Search results for: yield estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4172

Search results for: yield estimation

1262 Impact of Proposed Modal Shift from Private Users to Bus Rapid Transit System: An Indian City Case Study

Authors: Rakesh Kumar, Fatima Electricwala

Abstract:

One of the major thrusts of the Bus Rapid Transit System is to reduce the commuter’s dependency on private vehicles and increase the shares of public transport to make urban transportation system environmentally sustainable. In this study, commuter mode choice analysis is performed that examines behavioral responses to the proposed Bus Rapid Transit System (BRTS) in Surat, with estimation of the probable shift from private mode to public mode. Further, evaluation of the BRTS scenarios, using Surat’s transportation ecological footprint was done. A multi-modal simulation model was developed in Biogeme environment to explicitly consider private users behaviors and non-linear environmental impact. The data of the different factors (variables) and its impact that might cause modal shift of private mode users to proposed BRTS were collected through home-interview survey using revealed and stated preference approach. A multi modal logit model of mode-choice was then calibrated using the collected data and validated using proposed sample. From this study, a set of perception factors, with reliable and predictable data base, to explain the variation in modal shift behaviour and their impact on Surat’s ecological environment has been identified. A case study of the proposed BRTS connecting the Surat Industrial Hub to the coastal area is provided to illustrate the approach.

Keywords: BRTS, private modes, mode choice models, ecological footprint

Procedia PDF Downloads 508
1261 Finite Element Simulation of RC Exterior Beam-Column Joints Using Damage Plasticity Model

Authors: A. M. Halahla, M. H. Baluch, M. K. Rahman, A. H. Al-Gadhib, M. N. Akhtar

Abstract:

In the present study, 3D simulation of a typical exterior (RC) beam–column joint (BCJ) strengthened with carbon fiber-reinforced plastic (CFRP) sheet are carried out. Numerical investigations are performed using a nonlinear finite element ( FE) analysis by incorporating damage plasticity model (CDP), for material behaviour the concrete response in compression, tension softening were used, linear plastic with isotropic hardening for reinforcing steel, and linear elastic lamina material model for CFRP sheets using the commercial FE software ABAQUS. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic loading using the hydraulic Jack in displacement control mode. The experimental program includes casting of deficient BCJ loaded to failure load for both un-strengthened and strengthened BCJ. The failure mode, and deformation response of CFRP strengthened and un-strengthened joints and propagation of damage in the components of BCJ are discussed. Finite element simulations are compared with the experimental result and are noted to yield reasonable comparisons. The damage plasticity model was able to capture with good accuracy of the ultimate load and the mode of failure in the beam column joint.

Keywords: reinforced concrete, exterior beam-column joints, concrete damage plasticity model, computational simulation, 3-D finite element model

Procedia PDF Downloads 369
1260 Value Relevance of Good Governance: A Study on Listed Companies in the UK

Authors: Ashiqul Amin Khan, Mohsin Ul Amin Khan

Abstract:

The aim of this research is to find the relationship between good governance and shareholder wealth maximisation. The concept of good governance has become more objective in nature over time through various regulations, professionalisation, and practices. This has led to a number of methods for scoring and ranking corporate governance practices. Since shareholder wealth maximisation remains the key corporate goal for managers and governors alike, the effect of good governance in increasing the value of corporations is commented to be an important aspect. In measuring the value relevance of good governance, statistical measures of various yields of listed companies in the UK have been used in this research. Yields reflect required returns on investments from different investment tenets. Historical yields, calculated using historical fundamental data of such companies, reflect expected yields to a great extent. These yields, in turn, reflect the expected risk premium and growth associated with the stocks of the companies. Using fundamental data, the yields have been adjusted to reflect the risk premium required by the investors along various value paradigms. Good governance should naturally lead to lower required risk premium since good corporate governance provided assurance to the investors in terms of sustainability of future performance and desired financial conduct. This, in turn, increases the wealth of stockholders. The findings of this research confirm such nature of the relationship between good governance and value of the company in the long run.

Keywords: corporate governance, good governance practices, short-termism, shareholder value relevance, wealth maximisation, yield

Procedia PDF Downloads 351
1259 Ameliorative Effect of Martynia annua Linn. on Collagen-Induced Arthritis via Modulating Cytokines and Oxidative Stress in Mice

Authors: Alok Pal Jain, Santram Lodhi

Abstract:

