Search results for: mathematical learning activities
11123 L1 Poetry and Moral Tales as a Factor Affecting L2 Acquisition in EFL Settings
Authors: Arif Ahmed Mohammed Al-Ahdal
Abstract:
Poetry, tales, and fables have always been a part of the L1 repertoire and one that takes the learners to another amazing and fascinating world of imagination. The storytelling class and the genre of poems are activities greatly enjoyed by all age groups. The very significant idea behind their inclusion in the language curriculum is to sensitize young minds to a wide range of human emotions that are believed to greatly contribute to building their social resilience, emotional stability, empathy towards fellow creatures, and literacy. Quite certainly, the learning objective at this stage is not language acquisition (though it happens as an automatic process) but getting the young learners to be acquainted with an entire spectrum of what may be called the ‘noble’ abilities of the human race. They enrich their very existence, inspiring them to unearth ‘selves’ that help them as adults and enable them to co-exist fruitfully and symbiotically with their fellow human beings. By extension, ‘higher’ training in these literature genres shows the universality of human emotions, sufferings, aspirations, and hopes. The current study is anchored on the Reader-Response-Theory in literature learning, which suggests that the reader reconstructs work and re-enacts the author's creative role. Reiteratingly, literary works provide clues or verbal symbols in a linguistic system, widely accepted by everyone who shares the language, but everyone reads their own life experiences and situations into them. The significance of words depends on the reader, even if they have a typical relationship. In every reading, there is an interaction between the reader and the text. The process of reading is an experience in which the reader tries to comprehend the literary work, which surpasses its full potential since it provides emotional and intellectual reactions that are not anticipated from the document but cannot be affirmed just by the reader as a part of the text. The idea is that the text forms the basis of a unifying experience. A reinterpretation of the literary text may transform it into a guiding principle to respond to actual experiences and personal memories. The impulses delivered to the reader vary according to poetry or texts; nevertheless, the readers differ considerably even with the same material. Previous studies confirm that poetry is a useful tool for learning a language. This present paper works on these hypotheses and proposes to study the impetus given to L2 learning as a factor of exposure to poetry and meaningful stories in L1. The driving force behind the choice of this topic is the first-hand experience that the researcher had while teaching a literary text to a group of BA students who, as a reaction to the text, initially burst into tears and ultimately turned the class into an interactive session. The study also intends to compare the performance of male and female students post intervention using pre and post-tests, apart from undertaking a detailed inquiry via interviews with college learners of English to understand how L1 literature plays a great role in the acquisition of L2.Keywords: SLA, literary text, poetry, tales, affective factors
Procedia PDF Downloads 7711122 Curriculum Based Measurement and Precision Teaching in Writing Empowerment Enhancement: Results from an Italian Learning Center
Authors: I. Pelizzoni, C. Cavallini, I. Salvaderi, F. Cavallini
Abstract:
We present the improvement in writing skills obtained by 94 participants (aged between six and 10 years) with special educational needs through a writing enhancement program based on fluency principles. The study was planned and conducted with a single-subject experimental plan for each of the participants, in order to confirm the results in the literature. These results were obtained using precision teaching (PT) methodology to increase the number of written graphemes per minute in the pre- and post-test, by curriculum based measurement (CBM). Results indicated an increase in the number of written graphemes for all participants. The average overall duration of the intervention is 144 minutes in five months of treatment. These considerations have been analyzed taking account of the complexity of the implementation of measurement systems in real operational contexts (an Italian learning center) and important aspects of replicability and cost-effectiveness of such interventions.Keywords: curriculum based measurement, precision teaching, writing skill, Italian learning center
Procedia PDF Downloads 12811121 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand
Authors: Gaurav Kumar Sinha
Abstract:
The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning
Procedia PDF Downloads 3511120 Online or Offline: A Pilot Study of Blended Ear-Training Course
Authors: Monika Benedek
Abstract:
