phosphate coating, cytotoxicity, NiTi alloy, two-layer coating

Procedia PDF Downloads 41
16 Mechanical Properties and Antibiotic Release Characteristics of Poly(methyl methacrylate)-based Bone Cement Formulated with Mesoporous Silica Nanoparticles

Authors: Kumaran Letchmanan, Shou-Cang Shen, Wai Kiong Ng

Abstract:

Postoperative implant-associated infections in soft tissues and bones remain a serious complication in orthopaedic surgery, which leads to impaired healing, re-implantation, prolong hospital stay and increase cost. Drug-loaded implants with sustained release of antibiotics at the local site are current research interest to reduce the risk of post-operative infections and osteomyelitis, thus, minimize the need for follow-up care and increase patient comfort. However, the improved drug release of the drug-loaded bone cements is usually accompanied by a loss in mechanical strength, which is critical for weight-bearing bone cement. Recently, more attempts have been undertaken to develop techniques to enhance the antibiotic elution as well as preserve the mechanical properties of the bone cements. The present study investigates the potential influence of addition of mesoporous silica nanoparticles (MSN) on the in vitro drug release kinetics of gentamicin (GTMC), along with the mechanical properties of bone cements. Simplex P was formulated with MSN and loaded with GTMC by direct impregnation. Meanwhile, Simplex P with water soluble poragen (xylitol) and high loading of GTMC as well as commercial bone cement CMW Smartset GHV were used as controls. MSN-formulated bone cements are able to increase the drug release of GTMC by 3-fold with a cumulative release of more than 46% as compared with other control groups. Furthermore, a sustained release could be achieved for two months. The loaded nano-sized MSN with uniform pore channels significantly build up an effective nano-network path in the bone cement facilitates the diffusion and extended release of GTMC. Compared with formulations using xylitol and high GTMC loading, incorporation of MSN shows no detrimental effect on biomechanical properties of the bone cements as no significant changes in the mechanical properties as compared with original bone cement. After drug release for two months, the bending modulus of MSN-formulated bone cements is 4.49 ± 0.75 GPa and the compression strength is 92.7 ± 2.1 MPa (similar to the compression strength of Simplex-P: 93.0 ± 1.2 MPa). The unaffected mechanical properties of MSN-formulated bone cements was due to the unchanged microstructures of bone cement, whereby more than 98% of MSN remains in the matrix and supports the bone cement structures. In contrast, the large portions of extra voids can be observed for the formulations using xylitol and high drug loading after the drug release study, thus caused compressive strength below the ASTM F541 and ISO 5833 minimum of 70 MPa. These results demonstrate the potential applicability of MSN-functionalized poly(methyl methacrylate)-based bone cement as a highly efficient, sustained and local drug delivery system with good mechanical properties.

Keywords: antibiotics, biomechanical properties, bone cement, sustained release

Procedia PDF Downloads 233
15 From By-product To Brilliance: Transforming Adobe Brick Construction Using Meat Industry Waste-derived Glycoproteins

Authors: Amal Balila, Maria Vahdati

Abstract:

Earth is a green building material with very low embodied energy and almost zero greenhouse gas emissions. However, it lacks strength and durability in its natural state. By responsibly sourcing stabilisers, it's possible to enhance its strength. This research draws inspiration from the robustness of termite mounds, where termites incorporate glycoproteins from their saliva during construction. Biomimicry explores the potential of these termite stabilisers in producing bio-inspired adobe bricks. The meat industry generates significant waste during slaughter, including blood, skin, bones, tendons, gastrointestinal contents, and internal organs. While abundant, many meat by-products raise concerns regarding human consumption, religious orders, cultural and ethical beliefs, and also heavily contribute to environmental pollution. Extracting and utilising proteins from this waste is vital for reducing pollution and increasing profitability. Exploring the untapped potential of meat industry waste, this research investigates how glycoproteins could revolutionize adobe brick construction. Bovine serum albumin (BSA) from cows' blood and mucin from porcine stomachs were the chosen glycoproteins used as stabilisers for adobe brick production. Despite their wide usage across various fields, they have very limited utilisation in food processing. Thus, both were identified as potential stabilisers for adobe brick production in this study. Two soil types were utilised to prepare adobe bricks for testing, comparing controlled unstabilised bricks with glycoprotein-stabilised ones. All bricks underwent testing for unconfined compressive strength and erosion resistance. The primary finding of this study is the efficacy of BSA, a glycoprotein derived from cows' blood and a by-product of the beef industry, as an earth construction stabiliser. Adding 0.5% by weight of BSA resulted in a 17% and 41% increase in the unconfined compressive strength for British and Sudanese adobe bricks, respectively. Further, adding 5% by weight of BSA led to a 202% and 97% increase in the unconfined compressive strength for British and Sudanese adobe bricks, respectively. Moreover, using 0.1%, 0.2%, and 0.5% by weight of BSA resulted in erosion rate reductions of 30%, 48%, and 70% for British adobe bricks, respectively, with a 97% reduction observed for Sudanese adobe bricks at 0.5% by weight of BSA. However, mucin from the porcine stomach did not significantly improve the unconfined compressive strength of adobe bricks. Nevertheless, employing 0.1% and 0.2% by weight of mucin resulted in erosion rate reductions of 28% and 55% for British adobe bricks, respectively. These findings underscore BSA's efficiency as an earth construction stabiliser for wall construction and mucin's efficacy for wall render, showcasing their potential for sustainable and durable building practices.

Keywords: biomimicry, earth construction, industrial waste management, sustainable building materials, termite mounds.

Procedia PDF Downloads 16
14 Preparation of Activated Carbon From Waste Feedstock: Activation Variables Optimization and Influence

Authors: Oluwagbemi Victor Aladeokin

Abstract:

In the last decade, the global peanut cultivation has seen increased demand, which is attributed to their health benefits, rising to ~ 41.4 MMT in 2019/2020. Peanut and other nutshells are considered as waste in various parts of the world and are usually used for their fuel value. However, this agricultural by-product can be converted to a higher value product such as activated carbon. For many years, due to the highly porous structure of activated carbon, it has been widely and effectively used as an adsorbent in the purification and separation of gases and liquids. Those used for commercial purposes are primarily made from a range of precursors such as wood, coconut shell, coal, bones, etc. However, due to difficulty in regeneration and high cost, various agricultural residues such as rice husk, corn stalks, apricot stones, almond shells, coffee beans, etc, have been explored to produce activated carbons. In the present study, the potential of peanut shells as precursors in the production of activated carbon and their adsorption capacity is investigated. Usually, precursors used to produce activated carbon have carbon content above 45 %. A typical raw peanut shell has 42 wt.% carbon content. To increase the yield, this study has employed chemical activation method using zinc chloride. Zinc chloride is well known for its effectiveness in increasing porosity of porous carbonaceous materials. In chemical activation, activation temperature and impregnation ratio are parameters commonly reported to be the most significant, however, this study has also studied the influence of activation time on the development of activated carbon from peanut shells. Activated carbons are applied for different purposes, however, as the application of activated carbon becomes more specific, an understanding of the influence of activation variables to have a better control of the quality of the final product becomes paramount. A traditional approach to experimentally investigate the influence of the activation parameters, involves varying each parameter at a time. However, a more efficient way to reduce the number of experimental runs is to apply design of experiment. One of the objectives of this study is to optimize the activation variables. Thus, this work has employed response surface methodology of design of experiment to study the interactions between the activation parameters and consequently optimize the activation parameters (temperature, impregnation ratio, and activation time). The optimum activation conditions found were 485 °C, 15 min and 1.7, temperature, activation time, and impregnation ratio respectively. The optimum conditions resulted in an activated carbon with relatively high surface area ca. 1700 m2/g, 47 % yield, relatively high density, low ash, and high fixed carbon content. Impregnation ratio and temperature were found to mostly influence the final characteristics of the produced activated carbon from peanut shells. The results of this study, using response surface methodology technique, have revealed the potential and the most significant parameters that influence the chemical activation process, of peanut shells to produce activated carbon which can find its use in both liquid and gas phase adsorption applications.