Martynia annua Linn. (Martyniaccae) is traditionally used in inflammation and applied locally to tuberculosis glands of camel’s neck. The leaves used topically to bites of venomous insects and wounds of domestic animals. Chemical examination of Martynia annua leaves revealed the presence of glycosides, tannins, proteins, phenols and flavonoids. The present study was aimed to evaluate the anti-arthritic activity of methanolic extract of Martynia annua leaves. Methanolic extract of Martynia annua leaves was tested by using in vivo collagen-induced arthritis mouse model to investigate the anti-rheumatoid arthritis activity. In addition, antioxidant effect of methanolic extract was determined by the estimation of antioxidants level in joint tissues. The severity of arthritis was assessed by arthritis score and edema. Levels of cytokines TNF-α and IL-6, in the joint tissue homogenate were measured using ELISA. A high dose (250 mg/kg) of methanolic extract was significantly reduced the degree of inflammation in mice as compared with reference drug. Antioxidants level and malondialdehyde (MDA) in joint tissue homogenate found significantly (p < 0.05) higher. Methanolic extract at dose of 250 mg/kg modulated the cytokines production and suppressed the oxidative stress in the mice with collagen-induced arthritis. This study suggested that Martynia annua might be alternative herbal medicine for the management of rheumatoid arthritis.

Keywords: Martynia annua, collagen, rheumatoid arthritis, antioxidants

Procedia PDF Downloads 285
1258 Path Planning for Unmanned Aerial Vehicles in Constrained Environments for Locust Elimination

Authors: Aadiv Shah, Hari Nair, Vedant Mittal, Alice Cheeran

Abstract:

Present-day agricultural practices such as blanket spraying not only lead to excessive usage of pesticides but also harm the overall crop yield. This paper introduces an algorithm to optimize the traversal of an unmanned aerial vehicle (UAV) in constrained environments. The proposed system focuses on the agricultural application of targeted spraying for locust elimination. Given a satellite image of a farm, target zones that are prone to locust swarm formation are detected through the calculation of the normalized difference vegetation index (NDVI). This is followed by determining the optimal path for traversal of a UAV through these target zones using the proposed algorithm in order to perform pesticide spraying in the most efficient manner possible. Unlike the classic travelling salesman problem involving point-to-point optimization, the proposed algorithm determines an optimal path for multiple regions, independent of its geometry. Finally, the paper explores the idea of implementing reinforcement learning to model complex environmental behaviour and make the path planning mechanism for UAVs agnostic to external environment changes. This system not only presents a solution to the enormous losses incurred due to locust attacks but also an efficient way to automate agricultural practices across the globe in order to improve farmer ergonomics.

Keywords: locust, NDVI, optimization, path planning, reinforcement learning, UAV

Procedia PDF Downloads 239
1257 Testing of Protective Coatings on Automotive Steel, a Correlation Between Salt Spray, Electrochemical Impedance Spectroscopy, and Linear Polarization Resistance Test

Authors: Dhanashree Aole, V. Hariharan, Swati Surushe

Abstract:

Corrosion can cause serious and expensive damage to the automobile components. Various proven techniques for controlling and preventing corrosion depend on the specific material to be protected. Electrochemical Impedance Spectroscopy (EIS) and salt spray tests are commonly used to assess the corrosion degradation mechanism of coatings on metallic surfaces. While, the only test which monitors the corrosion rate in real time is known as Linear Polarisation Resistance (LPR). In this study, electrochemical tests (EIS & LPR) and spray test are reviewed to assess the corrosion resistance and durability of different coatings. The main objective of this study is to correlate the test results obtained using linear polarization resistance (LPR) and Electrochemical Impedance Spectroscopy (EIS) with the results obtained using standard salt spray test. Another objective of this work is to evaluate the performance of various coating systems- CED, Epoxy, Powder coating, Autophoretic, and Zn-trivalent coating for vehicle underbody application. The corrosion resistance coating are assessed. From this study, a promising correlation between different corrosion testing techniques is noted. The most profound observation is that electrochemical tests gives quick estimation of corrosion resistance and can detect the degradation of coatings well before visible signs of damage appear. Furthermore, the corrosion resistances and salt spray life of the coatings investigated were found to be according to the order as follows- CED> powder coating > Autophoretic > epoxy coating > Zn- Trivalent plating.

Keywords: Linear Polarization Resistance (LPR), Electrochemical Impedance Spectroscopy (EIS), salt spray test, sacrificial and barrier coatings

Procedia PDF Downloads 512
1256 Prediction of Pounding between Two SDOF Systems by Using Link Element Based On Mathematic Relations and Suggestion of New Equation for Impact Damping Ratio

Authors: Seyed M. Khatami, H. Naderpour, R. Vahdani, R. C. Barros

Abstract:

Many previous studies have been carried out to calculate the impact force and the dissipated energy between two neighboring buildings during seismic excitation, when they collide with each other. Numerical studies are an important part of impact, which several researchers have tried to simulate the impact by using different formulas. Estimation of the impact force and the dissipated energy depends significantly on some parameters of impact. Mass of bodies, stiffness of spring, coefficient of restitution, damping ratio of dashpot and impact velocity are some known and unknown parameters to simulate the impact and measure dissipated energy during collision. Collision is usually shown by force-displacement hysteresis curve. The enclosed area of the hysteresis loop explains the dissipated energy during impact. In this paper, the effect of using different types of impact models is investigated in order to calculate the impact force. To increase the accuracy of impact model and to optimize the results of simulations, a new damping equation is assumed and is validated to get the best results of impact force and dissipated energy, which can show the accuracy of suggested equation of motion in comparison with other formulas. This relation is called "n-m". Based on mathematical relation, an initial value is selected for the mentioned coefficients and kinetic energy loss is calculated. After each simulation, kinetic energy loss and energy dissipation are compared with each other. If they are equal, selected parameters are true and, if not, the constant of parameters are modified and a new analysis is performed. Finally, two unknown parameters are suggested to estimate the impact force and calculate the dissipated energy.

Keywords: impact force, dissipated energy, kinetic energy loss, damping relation

Procedia PDF Downloads 541
1255 Modeling Fertility and Production of Hazelnut Cultivars through the Artificial Neural Network under Climate Change of Karaj

Authors: Marziyeh Khavari

Abstract:

In recent decades, climate change, global warming, and the growing population worldwide face some challenges, such as increasing food consumption and shortage of resources. Assessing how climate change could disturb crops, especially hazelnut production, seems crucial for sustainable agriculture production. For hazelnut cultivation in the mid-warm condition, such as in Iran, here we present an investigation of climate parameters and how much they are effective on fertility and nut production of hazelnut trees. Therefore, the climate change of the northern zones in Iran has investigated (1960-2017) and was reached an uptrend in temperature. Furthermore, the descriptive analysis performed on six cultivars during seven years shows how this small-scale survey could demonstrate the effects of climate change on hazelnut production and stability. Results showed that some climate parameters are more significant on nut production, such as solar radiation, soil temperature, relative humidity, and precipitation. Moreover, some cultivars have produced more stable production, for instance, Negret and Segorbe, while the Mervill de Boliver recorded the most variation during the study. Another aspect that needs to be met is training and predicting an actual model to simulate nut production through a neural network and linear regression simulation. The study developed and estimated the ANN model's generalization capability with different criteria such as RMSE, SSE, and accuracy factors for dependent and independent variables (environmental and yield traits). The models were trained and tested while the accuracy of the model is proper to predict hazelnut production under fluctuations in weather parameters.

Keywords: climate change, neural network, hazelnut, global warming

Procedia PDF Downloads 118
1254 Ultrasonic Investigation as Tool for Study of Molecular Interaction of 2-Hydroxy Substituted Pyrimidine Derivative at Different Concentrations

Authors: Shradha S. Binani, P. S. Bodke, R. V. Joat

Abstract:

Recent decades have witnessed an exponential growth in the field of acoustical parameters and ultrasound on solid, liquid and gases. Ultrasonic propagation parameters yield valuable information regarding the behavior of liquid systems because intra and intermolecular association, dipolar interaction, complex formation and related structural changes affecting the compressibility of the system which in turn produces variations in the ultrasonic velocity. The acoustic and thermo dynamical parameters obtained in ultrasonic study show that ion-solvation is accompanied by the destruction or enhancement of the solvent structure. In the present paper the ultrasonic velocity (v), density (ρ), viscosity(η) have been measured for the pharmacological important compound 2-hydroxy substituted phenyl pyrimidine derivative (2-hydroxy-4-(4’-methoxy phenyl)-6-(2’-hydroxy-4’-methyl-5’-chlorophenyl)pyrimidine) in ethanol as a solvent by using different concentration at constant room temperature. These experimental data have been used to estimate physical parameter like adiabatic compressibility, intermolecular free length, relaxation time, free volume, specific acoustic impedance, relative association, Wada’s constant, Rao’s constant etc. The above parameters provide information in understanding the structural and molecular interaction between solute-solvent in the drug solution with respect to change in concentration.