This paper intends to present a pilot study of blended ear-training course at a Finnish university. The course ran for ten weeks and included both traditional (offline) group lessons for 90 minutes each week and an online learning platform. Twelve students majored in musicology and music education participated in the course. The aims of pilot research were to develop a new blended ear-training course at university level, to determine the ideal amount of workload in each part of the blended instruction (offline and online) and to develop the course material. The course material was selected from the Classical period in order to develop students’ aural skills together with their stylistic knowledge. Students were asked to provide written feedback of the course content and learning approaches of face-to-face group lessons and online learning platform each week during the course. Therefore, the teaching material is continuously planned for each week. This qualitative data collection and weekly analysis of data are on progress. However, based on the teacher-researcher’s experiences and the students’ feedback already collected, it could be seen that the blended instruction would be an ideal teaching strategy for ear-trainging at the music programmes of universities to develop students’ aural skills and stylistic knowledge. It is also presumed that such blended instruction with less workload would already improve university students’ aural skills and related musicianship skills. The preliminary findings of research also indicated that students generally found those ear-training tasks the most useful to learn online that combined listening, singing, singing and playing an instrument. This paper intends to summarise the final results of the pilot study.Keywords: blended-learning, ear-training, higher music education, online-learning, pilot study
Procedia PDF Downloads 15511119 The Impact of Blended Learning on Developing the students' Writing Skills and the Perception of Instructors and Students: Hawassa University in Focus
Authors: Mulu G. Gencha, Gebremedhin Simon, Menna Olango
Abstract:
This study was conducted at Hawassa University (HwU) in the Southern Nation Nationalities Peoples Regional State (SNNPRS) of Ethiopia. The prime concern of this study was to examine the writing performances of experimental and control group students, perception of experimental group students, and subject instructors. The course was blended learning (BL). Blended learning is a hybrid of classroom and on-line learning. Participants were eighty students from the School of Computer Science. Forty students attended the BL delivery involved using Face-to-Face (FTF) and campus-based online instruction. All instructors, fifty, of School of Language and Communication Studies along with 10 FGD members participated in the study. The experimental group went to the computer lab two times a week for four months, March-June, 2012, using the local area network (LAN), and software (MOODLE) writing program. On the other hand, the control group, forty students, took the FTF writing course five times a week for four months in similar academic calendar. The three instruments, the attitude questionnaire, tests and FGD were designed to identify views of students, instructors, and FGD participants on BL. At the end of the study, students’ final course scores were evaluated. Data were analyzed using independent samples t-tests. A statistically, significant difference was found between the FTF and BL (p<0.05). The analysis showed that the BL group was more successful than the conventional group. Besides, both instructors and students had positive attitude towards BL. The final section of the thesis showed the potential benefits and challenges, considering the pedagogical implications for the BL, and recommended possible avenues for further works.Keywords: blended learning, computer attitudes, computer usefulness, computer liking, computer confidence, computer phobia
Procedia PDF Downloads 41011118 Adolescent Gamers: The Relationship between Berzonsky’s Style of Identity and Immersion: Pilot Study
Authors: Monika Paleczna, Barbara Szmigielska
Abstract:
Adolescence is a developmental period, covering the period from 10 to 20 years of age, in which young people face many challenges. One of the most important tasks of the adolescence period is getting a structured identity. The development of identity is possible by undertaking various activities. Nowadays, virtual activities are very common among young people. One of the main adolescents’ activities in the online environment is playing computer games. The main aim of this work is to answer the question about the relationship between the identity style of adolescents and immersion, -a phenomenon often observed while playing computer games. The concept of identity created by Berzonsky is considered as one of the best-defined concepts of identity. He defines identity as both a structure and a process and distinguishes three styles of identity: informational, normative, and diffuse/avoidant. Immersion is a concept that can be applied in a broad context, but in the game environment, it is a specific psychological experience of being involved in a computer game. It refers to the relocation of the attention resources to the game world, with a limited or impossible perception of stimuli from reality. Considering how much time adolescents spend playing computer games, the question about the relationship between their identity and the immersion in the game seems to be extremely interesting. Fifty adolescents aged 15-17 participated in the study. They played a computer game and completed the Identity Style Inventory and the Immersion Questionaire.Keywords: identity, immersion, computer games, adolescence