Keywords: chemical activation, fixed carbon, impregnation ratio, optimum, surface area

Procedia PDF Downloads 109
13 The Effect of Calcium Phosphate Composite Scaffolds on the Osteogenic Differentiation of Rabbit Dental Pulp Stem Cells

Authors: Ling-Ling E, Lin Feng, Hong-Chen Liu, Dong-Sheng Wang, Zhanping Shi, Juncheng Wang, Wei Luo, Yan Lv

Abstract:

The objective of this study was to compare the effects of the two calcium phosphate composite scaffolds on the attachment, proliferation and osteogenic differentiation of rabbit dental pulp stem cells (DPSCs). One nano-hydroxyapatite/collagen/poly (L-lactide) (nHAC/PLA), imitating the composition and the micro-structure characteristics of the natural bone, was made by Beijing Allgens Medical Science & Technology Co., Ltd. (China). The other beta-tricalcium phosphate (β-TCP), being fully interoperability globular pore structure, was provided by Shanghai Bio-lu Biomaterials Co, Ltd. (China). We compared the absorption water rate and the protein adsorption rate of two scaffolds and the characterization of DPSCs cultured on the culture plate and both scaffolds under osteogenic differentiation media (ODM) treatment. The constructs were then implanted subcutaneously into the back of severe combined immunodeficient (SCID) mice for 8 and 12 weeks to compare their bone formation capacity. The results showed that the ODM-treated DPSCs expressed osteocalcin (OCN), bone sialoprotein (BSP), type I collagen (COLI) and osteopontin (OPN) by immunofluorescence staining. Positive alkaline phosphatase (ALP) staining, calcium deposition and calcium nodules were also observed on the ODM-treated DPSCs. The nHAC/PLA had significantly higher absorption water rate and protein adsorption rate than ß-TCP. The initial attachment of DPSCs seeded onto nHAC/PLA was significantly higher than that onto ß-TCP; and the proliferation rate of the cells was significantly higher than that of ß-TCP on 1, 3 and 7 days of cell culture. DPSCs+ß-TCP had significantly higher ALP activity, calcium/phosphorus content and mineral formation than DPSCs+nHAC/PLA. When implanted into the back of SCID mice, nHAC/PLA alone had no new bone formation, newly formed mature bone and osteoid were only observed in β-TCP alone, DPSCs+nHAC/PLA and DPSCs+β-TCP, and this three groups displayed increased bone formation over the 12-week period. The percentage of total bone formation area had no difference between DPSCs+β-TCP and DPSCs+nHAC/PLA at each time point,but the percentage of mature bone formation area of DPSCs+β-TCP was significantly higher than that of DPSCs+nHAC/PLA. Our results demonstrated that the DPSCs on nHAC/PLA had a better proliferation and that the DPSCs on β-TCP had a more mineralization in vitro, much more newly formed mature bones in vivo were presented in DPSCs+β-TCP group. These findings have provided a further knowledge that scaffold architecture has a different influence on the attachment, proliferation and differentiation of cells. This study may provide insight into the clinical periodontal bone tissue repair with DPSCs+β-TCP construct.