Keywords: acoustical parameters, ultrasonic velocity, density, viscosity, 2-hydroxy substituted phenyl pyrimidine derivative

Procedia PDF Downloads 458
1253 A Moroccan Natural Solution for Treating Industrial Effluents: Evaluating the Effectiveness of Using Date Kernel Residues for Purification

Authors: Ahmed Salim, A. El Bouari, M. Tahiri, O. Tanane

Abstract:

This research aims to develop and comprehensively characterize a cost-effective activated carbon derived from date residues, with a focus on optimizing its physicochemical properties to achieve superior performance in a variety of applications. The samples were synthesized via a chemical activation process utilizing phosphoric acid (H₃PO₄) as the activating agent. Activated carbon, produced through this method, functions as a vital adsorbent for the removal of contaminants, with a specific focus on methylene blue, from industrial wastewater. This study meticulously examined the influence of various parameters, including carbonization temperature and duration, on both the combustion properties and adsorption efficiency of the resultant material. Through extensive analysis, the optimal conditions for synthesizing the activated carbon were identified as a carbonization temperature of 600°C and a duration of 2 hours. The activated carbon synthesized under optimized conditions demonstrated an exceptional carbonization yield and methylene blue adsorption efficiency of 99.71%. The produced carbon was subsequently characterized using X-ray diffraction (XRD) analysis. Its effectiveness in the adsorption of methylene blue from contaminated water was then evaluated. A comprehensive assessment of the adsorption capacity was conducted by varying parameters such as carbon dosage, contact time, initial methylene blue concentration, and pH levels.

Keywords: environmental pollution, adsorbent, activated carbon, phosphoric acid, date Kernels, pollutants, adsorption

Procedia PDF Downloads 21
1252 Application of Biosensors in Forensic Analysis

Authors: Shirin jalili, Hadi Shirzad, Samaneh Nabavi, Somayeh Khanjani

Abstract:

Biosensors in forensic analysis are ideal biological tools that can be used for rapid and sensitive initial screening and testing to detect of suspicious components like biological and chemical agent in crime scenes. The wide use of different biomolecules such as proteins, nucleic acids, microorganisms, antibodies and enzymes makes it possible. These biosensors have great advantages such as rapidity, little sample manipulation and high sensitivity, also Because of their stability, specificity and low cost they have become a very important tool to Forensic analysis and detection of crime. In crime scenes different substances such as rape samples, Semen, saliva fingerprints and blood samples, act as a detecting elements for biosensors. On the other hand, successful fluid recovery via biosensor has the propensity to yield a highly valuable source of genetic material, which is important in finding the suspect. Although current biological fluid testing techniques are impaired for identification of body fluids. But these methods have disadvantages. For example if they are to be used simultaneously, Often give false positive result. These limitations can negatively result the output of a case through missed or misinterpreted evidence. The use of biosensor enable criminal researchers the highly sensitive and non-destructive detection of biological fluid through interaction with several fluid-endogenous and other biological and chemical contamination at the crime scene. For this reason, using of the biosensors for detecting the biological fluid found at the crime scenes which play an important role in identifying the suspect and solving the criminal.

Keywords: biosensors, forensic analysis, biological fluid, crime detection

Procedia PDF Downloads 1097
1251 A Study to Evaluate Some Physical and Mechanical Properties, Relevant in Estimating Energy Requirements in Grinding the Palm Kernel and Coconut Shells

Authors: Saheed O. Akinwale, Olufemi A. Koya

Abstract:

Based on the need to modify palm kernel shell (PKS) and coconut shell (CNS) for some engineering applications, the study evaluated some physical characteristics and fracture resistance, relevant in estimating energy requirements in comminution of the nutshells. The shells, obtained from local processing mills, were washed, sun-dried and sorted to remove kernels, nuts and other extraneous materials. Experiments were then conducted to determine the thickness, density, moisture content, and hardness of the shells. Fracture resistances were characterised by the average compressive load, stiffness and toughness at bio-yield point of specially prepared section of the shells, under quasi-static compression loading. The densities of the dried PKS at 7.12% and the CNS at 6.47% (wb) moisture contents were 1291.20 and 1247.40 kg/m3, respectively. The corresponding Brinnel Hardness Numbers were 58.40 ± 1.91 and 56.33 ± 4.33. Close shells thickness of both PKS and CNS exhibited identical physical properties although; CNS is relatively larger in physical dimensions than PKS. The findings further showed that both shell types exhibited higher resistance with compression along the longitudinal axes than the transverse axes. With compressions along the longitudinal axes, the fracture force were 1.41 ± 0.11 and 3.62 ± 0.09 kN; bio-stiffness; 934.70 ± 67.03 kN/m and 1980.74 ± 8.92 kN/m; and toughness, 2.17 ± 0.16 and 6.51 ± 0.15 KN mm for the PKS and CNS, respectively. With the estimated toughness of CNS higher than that of PKS, the study showed the requirement of higher comminution energy for CNS.