Procedia PDF Downloads 27411117 Optimization of Bills Assignment to Different Skill-Levels of Data Entry Operators in a Business Process Outsourcing Industry
Authors: M. S. Maglasang, S. O. Palacio, L. P. Ogdoc
Abstract:
Business Process Outsourcing has been one of the fastest growing and emerging industry in the Philippines today. Unlike most of the contact service centers, more popularly known as "call centers", The BPO Industry’s primary outsourced service is performing audits of the global clients' logistics. As a service industry, manpower is considered as the most important yet the most expensive resource in the company. Because of this, there is a need to maximize the human resources so people are effectively and efficiently utilized. The main purpose of the study is to optimize the current manpower resources through effective distribution and assignment of different types of bills to the different skill-level of data entry operators. The assignment model parameters include the average observed time matrix gathered from through time study, which incorporates the learning curve concept. Subsequently, a simulation model was made to duplicate the arrival rate of demand which includes the different batches and types of bill per day. Next, a mathematical linear programming model was formulated. Its objective is to minimize direct labor cost per bill by allocating the different types of bills to the different skill-levels of operators. Finally, a hypothesis test was done to validate the model, comparing the actual and simulated results. The analysis of results revealed that the there’s low utilization of effective capacity because of its failure to determine the product-mix, skill-mix, and simulated demand as model parameters. Moreover, failure to consider the effects of learning curve leads to overestimation of labor needs. From 107 current number of operators, the proposed model gives a result of 79 operators. This results to an increase of utilization of effective capacity to 14.94%. It is recommended that the excess 28 operators would be reallocated to the other areas of the department. Finally, a manpower capacity planning model is also recommended in support to management’s decisions on what to do when the current capacity would reach its limit with the expected increasing demand.Keywords: optimization modelling, linear programming, simulation, time and motion study, capacity planning
Procedia PDF Downloads 51811116 [Keynote Talk]: Mathematical and Numerical Modelling of the Cardiovascular System: Macroscale, Mesoscale and Microscale Applications
Authors: Aymen Laadhari
Abstract:
The cardiovascular system is centered on the heart and is characterized by a very complex structure with different physical scales in space (e.g. micrometers for erythrocytes and centimeters for organs) and time (e.g. milliseconds for human brain activity and several years for development of some pathologies). The development and numerical implementation of mathematical models of the cardiovascular system is a tremendously challenging topic at the theoretical and computational levels, inducing consequently a growing interest over the past decade. The accurate computational investigations in both healthy and pathological cases of processes related to the functioning of the human cardiovascular system can be of great potential in tackling several problems of clinical relevance and in improving the diagnosis of specific diseases. In this talk, we focus on the specific task of simulating three particular phenomena related to the cardiovascular system on the macroscopic, mesoscopic and microscopic scales, respectively. Namely, we develop numerical methodologies tailored for the simulation of (i) the haemodynamics (i.e., fluid mechanics of blood) in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets, (ii) the hyperelastic anisotropic behaviour of cardiomyocytes and the influence of calcium concentrations on the contraction of single cells, and (iii) the dynamics of red blood cells in microvasculature. For each problem, we present an appropriate fully Eulerian finite element methodology. We report several numerical examples to address in detail the relevance of the mathematical models in terms of physiological meaning and to illustrate the accuracy and efficiency of the numerical methods.Keywords: finite element method, cardiovascular system, Eulerian framework, haemodynamics, heart valve, cardiomyocyte, red blood cell
Procedia PDF Downloads 25211115 Realization Mode and Theory for Extensible Music Cognition Education: Taking Children's Music Education as an Example