Keywords: dental pulp stem cells, nano-hydroxyapatite/collagen/poly(L-lactide), beta-tricalcium phosphate, periodontal tissue engineering, bone regeneration

Procedia PDF Downloads 304
12 Theoretical-Methodological Model to Study Vulnerability of Death in the Past from a Bioarchaeological Approach

Authors: Geraldine G. Granados Vazquez

Abstract:

Every human being is exposed to the risk of dying; wherein some of them are more susceptible than others depending on the cause. Therefore, the cause could be the hazard to die that a group or individual has, making this irreversible damage the condition of vulnerability. Risk is a dynamic concept; which means that it depends on the environmental, social, economic and political conditions. Thus vulnerability may only be evaluated in terms of relative parameters. This research is focusing specifically on building a model that evaluate the risk or propensity of death in past urban societies in connection with the everyday life of individuals, considering that death can be a consequence of two coexisting issues: hazard and the deterioration of the resistance to destruction. One of the most important discussions in bioarchaeology refers to health and life conditions in ancient groups; the researchers are looking for more flexible models that evaluate these topics. In that way, this research proposes a theoretical-methodological model that assess the vulnerability of death in past urban groups. This model pretends to be useful to evaluate the risk of death, considering their sociohistorical context, and their intrinsic biological features. This theoretical and methodological model, propose four areas to assess vulnerability. The first three areas use statistical methods or quantitative analysis. While the last and fourth area, which corresponds to the embodiment, is based on qualitative analysis. The four areas and their techniques proposed are a) Demographic dynamics. From the distribution of age at the time of death, the analysis of mortality will be performed using life tables. From here, four aspects may be inferred: population structure, fertility, mortality-survival, and productivity-migration, b) Frailty. Selective mortality and heterogeneity in frailty can be assessed through the relationship between characteristics and the age at death. There are two indicators used in contemporary populations to evaluate stress: height and linear enamel hypoplasias. Height estimates may account for the individual’s nutrition and health history in specific groups; while enamel hypoplasias are an account of the individual’s first years of life, c) Inequality. Space reflects various sectors of society, also in ancient cities. In general terms, the spatial analysis uses measures of association to show the relationship between frail variables and space, d) Embodiment. The story of everyone leaves some evidence on the body, even in the bones. That led us to think about the dynamic individual's relations in terms of time and space; consequently, the micro analysis of persons will assess vulnerability from the everyday life, where the symbolic meaning also plays a major role. In sum, using some Mesoamerica examples, as study cases, this research demonstrates that not only the intrinsic characteristics related to the age and sex of individuals are conducive to vulnerability, but also the social and historical context that determines their state of frailty before death. An attenuating factor for past groups is that some basic aspects –such as the role they played in everyday life– escape our comprehension, and are still under discussion.

Keywords: bioarchaeology, frailty, Mesoamerica, vulnerability

Procedia PDF Downloads 194
11 Road Map to Health: Palestinian Workers in Israel's Construction Sector

Authors: Maya de Vries Kedem, Abir Jubran, Diana Baron

Abstract:

Employment in Israel offers Palestinian workers an income double what they can earn in the West Bank. The need to support their families leads many educated Palestinians to forgo finding work in their profession in the Palestinian Authority and instead look for employment in those sectors open to them in Israel, particularly the construction, agriculture, and industry sectors. The International Labor Organization estimated that about 1,200 workers in Israel die every year because of occupational diseases (diseases caused by working conditions). Construction workers in Israel are constantly exposed to dust, noise, chemical materials, and work in awkward postures, which require prolonged bending, repetitive motion, and other risk factors that can lead to illnesses and death. Occupational health is vastly neglected in Israel and construction workers are particularly at risk . As of June 2022, the Israeli quota in the construction sector for Palestinian workers stood at 80,000. Kav LaOved released a new study on the state of occupational health among Palestinian workers employed in construction in Israel. The study Roadmap to Health: Palestinian Workers in Israel's Construction Sector reviews the extent to which the health of Palestinian workers is protected at work in Israel. The report includes analysis of a survey administered to 256 workers as well as interviews with 10 workers and with 5 Israeli occupational health experts. Report highlights: • Among survey respondents, 63.9% stated that safety procedures to protect their health are rarely followed in their workplace (e.g., taking breaks, using protective gear, following restrictions on lifting heavy items, and having inspectors regularly on site to monitor safety). • All 256 Palestinian workers who participated to the survey said that their health has been directly or indirectly harmed by working in Israel and reported suffering from the following problems: orthopedic problems such as joint, hand, leg or knee problems (100%); headaches (75%); back problems (36.3%); eye problems (23.8%); breathing problems (17.6%); chronic pain (14.8%); heart problems (7.8%); and skin problems (3.5%). • Workers who are injured or do not feel well often continue working for fear of losing their payment for that day. About half of the 256 survey respondents reported that they pay brokerage fees to find an employer with a work permit, often paying between 2,000 and 3,000 NIS per month. “I have an obligation—I pay about NIS 120 a day for my permit, [and] I have to pay for it whether I work or not" a worker said. • Most Palestinian construction workers suffer from stress and mental health problems. Workers pointed to several issues that greatly affect their mood and mental state: daily crossings at crowded checkpoints where workers stand for hours; lack of sleep due to leaving home daily at 3:00-3:30 am; commuting two to four hours to work in each direction; and abusive work environments. A worker told KLO that the sight of thousands of workers standing together at the checkpoint causes “high blood pressure and the feeling that you are going to be squeezed.” Another said, “I felt that my bones would break.” In the survey workers reported suffering from insomnia (70.1%), breathing difficulties (35.8%), chest pressure (27.6%), or rapid pulse rate (12.2%).

Keywords: construction sector, palestinian workers, occupational health, Israel, occupation

Procedia PDF Downloads 58
10 Evaluation of Correct Usage, Comfort and Fit of Personal Protective Equipment in Construction Work

Authors: Anna-Lisa Osvalder, Jonas Borell

Abstract:

There are several reasons behind the use, non-use, or inadequate use of personal protective equipment (PPE) in the construction industry. Comfort and accurate size support proper use, while discomfort, misfit, and difficulties to understand how the PPEs should be handled inhibit correct usage. The need for several protective equipments simultaneously might also create problems. The purpose of this study was to analyse the correct usage, comfort, and fit of different types of PPEs used for construction work. Correct usage was analysed as guessability, i.e., human perceptions of how to don, adjust, use, and doff the equipment, and if used as intended. The PPEs tested individually or in combinations were a helmet, ear protectors, goggles, respiratory masks, gloves, protective cloths, and safety harnesses. First, an analytical evaluation was performed with ECW (enhanced cognitive walkthrough) and PUEA (predictive use error analysis) to search for usability problems and use errors during handling and use. Then usability tests were conducted to evaluate guessability, comfort, and fit with 10 test subjects of different heights and body constitutions. The tests included observations during donning, five different outdoor work tasks, and doffing. The think-aloud method, short interviews, and subjective estimations were performed. The analytical evaluation showed that some usability problems and use errors arise during donning and doffing, but with minor severity, mostly causing discomfort. A few use errors and usability problems arose for the safety harness, especially for novices, where some could lead to a high risk of severe incidents. The usability tests showed that discomfort arose for all test subjects when using a combination of PPEs, increasing over time. For instance, goggles, together with the face mask, caused pressure, chafing at the nose, and heat rash on the face. This combination also limited sight of vision. The helmet, in combination with the goggles and ear protectors, did not fit well and caused uncomfortable pressure at the temples. No major problems were found with the individual fit of the PPEs. The ear protectors, goggles, and face masks could be adjusted for different head sizes. The guessability for how to don and wear the combination of PPE was moderate, but it took some time to adjust them for a good fit. The guessability was poor for the safety harness; few clues in the design showed how it should be donned, adjusted, or worn on the skeletal bones. Discomfort occurred when the straps were tightened too much. All straps could not be adjusted for somebody's constitutions leading to non-optimal safety. To conclude, if several types of PPEs are used together, discomfort leading to pain is likely to occur over time, which can lead to misuse, non-use, or reduced performance. If people who are not regular users should wear a safety harness correctly, the design needs to be improved for easier interpretation, correct position of the straps, and increased possibilities for individual adjustments. The results from this study can be a base for re-design ideas for PPE, especially when they should be used in combinations.