Keywords: bio-stiffness, coconut shell, comminution, crushing strength, energy requirement, palm kernel shell, toughness

Procedia PDF Downloads 225
1250 Study of Aqueous Solutions: A Dielectric Spectroscopy Approach

Authors: Kumbharkhane Ashok

Abstract:

The time domain dielectric relaxation spectroscopy (TDRS) probes the interaction of a macroscopic sample with a time-dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the DRS technique covers an extensive dynamical process, its corresponding frequency range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy which yield information on the motions of individual molecules. An experimental set up for Time Domain Reflectometry (TDR) technique from 10 MHz to 30 GHz has been developed for the aqueous solutions. This technique has been very simple and covers a wide band of frequencies in the single measurement. Dielectric Relaxation Spectroscopy is especially sensitive to intermolecular interactions. The complex permittivity spectra of aqueous solutions have been fitted using Cole-Davidson (CD) model to determine static dielectric constants and relaxation times for entire concentrations. The heterogeneous molecular interactions in aqueous solutions have been discussed through Kirkwood correlation factor and excess properties.

Keywords: liquid, aqueous solutions, time domain reflectometry

Procedia PDF Downloads 430
1249 The Effect Analysis of Monetary Instruments through Islamic Banking Financing Channel toward Economic Growth in Indonesia, Period January 2008-December 2015

Authors: Sobar M. Johari, Ida Putri Anjarsari

Abstract:

In the transmission of monetary instrument towards real sector of the economy, Bank Indonesia as monetary authority has developed Islamic Bank Indonesia Certificate (abbreviated as SBIS) as an instrument in Islamic open market operation. One of the monetary transmission channels could take place through financing channel from which the fund is used as the source of banking financing. This study aims to analyse the impact of Islamic monetary instrument towards output or economic growth. Data used in this research is taken from Bank Indonesia and Central Board of Statistics for the period of January 2008 until December 2015. The study employs Granger Causality Test, Vector Error Correction Model (VECM), Impulse Response Function (IRF) technique and Forecast Error Variance Decomposition (FEVD) as its analytical methods. The results show that, first, the transmission mechanism of banking financing channel are not linked to output. Second, estimation results of VECM show that SBIS, PUAS, and FIN have significant impact in the long term towards output. When there is monetary shock, output or economic growth could be recovered and stabilized in the short term. FEVD results show that Islamic banking financing contributes 1.33 percent to increase economic growth.

Keywords: Islamic monetary instrument, Islamic banking financing channel, economic growth, Vector Error Correction Model (VECM)

Procedia PDF Downloads 262
1248 Solar Photovoltaic Pumping and Water Treatment Tools: A Case Study in Ethiopian Village

Authors: Corinna Barraco, Ornella Salimbene

Abstract:

This research involves the Ethiopian locality of Jeldi (North Africa), an area particularly affected by water shortage and in which the pumping and treatment of drinking water are extremely sensitive issues. The study aims to develop and apply low-cost tools for the design of solar water pumping and water purification systems in a not developed country. Consequently, two technical tools have been implemented in Excel i) Solar photovoltaic Pumping (Spv-P) ii) Water treatment (Wt). The Spv-P tool was applied to the existing well (depth 110 [m], dynamic water level 90 [m], static water level 53 [m], well yield 0.1728 [m³h⁻¹]) in the Jeldi area, where estimated water demand is about 50 [m3d-1]. Through the application of the tool, it was designed the water extraction system of the well, obtaining the number of pumps and solar panels necessary for water pumping from the well of Jeldi. Instead, the second tool Wt has been applied in the subsequent phase of extracted water treatment. According to the chemical-physical parameters of the water, Wt returns as output the type of purification treatment(s) necessary to potable the extracted water. In the case of the well of Jeldi, the tool identified a high criticality regarding the turbidity parameter (12 [NTU] vs 5 [NTU]), and a medium criticality regarding the exceeding limits of sodium concentration (234 [mg/L Na⁺] vs 200 [mg/L Na⁺]) and ammonia (0.64 [mg/L NH³-N] vs 0.5 [mg/L NH³-N]). To complete these tools, two specific manuals are provided for the users. The joint use of the two tools would help reduce problems related to access to water resources compared to the current situation and represents a simplified solution for the design of pumping systems and analysis of purification treatments to be performed in undeveloped countries.

Keywords: drinking water, Ethiopia, treatments, water pumping

Procedia PDF Downloads 143
1247 Efficiency of a Semantic Approach in Teaching Foreign Languages

Authors: Genady Shlomper

Abstract:

During the process of language teaching, each teacher faces some general and some specific problems. Some of these problems are mutual to all languages because they yield to the rules of cognition, conscience, perception, understanding and memory; to the physiological and psychological principles pertaining to the human race irrespective of origin and nationality. Still, every language is a distinctive system, possessing individual properties and an obvious identity, as a result of a development in specific natural, geographical, cultural and historical conditions. The individual properties emerge in the script, in the phonetics, morphology and syntax. All these problems can and should be a subject of a detailed research and scientific analysis, mainly from practical considerations and language teaching requirements. There are some formidable obstacles in the language acquisition process. Among the first to be mentioned is the existence of concepts and entire categories in foreign languages, which are absent in the language of the students. Such phenomena reflect specific ways of thinking and the world-outlook, which were shaped during the evolution. Hindi is the national language of India, which belongs to the group of Indo-Iranian languages from the Indo-European family of languages. The lecturer has gained experience in teaching Hindi language to native speakers of Uzbek, Russian and Hebrew languages. He will show the difficulties in the field of phonetics, morphology and syntax, which the students have to deal with during the acquisition of the language. In the proposed lecture the lecturer will share his experience in making the process of language teaching more efficient by using non-formal semantic approach.