Authors: Yumeng He
Abstract:
The purpose of this paper is to establish the “extenics” of children music education, the “extenics” thought and methods are introduced into the children music education field. Discussions are made from the perspective of children music education on how to generate new music cognitive from music cognitive, how to generate new music education from music education and how to generate music learning from music learning. The research methods including the extensibility of music art, extensibility of music education, extensibility of music capability and extensibility of music learning. Results of this study indicate that the thought and research methods of children’s extended music education not only have developed the “extenics” concept and ideological methods, meanwhile, the brand-new thought and innovative research perspective have been employed in discussing the children music education. As indicated in research, the children’s extended music education has extended the horizon of children music education, and has endowed the children music education field with a new thought and research method.Keywords: comprehensive evaluations, extension thought, extension cognition music education, extensibility
Procedia PDF Downloads 22511114 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes
Authors: Stefan Papastefanou
Abstract:
Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability
Procedia PDF Downloads 10811113 Deep Learning Strategies for Mapping Complex Vegetation Patterns in Mediterranean Environments Undergoing Climate Change
Authors: Matan Cohen, Maxim Shoshany
Abstract:
Climatic, topographic and geological diversity, together with frequent disturbance and recovery cycles, produce highly complex spatial patterns of trees, shrubs, dwarf shrubs and bare ground patches. Assessment of spatial and temporal variations of these life-forms patterns under climate change is of high ecological priority. Here we report on one of the first attempts to discriminate between images of three Mediterranean life-forms patterns at three densities. The development of an extensive database of orthophoto images representing these 9 pattern categories was instrumental for training and testing pre-trained and newly-trained DL models utilizing DenseNet architecture. Both models demonstrated the advantages of using Deep Learning approaches over existing spectral and spatial (pattern or texture) algorithmic methods in differentiation 9 life-form spatial mixtures categories.Keywords: texture classification, deep learning, desert fringe ecosystems, climate change
Procedia PDF Downloads 8811112 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids
Authors: Niklas Panten, Eberhard Abele
Abstract:
This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control
Procedia PDF Downloads 19511111 Identifying Game Variables from Students’ Surveys for Prototyping Games for Learning
Authors: N. Ismail, O. Thammajinda, U. Thongpanya
Abstract:
Games-based learning (GBL) has become increasingly important in teaching and learning. This paper explains the first two phases (analysis and design) of a GBL development project, ending up with a prototype design based on students’ and teachers’ perceptions. The two phases are part of a full cycle GBL project aiming to help secondary school students in Thailand in their study of Comprehensive Sex Education (CSE). In the course of the study, we invited 1,152 students to complete questionnaires and interviewed 12 secondary school teachers in focus groups. This paper found that GBL can serve students in their learning about CSE, enabling them to gain understanding of their sexuality, develop skills, including critical thinking skills and interact with others (peers, teachers, etc.) in a safe environment. The objectives of this paper are to outline the development of GBL variables from the research question(s) into the developers’ flow chart, to be responsive to the GBL beneficiaries’ preferences and expectations, and to help in answering the research questions. This paper details the steps applied to generate GBL variables that can feed into a game flow chart to develop a GBL prototype. In our approach, we detailed two models: (1) Game Elements Model (GEM) and (2) Game Object Model (GOM). There are three outcomes of this research – first, to achieve the objectives and benefits of GBL in learning, game design has to start with the research question(s) and the challenges to be resolved as research outcomes. Second, aligning the educational aims with engaging GBL end users (students) within the data collection phase to inform the game prototype with the game variables is essential to address the answer/solution to the research question(s). Third, for efficient GBL to bridge the gap between pedagogy and technology and in order to answer the research questions via technology (i.e. GBL) and to minimise the isolation between the pedagogists “P” and technologist “T”, several meetings and discussions need to take place within the team.Keywords: games-based learning, engagement, pedagogy, preferences, prototype