Keywords: construction work, PPE, personal protective equipment, misuse, guessability, usability

Procedia PDF Downloads 55
9 Identifying Common Sports Injuries in Karate and Presenting a Model for Preventing Identified Injuries (A Case Study of East Azerbaijan, Iranian Karatekas)

Authors: Nadia Zahra Karimi Khiavi, Amir Ghiami Rad

Abstract:

Due to the high likelihood of injuries in karate, karatekas' injuries warrant special treatment. This study explores the prevalence of karate injuries in East Azerbaijan, Iran and provides a model for karatekas to use in the prevention of such injuries. This study employs a descriptive approach. Male and female participants with a brown belt or above in either control or non-control styles in East Azerbaijan province are included in the study's statistical population. A statistical sample size of 100 people was computed using the tools employed (smartpls), and the samples were drawn at random from all clubs in the province with the assistance of the Karate Board in order to give a model for the prevention of karate injuries. Information was gathered by means of a survey that made use of the Standard Questionnaire for Australian Sports Medicine Injury Reports. The information is presented in the form of tables and samples, and descriptive statistics were used to organise and summarise the data. Control and non-control independent t-tests were conducted using SPSS version 20, and structural equation modelling (pls) was utilised for injury prevention modelling at a 0.05 level of significance. The results showed that the most common areas of injury among the control groups were the upper limbs (46.15%), lower limbs (34.61%), trunk (15.38%), and head and neck (3.84%). The most common types of injuries were broken bones (34.61%), sprain or strain (23.13%), bruising and contusions (23.13%), trauma to the face and mouth (11.53%), and damage to the nerves (69.69%). Uncontrolled committees are most likely to sustain injuries to the head and neck (33.33%), trunk (25.92%), upper limbs (22.22%), and lower limbs (18.51%). The most common injuries were to the mouth and face (33.33%), dislocations and fractures (22.22%), aspirin and strain (22.22%), bruises and contusions (18.51%), and nerves (70%), in that order. Among those who practice control kata, injuries to the upper limb account for 45.83%, the lower limb for 41.666%, the trunk for 8.33%, and the head and neck for 4.166%. The most common types of injuries are dislocations and fractures (41.66 per cent), aspirin and strain (29.16 per cent), bruising and bruises (16.66 per cent), and nerves (12.5%). Injuries to the face and mouth were not reported among those practising the control kata. By far, the most common sites of injury for those practising uncontrolled kata were the lower limb (43.74%), upper limb (39.13%), trunk (13.14%), and head and neck (4.34%). The most common types of injuries were dislocations and fractures (34.82%), aspirin and strain (26.08%), bruises and contusions (21.73%), mouth and face (13.14%), and nerves. Teaching the concepts of cooling and warming (0.591) and enhancing the degree of safety in the sports environment (0.413) were shown to play the most essential roles in reducing sports injuries among karate practitioners of controlling and uncontrolled styles, respectively. Use of common sports gear (0.390), Modification of training programme principles (0.341), Formulation of an effective diet plan for athletes (0.284), Evaluation of athletes' physical anatomy, physiology, chemistry, and physics (0.247).