Keywords: applied linguistics, foreign language teaching, language teaching methodology, semantics

Procedia PDF Downloads 343
1246 FTIR Spectroscopy for in vitro Screening in Microbial Biotechnology

Authors: V. Shapaval, N. K. Afseth, D. Tzimorotas, A. Kohler

Abstract:

Globally there is a dramatic increase in the demand for food, energy, materials and clean water since natural resources are limited. As a result, industries are looking for ways to reduce rest materials and to improve resource efficiency. Microorganisms have a high potential to be used as bio factories for the production of primary and secondary metabolites that represent high-value bio-products (enzymes, polyunsaturated fatty acids, bio-plastics, glucans, etc.). In order to find good microbial producers, to design suitable substrates from food rest materials and to optimize fermentation conditions, rapid analytical techniques for quantifying target bio products in microbial cells are needed. In the EU project FUST (R4SME, Fp7), we have developed a fully automated high-throughput FUST system based on micro-cultivation and FTIR spectroscopy that facilitates the screening of microorganisms, substrates and fermentation conditions for the optimization of the production of different high-value metabolites (single cell oils, bio plastics). The automated system allows the preparation of 100 samples per hour. Currently, The FUST system is in use for screening of filamentous fungi in order to find oleaginous strains with the ability to produce polyunsaturated fatty acids, and the optimization of cheap substrates, derived from food rest materials, and the optimization of fermentation conditions for the high yield of single cell oil.

Keywords: FTIR spectroscopy, FUST system, screening, biotechnology

Procedia PDF Downloads 434
1245 Performance Evaluation of a Small Microturbine Cogeneration Functional Model

Authors: Jeni A. Popescu, Sorin G. Tomescu, Valeriu A. Vilag

Abstract:

The paper focuses on the potential methods of increasing the performance of a microturbine by combining additional elements available for utilization in a cogeneration plant. The activity is carried out within the framework of a project aiming to develop, manufacture and test a microturbine functional model with high potential in energetic industry utilization. The main goal of the analysis is to determine the parameters of the fluid flow passing through each section of the turbine, based on limited data available in literature for the focus output power range or provided by experimental studies, starting from a reference cycle, and considering different cycle options, including simple, intercooled and recuperated options, in order to optimize a small cogeneration plant operation. The studied configurations operate under the same initial thermodynamic conditions and are based on a series of assumptions, in terms of individual performance of the components, pressure/velocity losses, compression ratios, and efficiencies. The thermodynamic analysis evaluates the expected performance of the microturbine cycle, while providing a series of input data and limitations to be included in the development of the experimental plan. To simplify the calculations and to allow a clear estimation of the effect of heat transfer between fluids, the working fluid for all the thermodynamic evolutions is, initially, air, the combustion being modelled by simple heat addition to the system. The theoretical results, along with preliminary experimental results are presented, aiming for a correlation in terms of microturbine performance.

Keywords: cogeneration, microturbine, performance, thermodynamic analysis

Procedia PDF Downloads 158
1244 Shear Strengthening of Reinforced Concrete Flat Slabs Using Prestressing Bars

Authors: Haifa Saleh, Kamiran Abduka, Robin Kalfat, Riadh Al-Mahaidi

Abstract:

The effectiveness of using pre-stressing steel bars for shear strengthening of high strength reinforced concrete (RC) slabs was assessed. Two large-scale RC slabs were tested, one without shear reinforcement and the second strengthened against punching shear failure using pre-stressing steel bars. The two slabs had the same dimensions, flexural reinforcement ratio, loading and support arrangements. The experimental program including the method of strengthening, set up and instrumentation are described in this paper. The experimental results are analyzed and discussed in terms of the structural behavior of the RC slabs, the performance of pre-stressing steel bolts and failure modes. The results confirmed that the shear strengthening technique increased the shear capacity, ductility and yield capacity of the slab by up to 15%, 44%, and 22%, respectively compared to the unstrengthened slab. The strengthening technique also successfully contributed to changing the failure mode from a brittle punching shear mode to ductile flexural failure mode. Vic3D digital image correlation system (photogrammetry) was also used in this research. This technique holds several advantages over traditional contact instrumentations including that it is inexpensive, it produces results that are simple to analyze and it is remote visualization technique. The displacement profile along the span of the slab and rotation has been found and compared with the results obtained from traditional sensors. The performance of the photogrammetry technique was very good and the results of both measurements were in very close agreement.