Procedia PDF Downloads 17011110 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children
Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh
Abstract:
Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine
Procedia PDF Downloads 15211109 A Simple Finite Element Method for Glioma Tumor Growth Model with Density Dependent Diffusion
Authors: Shangerganesh Lingeshwaran
Abstract:
In this presentation, we have performed numerical simulations for a reaction-diffusion equation with various nonlinear density-dependent diffusion operators and proliferation functions. The mathematical model represented by parabolic partial differential equation is considered to study the invasion of gliomas (the most common type of brain tumors) and to describe the growth of cancer cells and response to their treatment. The unknown quantity of the given reaction-diffusion equation is the density of cancer cells and the mathematical model based on the proliferation and migration of glioma cells. A standard Galerkin finite element method is used to perform the numerical simulations of the given model. Finally, important observations on the each of nonlinear diffusion functions and proliferation functions are presented with the help of computational results.Keywords: glioma invasion, nonlinear diffusion, reaction-diffusion, finite eleament method
Procedia PDF Downloads 23211108 Cellular Automata Using Fractional Integral Model
Authors: Yasser F. Hassan
Abstract:
In this paper, a proposed model of cellular automata is studied by means of fractional integral function. A cellular automaton is a decentralized computing model providing an excellent platform for performing complex computation with the help of only local information. The paper discusses how using fractional integral function for representing cellular automata memory or state. The architecture of computing and learning model will be given and the results of calibrating of approach are also given.Keywords: fractional integral, cellular automata, memory, learning
Procedia PDF Downloads 41311107 Assignment of Airlines Technical Members under Disruption
Authors: Walid Moudani
Abstract:
The Crew Reserve Assignment Problem (CRAP) considers the assignment of the crew members to a set of reserve activities covering all the scheduled flights in order to ensure a continuous plan so that operations costs are minimized while its solution must meet hard constraints resulting from the safety regulations of Civil Aviation as well as from the airlines internal agreements. The problem considered in this study is of highest interest for airlines and may have important consequences on the service quality and on the economic return of the operations. In this communication, a new mathematical formulation for the CRAP is proposed which takes into account the regulations and the internal agreements. While current solutions make use of Artificial Intelligence techniques run on main frame computers, a low cost approach is proposed to provide on-line efficient solutions to face perturbed operating conditions. The proposed solution method uses a dynamic programming approach for the duties scheduling problem and when applied to the case of a medium airline while providing efficient solutions, shows good potential acceptability by the operations staff. This optimization scheme can then be considered as the core of an on-line Decision Support System for crew reserve assignment operations management.Keywords: airlines operations management, combinatorial optimization, dynamic programming, crew scheduling
Procedia PDF Downloads 35411106 Development of Total Maximum Daily Load Using Water Quality Modelling as an Approach for Watershed Management in Malaysia
Authors: S. A. Che Osmi, W. M. F. Wan Ishak, H. Kim, M. A. Azman, M. A. Ramli
Abstract:
River is one of important water sources for many activities including industrial and domestic usage such as daily usage, transportation, power supply and recreational activities. However, increasing activities in a river has grown the sources of pollutant enters the water bodies, and degraded the water quality of the river. It becomes a challenge to develop an effective river management to ensure the water sources of the river are well managed and regulated. In Malaysia, several approaches for river management have been implemented such as Integrated River Basin Management (IRBM) program for coordinating the management of resources in a natural environment based on river basin to ensure their sustainability lead by Department of Drainage and Irrigation (DID), Malaysia. Nowadays, Total Maximum Daily Load (TMDL) is one of the best approaches for river management in Malaysia. TMDL implementation is regulated and implemented in the United States. A study on the development of TMDL in Malacca River has been carried out by doing water quality monitoring, the development of water quality model by using Environmental Fluid Dynamic Codes (EFDC), and TMDL implementation plan. The implementation of TMDL will help the stakeholders and regulators to control and improve the water quality of the river. It is one of the good approaches for river management in Malaysia.Keywords: EFDC, river management, TMDL, water quality modelling