Keywords: sports injuries, karate, prevention, cooling and warming

Procedia PDF Downloads 73
8 Sacidava and Its Role of Military Outpost in the Moesian Sector of the Danube Limes: Animal Food Resources and Landscape Reconstruction

Authors: Margareta Simina Stanc, Aurel Mototolea, Tiberiu Potarniche

Abstract:

Sacidava archeological site is located in Dobrudja region, Romania, on a hill on the right bank of the Danube - the Musait point, located at about 5 km north-east from Dunareni village. The place-name documents the fact that, prior to the Roman conquest, in the area, there was a Getic settlement. The location of the Sacidava was made possible by corroborating the data provided by the ancient sources with the epigraphic documents (the milial pillar during the time of Emperor Decius). The tegular findings attest that an infantry unit, cohors I Cilicum milliaria equitata, as well as detachments from Legio V Macedonica and Legio XI Claudia, were confined to Sacidava. During the period of the Dominion, the garrison of the fortification is the host of a cavalry unit: cuneus equitum scutariorum. In the immediate vicinity to the Roman fortress, to the east, were identified two other fortifications: a Getic settlement (4th-1st century B.C.) and an Early Medieval settlement (9th-10th century A.C.). The archaeological material recovered during the research is represented by ceramic forms such as amphoras, jugs, pots, cups, plates, to which are added oil lamps, some of them typologically new at the time of discovery. Local ceramic shapes were also founded, worked by hand or by wheel, considered un-Romanized or in the course of Romanization. During the time of the Principality, Sacidava it represented an important military outpost serving mainly the city of Tropaeum Traiani, controlling also the supply and transport on the Danube limes in the Moesic sector. This role will determine the development of the fortress and the appearance of extramuros civil structures, thus becoming an important landmark during the 5th-6th centuries A.C., becoming a representation of power of the Roman empire in an area of continuous conflict. During recent archaeological researches, faunal remains were recovered, and their analysis allowed to estimate the animal resources and subsistence practices (animal husbandry, hunting, fishing) in the settlement. The methodology was specific to archaeozoology, mainly consisting of anatomical, taxonomical, and taphonomical identifications, recording, and quantification of the data. The remains of domestic mammals have the highest proportion indicating the importance of animal husbandry; the predominant species are Bos taurus, Ovis aries/Capra hircus, and Sus domesticus. Fishing and hunting were of secondary importance in the subsistence economy of the community. Wild boar and the red deer were the most frequently hunted species. Just a few fish bones were recovered. Thus, the ancient city of Sacidava is proving to be an important element of cultural heritage of the south-eastern part of Romania, for whose conservation and enhancement efforts must be made, especially by landscape reconstruction.

Keywords: archaeozoology, landscape reconstruction, limes, military outpost

Procedia PDF Downloads 285
7 Genetically Informed Precision Drug Repurposing for Rheumatoid Arthritis

Authors: Sahar El Shair, Laura Greco, William Reay, Murray Cairns

Abstract:

Background: Rheumatoid arthritis (RA) is a chronic, systematic, inflammatory, autoimmune disease that involves damages to joints and erosions to the associated bones and cartilage, resulting in reduced physical function and disability. RA is a multifactorial disorder influenced by heterogenous genetic and environmental factors. Whilst different medications have proven successful in reducing inflammation associated with RA, they often come with significant side effects and limited efficacy. To address this, the novel pharmagenic enrichment score (PES) algorithm was tested in self-reported RA patients from the UK Biobank (UKBB), which is a cohort of predominantly European ancestry, and identified individuals with a high genetic risk in clinically actionable biological pathways to identify novel opportunities for precision interventions and drug repurposing to treat RA. Methods and materials: Genetic association data for rheumatoid arthritis was derived from publicly available genome-wide association studies (GWAS) summary statistics (N=97173). The PES framework exploits competitive gene set enrichment to identify pathways that are associated with RA to explore novel treatment opportunities. This data is then integrated into WebGestalt, Drug Interaction database (DGIdb) and DrugBank databases to identify existing compounds with existing use or potential for repurposed use. The PES for each of these candidates was then profiled in individuals with RA in the UKBB (Ncases = 3,719, Ncontrols = 333,160). Results A total of 209 pathways with known drug targets after multiple testing correction were identified. Several pathways, including interferon gamma signaling and TID pathway (which relates to a chaperone that modulates interferon signaling), were significantly associated with self-reported RA in the UKBB when adjusting for age, sex, assessment centre month and location, RA polygenic risk and 10 principal components. These pathways have a major role in RA pathogenesis, including autoimmune attacks against certain citrullinated proteins, synovial inflammation, and bone loss. Encouragingly, many also relate to the mechanism of action of existing RA medications. The analyses also revealed statistically significant association between RA polygenic scores and self-reported RA with individual PES scorings, highlighting the potential utility of the PES algorithm in uncovering additional genetic insights that could aid in the identification of individuals at risk for RA and provide opportunities for more targeted interventions. Conclusions In this study, pharmacologically annotated genetic risk was explored through the PES framework to overcome inter-individual heterogeneity and enable precision drug repurposing in RA. The results showed a statistically significant association between RA polygenic scores and self-reported RA and individual PES scorings for 3,719 RA patients. Interestingly, several enriched PES pathways were targeted by already approved RA drugs. In addition, the analysis revealed genetically supported drug repurposing opportunities for future treatment of RA with a relatively safe profile.