Keywords: flat slab, photogrammetry, punching shear, strengthening

Procedia PDF Downloads 152
1243 A Glycerol-Free Process of Biodiesel Production through Chemical Interesterification of Jatropha Oil

Authors: Ratna Dewi Kusumaningtyas, Riris Pristiyani, Heny Dewajani

Abstract:

Biodiesel is commonly produced via the two main routes, i.e. the transesterification of triglycerides and the esterification of free fatty acid (FFA) using short-chain alcohols. Both the two routes have drawback in term of the side product yielded during the reaction. Transesterification reaction of triglyceride results in glycerol as side product. On the other hand, FFA esterification brings in water as side product. Both glycerol and water in the biodiesel production are managed as waste. Hence, a separation process is necessary to obtain a high purity biodiesel. Meanwhile, separation processes is generally the most capital and energy intensive part in industrial process. Therefore, to reduce the separation process, it is essential to produce biodiesel via an alternative route eliminating glycerol or water side-products. In this work, biodiesel synthesis was performed using a glycerol-free process through chemical interesterification of jatropha oil with ethyl acetate in the presence on sodium acetate catalyst. By using this method, triacetine, which is known as fuel bio-additive, is yielded instead of glycerol. This research studied the effects of catalyst concentration on the jatropha oil interesterification process in the range of 0.5 – 1.25% w/w oil. The reaction temperature and molar ratio of oil to ethyl acetate were varied at 50, 60, and 70°C, and 1:6, 1:9, 1:15, 1:30, and 1:60, respectively. The reaction time was evaluated from 0 to 8 hours. It was revealed that the best yield was obtained with the catalyst concentration of 0.5%, reaction temperature of 70 °C, molar ratio of oil to ethyl acetate at 1:60, at 6 hours reaction time.

Keywords: biodiesel, interesterification, glycerol-free, triacetine, jatropha oil

Procedia PDF Downloads 408
1242 Infrastructure Change Monitoring Using Multitemporal Multispectral Satellite Images

Authors: U. Datta

Abstract:

The main objective of this study is to find a suitable approach to monitor the land infrastructure growth over a period of time using multispectral satellite images. Bi-temporal change detection method is unable to indicate the continuous change occurring over a long period of time. To achieve this objective, the approach used here estimates a statistical model from series of multispectral image data over a long period of time, assuming there is no considerable change during that time period and then compare it with the multispectral image data obtained at a later time. The change is estimated pixel-wise. Statistical composite hypothesis technique is used for estimating pixel based change detection in a defined region. The generalized likelihood ratio test (GLRT) is used to detect the changed pixel from probabilistic estimated model of the corresponding pixel. The changed pixel is detected assuming that the images have been co-registered prior to estimation. To minimize error due to co-registration, 8-neighborhood pixels around the pixel under test are also considered. The multispectral images from Sentinel-2 and Landsat-8 from 2015 to 2018 are used for this purpose. There are different challenges in this method. First and foremost challenge is to get quite a large number of datasets for multivariate distribution modelling. A large number of images are always discarded due to cloud coverage. Due to imperfect modelling there will be high probability of false alarm. Overall conclusion that can be drawn from this work is that the probabilistic method described in this paper has given some promising results, which need to be pursued further.

Keywords: co-registration, GLRT, infrastructure growth, multispectral, multitemporal, pixel-based change detection

Procedia PDF Downloads 124
1241 Identification and Characterization of Enterobacter cloacae, New Soft Rot Causing Pathogen of Radish in India

Authors: B. S. Chandrashekar, M. K. Prasannakumar, P. Buela Parivallal, Sahana N. Banakar, Swathi S. Patil, H. B. Mahesh, D. Pramesh

Abstract:

Bacterial soft rot is one of the most often seen diseases in many plant species globally, resulting in considerable yield loss. Radish roots with dark water-soaked lesions, maceration of tissue, and a foul odour were collected in the Kolar region, India. Two isolates were obtained from rotted samples that demonstrated morphologically unpigmented, white mucoid convex colonies on nutrient agar medium. The isolated bacteria (RDH1 and RDH3) were gram-negative, rod-shaped bacteria with biochemically distinct characteristics similar to the type culture of Enterobacter cloacae ATCC13047 and Bergy's handbook of determinative bacteriology. The 16s rRNA gene was used to identify Enterobacter species. On carrot, potato, tomato, chilli, bell pepper, knolkhol, cauliflower, cabbage, and cucumber slices, the Koch′s postulates were fulfilled, and the pathogen was also pathogenic on radish, cauliflower, and cabbage seedlings were grown in a glasshouse. After 36 hours, both isolates exhibited a hypersensitive sensitivity to Nicotianatabacum. Semi-quantitative analysis revealed that cell wall degrading enzymes (CWDEs) such as pectin lyase, polygalacturonase, and cellulase (p=1.4e09) contributed to pathogenicity, whereas isolates produced biofilms (p=4.3e-11) that help in host adhesion. This is the first report in India of radish soft rot caused by E. cloacae.