Procedia PDF Downloads 32811105 The Development of the Website Learning the Local Wisdom in Phra Nakhon Si Ayutthaya Province
Authors: Bunthida Chunngam, Thanyanan Worasesthaphong
Abstract:
This research had objective to develop of the website learning the local wisdom in Phra Nakhon Si Ayutthaya province and studied satisfaction of system user. This research sample was multistage sample for 100 questionnaires, analyzed data to calculated reliability value with Cronbach’s alpha coefficient method α=0.82. This system had 3 functions which were system using, system feather evaluation and system accuracy evaluation which the statistics used for data analysis was descriptive statistics to explain sample feature so these statistics were frequency, percentage, mean and standard deviation. This data analysis result found that the system using performance quality had good level satisfaction (4.44 mean), system feather function analysis had good level satisfaction (4.11 mean) and system accuracy had good level satisfaction (3.74 mean).Keywords: website, learning, local wisdom, Phra Nakhon Si Ayutthaya province
Procedia PDF Downloads 12011104 Failure Analysis of the Gasoline Engines Injection System
Authors: Jozef Jurcik, Miroslav Gutten, Milan Sebok, Daniel Korenciak, Jerzy Roj
Abstract:
The paper presents the research results of electronic fuel injection system, which can be used for diagnostics of automotive systems. In the paper is described the construction and operation of a typical fuel injection system and analyzed its electronic part. It has also been proposed method for the detection of the injector malfunction, based on the analysis of differential current or voltage characteristics. In order to detect the fault state, it is needed to use self-learning process, by the use of an appropriate self-learning algorithm.Keywords: electronic fuel injector, diagnostics, measurement, testing device
Procedia PDF Downloads 55211103 Human Motion Capture: New Innovations in the Field of Computer Vision
Authors: Najm Alotaibi
Abstract:
Human motion capture has become one of the major area of interest in the field of computer vision. Some of the major application areas that have been rapidly evolving include the advanced human interfaces, virtual reality and security/surveillance systems. This study provides a brief overview of the techniques and applications used for the markerless human motion capture, which deals with analyzing the human motion in the form of mathematical formulations. The major contribution of this research is that it classifies the computer vision based techniques of human motion capture based on the taxonomy, and then breaks its down into four systematically different categories of tracking, initialization, pose estimation and recognition. The detailed descriptions and the relationships descriptions are given for the techniques of tracking and pose estimation. The subcategories of each process are further described. Various hypotheses have been used by the researchers in this domain are surveyed and the evolution of these techniques have been explained. It has been concluded in the survey that most researchers have focused on using the mathematical body models for the markerless motion capture.Keywords: human motion capture, computer vision, vision-based, tracking
Procedia PDF Downloads 31911102 Knowledge Management Efficiency of Personnel in Rajamangala University of Technology Srivijaya Songkhla, Thailand
Authors: Nongyao Intasaso, Atchara Rattanama, Navarat Pewnual
Abstract:
This research is survey research purposed to study the factor affected to knowledge management efficiency of personnel in Rajamangala University of Technology Srivijaya, and study the problem of knowledge management affected to knowledge development of personnel in the university. The tool used in this study is structures questioner standardize rating scale in 5 levels. The sample selected by purposive sampling and there are 137 participation calculated in 25% of population. The result found that factor affected to knowledge management efficiency in the university included (1) result from the organization factor found that the university provided project or activity that according to strategy and mission of knowledge management affected to knowledge management efficiency in highest level (x̅ = 4.30) (2) result from personnel factor found that the personnel are eager for knowledge and active to learning to develop themselves and work (Personal Mastery) affected to knowledge management efficiency in high level (x̅ = 3.75) (3) result from technological factor found that the organization brought multimedia learning aid to facilitate learning process affected to knowledge management efficiency in high level (x̅ = 3.70) and (4) the result from learning factor found that the personnel communicated and sharing knowledge and opinion based on acceptance to each other affected to knowledge management efficiency in high level (x̅ = 3.78). The problem of knowledge management in the university included the personnel do not change their work behavior, insufficient of collaboration, lack of acceptance in knowledge and experience to each other, and limited budget. The solutions to solve these problems are the university should be support sufficient budget, the university should follow up and evaluate organization development based on knowledge using, the university should provide the activity emphasize to personnel development and assign the committee to process and report knowledge management procedure.Keywords: knowledge management, efficiency, personnel, learning process