Keywords: rheumatoid arthritis, precision medicine, drug repurposing, system biology, bioinformatics

Procedia PDF Downloads 45
6 Groundwater Contamination and Fluorosis: A Comprehensive Analysis

Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay

Abstract:

Groundwater contamination with fluoride has emerged as a global concern affecting millions of people, leading to the widespread occurrence of fluorosis. It affects bones and teeth, leading to dental and skeletal fluorosis. This study presents a comprehensive analysis of the relationship between groundwater contamination and fluorosis. It delves into the causes of fluoride contamination in groundwater, its spatial distribution, and adverse health impacts of fluorosis on affected communities. Fluoride contamination in groundwater can be attributed to both natural and anthropogenic sources. Geogenic sources involve the dissolution of fluoride-rich minerals present in the aquifer materials. On the other hand, anthropogenic activities such as industrial discharges, agricultural practices, and improper disposal of fluoride-containing waste contribute to the contamination of groundwater. The spatial distribution of fluoride contamination varies widely across different regions and geological formations. High fluoride levels are commonly observed in areas with fluorine-rich geological deposits. Additionally, agricultural and industrial centres often exhibit elevated fluoride concentrations due to anthropogenic contributions. Excessive fluoride ingestion during tooth development leads to dental fluorosis, characterized by enamel defects, discoloration, and dental caries. The severity of dental fluorosis varies based on fluoride exposure levels during tooth development. Long-term consumption of fluoride-contaminated water causes skeletal fluorosis, resulting in bone and joint pain, decreased joint mobility, and skeletal deformities. In severe cases, skeletal fluorosis can lead to disability and reduced quality of life. Various defluoridation techniques such as activated alumina, bone char, and reverse osmosis have been employed to reduce fluoride concentrations in drinking water. These methods effectively remove fluoride, but their implementation requires careful consideration of cost, maintenance, and sustainability. Diversifying water sources, such as rainwater harvesting and surface water supply, can reduce the reliance on fluoride-contaminated groundwater, especially in regions with high fluoride concentrations. Groundwater contamination with fluoride remains a significant public health challenge, leading to the widespread occurrence of fluorosis globally. This scientific report emphasizes the importance of understanding the relationship between groundwater contamination and fluorosis. Implementing effective mitigation strategies and preventive measures is crucial to combat fluorosis and ensure sustainable access to safe drinking water for communities worldwide. Collaborative efforts between government agencies, local communities, and scientific researchers are essential to address this issue and safeguard the health of vulnerable populations. Additionally, the report explores various mitigation strategies and preventive measures to address the issue and offers recommendations for sustainable management of groundwater resources to combat fluorosis effectively.

Keywords: fluorosis, fluoride contamination, groundwater contamination, groundwater resources

Procedia PDF Downloads 63