Procedia PDF Downloads 30111101 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics
Authors: Anas H. Aljemely, Jianping Xuan
Abstract:
Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features
Procedia PDF Downloads 21011100 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction
Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga
Abstract:
Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.Keywords: genetic algorithm, neural networks, word prediction, machine learning
Procedia PDF Downloads 19411099 Influence of Omani Literature in Foreign Language Classrooms on Students' Motivation in Learning English
Authors: Ibtisam Mohammed Salim Al Quraini
Abstract:
This paper examines how introducing Omani literature in foreign language classrooms can influence the students' motivation in learning the language. The data was collected through the questionnaire which was administered to two samples (A and B) of the participants. Sample A was comprised of 30 female students from English department who are specialist in English literature in college of Arts and Social Science. Sample B in contrast was comprised of 10 female students who their major is English from college of Education. Results show that each genre in literature has different influence on the students' motivation in learning the language which proves that literacy texts are powerful. Generally, Omani English teachers tend to avoid teaching literature because they think that it is a difficult method to use in teaching field. However, the advantages and the influences of teaching poetries, short stories, and plays are discussed. Recommendations for current research and further research are also discussed at the end.Keywords: education, plays, short stories, poems
Procedia PDF Downloads 37811098 DQN for Navigation in Gazebo Simulator
Authors: Xabier Olaz Moratinos
Abstract:
Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.Keywords: machine learning, DQN, gazebo, navigation
Procedia PDF Downloads 11311097 Conceptual Study on 4PL and Activities in Turkey
Authors: Berna Kalkan, Kenan Aydin
Abstract:
Companies give importance customer satisfaction to compete the developing and changing market. This is possible when customer reaches the right product, right quality, place, time and cost. In this regard, the extension of logistics services has played active role on formation and development of the different logistics services concept. The concept of logistics services has played important role involved in the healing of economic indicators today. Companies can use logistics providers, thus have competitive advantage and low cost, reducing time, tobe flexibility. In recent years, Fourth Party Logistics (4PL) has emerged as a new concept that includes relationship between suppliers and firms in outsourcing. 4PL provider is an integrator that offers comprehensive supply chain solutions with the technology, resources and capabilities that it possesses. Also, 4PL has attracted as a popular research topic attention in the recent past. In this paper, logistics outsourcing and 4PL concepts are analyzed and a literature review on 4PL activities is given. Also, the previous studies in literature and the approaches that are used in previous studies in literature is presented by analysing on 4PL activities. In this context, a field study will be applied to 4PL providers and service buyer in Turkey. If necessary, results related to this study will be shared in scientific areas.Keywords: fourth party logistics, literature review, outsourcing, supply chain management
Procedia PDF Downloads 17811096 When English Learners Speak “Non-Standard” English
Authors: Gloria Chen
Abstract:
In the past, when we complimented someone who had a good command of English, we would say ‘She/He speaks/writes standard English,’ or ‘His/Her English is standard.’ However, with English has becoming a ‘global language,’ many scholars and English users even create a plural form for English as ‘world Englishes,’ which indicates that national/racial varieties of English not only exist, but also are accepted to a certain degree. Now, a question will be raised when it comes to English teaching and learning: ‘What variety/varieties of English should be taught?’ This presentation will first explore Braj Kachru’s well-known categorization of the inner circle, the outer circle, and the expanding circle of English users, as well as inner circle varieties such as ‘Ebonics’ and ‘cockney’. The presentation then will discuss the purposes and contexts of English learning, and apply different approaches to different purposes and contexts. Three major purposes of English teaching/learning will be emphasized and considered: (1) communicative competence, (2) academic competence, and (3) intercultural competence. This presentation will complete with the strategies of ‘code switch’ and ‘register switch’ in teaching English to non-standard English speakers in both speaking and writing.Keywords: world Englishes, standard and non-standard English, inner, outer, expanded circle communicative, academic, intercultural competence
Procedia PDF Downloads 26511095 Numerical Investigation of the Effects of Surfactant Concentrations on the Dynamics of Liquid-Liquid Interfaces
Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji
Abstract:
Theoretically, there exist two mathematical interfaces (fluid-solid and fluid-fluid) when a liquid film is present on solid surfaces. These interfaces overlap if the mineral surface is oil-wet or mixed wet, and therefore, the effects of disjoining pressure are significant on both boundaries. Hence, dewetting is a necessary process that could detach oil from the mineral surface. However, if the thickness of the thin water film directly in contact with the surface is large enough, disjoining pressure can be thought to be zero at the liquid-liquid interface. Recent studies show that the integration of fluid-fluid interactions with fluid-rock interactions is an important step towards a holistic approach to understanding smart water effects. Experiments have shown that the brine solution can alter the micro forces at oil-water interfaces, and these ion-specific interactions lead to oil emulsion formation. The natural emulsifiers present in crude oil behave as polyelectrolytes when the oil interfaces with low salinity water. Wettability alteration caused by low salinity waterflooding during Enhanced Oil Recovery (EOR) process results from the activities of divalent ions. However, polyelectrolytes are said to lose their viscoelastic property with increasing cation concentrations. In this work, the influence of cation concentrations on the dynamics of viscoelastic liquid-liquid interfaces is numerically investigated. The resultant ion concentrations at the crude oil/brine interfaces were estimated using a surface complexation model. Subsequently, the ion concentration parameter is integrated into a mathematical model to describe its effects on the dynamics of a viscoelastic interfacial thin film. The film growth, stability, and rupture were measured after different time steps for three types of fluids (Newtonian, purely elastic and viscoelastic fluids). The interfacial films respond to exposure time in a similar manner with an increasing growth rate, which resulted in the formation of more droplets with time. Increased surfactant accumulation at the interface results in a higher film growth rate which leads to instability and subsequent formation of more satellite droplets. Purely elastic and viscoelastic properties limit film growth rate and consequent film stability compared to the Newtonian fluid. Therefore, low salinity and reduced concentration of the potential determining ions in injection water will lead to improved interfacial viscoelasticity.Keywords: liquid-liquid interfaces, surfactant concentrations, potential determining ions, residual oil mobilization
Procedia PDF Downloads 14311094 Development and Validation for Center-Based Learning in Teaching Science
Authors: Julie Berame
Abstract:
The study probed that out of eight (8) lessons in Science Six have been validated, lessons 1-3 got the descriptive rating of very satisfactory and lessons 4-8 got the descriptive rating of outstanding based on the content analysis of the prepared CBL lesson plans. The evaluation of the lesson plans focused on the three main features such as statements of the lesson objectives, lesson content, and organization and effectiveness. The study used developmental research procedure that contained three phases, namely: Development phase consists of determining the learning unit, lesson plans, creation of the table of specifications, exercises/quizzes, and revision of the materials; Evaluation phase consists of the development of experts’ assessment checklist, presentation of checklist to the adviser, comments and suggestions, and final validation of the materials; and try-out phase consists of identification of the subject, try-out of the materials using CBL strategy, administering science attitude questionnaire, and statistical analysis to obtain the data. The findings of the study revealed that the relevance and usability of CBL lessons 1 and 2 in terms of lesson objective, lesson content, and organization and effectiveness got the rating of very satisfactory (4.4) and lessons 3-8 got the rating of outstanding (4.7). The lessons 1-8 got the grand rating of outstanding (4.6). Additionally, results showed that CBL strategy helped foster positive attitude among students and achieved effectiveness in psychomotor learning objectives.Keywords: development, validation, center-based learning, science
Procedia PDF Downloads 237