Keywords: soft rot, enterobacter cloacae, 16S rRNA, nicotiana tabacum, and pathogenicity

Procedia PDF Downloads 113
1240 Characterization of Some Bread Wheat Genotypes for Drought Tolerance Using Molecular Markers

Authors: Begüm Terzi, Özlem Ateş Sönmezoğlu, Ahmet Yildirim

Abstract:

Drought is the most important factor that limiting the production and productivity of wheat in the world. The yield of wheat, which is one of the most important crop in the world, reduced depend on drought. Researches to minimize effects of drought are one of the most important about breeding of drought resistant varieties. In recent years, benefiting from the drought resistance wild species and rapid advances in molecular biology studies, researches about drought have been accelerated and number of studies were made on molecular plant breeding which included the molecular mechanisms related to drought resistance. The aim of the present study was characterization of some bread wheat lines for drought tolerance which commonly cultivated in different location of Turkey. In this study, registered 9 bread wheat varieties which on the physiological tests about drought tolerance and 10 bread wheat line has been developed by Transitional Zone Agricultural Research Institute were used. SSR, STS, RAPD and SNP markers that associated with drought tolerance were used. The polymorphisms of the markers were determined by screening of two control varieties. For these purpose 40 molecular markers were used and 12 markers of them were polymorphic among the drought tolerance and the drought sensitive varieties. Control varieties were screened using polymorphic markers. All the DNAs on the genotypes will be searched for the presence of QTLs mapped to different chromosomes. Result of the research, the studied genotypes will be grouped according to drought tolerance and will be detected drought tolerance varieties by molecular markers. In addition, the results will be compared also with physiological tests. The drought tolerant wheat genotypes may be used in breeding studies related to drought stress.

Keywords: bread wheat, drought, molecular marker, Triticum aestivum

Procedia PDF Downloads 373
1239 Effects of Sole and Integrated Application of Cocoa Pod Ash and Poultry Manure on Soil Properties and Leaf Nutrient Composition and Performance of White Yam

Authors: T. M. Agbede, A. O. Adekiya

Abstract:

Field experiments were conducted during 2013, 2014 and 2015 cropping seasons at Rufus Giwa Polytechnic, Owo, Ondo State, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of yam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 20 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control). The five treatments were arranged in a randomized complete block design with three replications. The test soil was slightly acidic, low in organic carbon (OC), N, P, K, Ca and Mg. Results showed that soil amendments significantly increased (p = 0.05) tuber weights and growth of yam, soil and leaf N, P, K, Ca and Mg, soil pH and OC concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased tuber weights of yam by 36%, compared with inorganic fertilizer (NPK) and 19%, compared with PM alone. Sole PM increased tuber weight of yam by 15%, compared with NPK. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties, nutrient availability, compared with NPK and the NSF (control). Integrated application of CPA at 10 t ha-1 + PM at 10 t ha-1 was the most effective treatment in improving soil physical properties, increasing nutrient availability and yam performance than sole application of any of the fertilizer materials.

Keywords: cocoa pod ash, leaf nutrient composition, poultry manure, soil properties, yam

Procedia PDF Downloads 307
1238 Microwave Assisted Solvent-free Catalytic Transesterification of Glycerol to Glycerol Carbonate

Authors: Wai Keng Teng, Gek Cheng Ngoh, Rozita Yusoff, Mohamed Kheireddine Aroua

Abstract:

As a by-product of the biodiesel industries, glycerol has been vastly generated which surpasses the market demand. It is imperative to develop an efficient glycerol valorization processes in minimizing the net energy requirement and intensifying the biodiesel production. In this study, base-catalyzed transesterification of glycerol with dimethyl carbonate using microwave irradiation as heating method to produce glycerol carbonate was conducted by varing grades of glycerol i.e. 70%, 86% and 99% purity that obtained from biodiesel plant. Metal oxide catalysts were used with varying operating parameters including reaction time, DMC/glycerol molar ratio, catalyst weight %, temperature and stirring speed. From the study on the effect of different operating parameters; it was found that the type of catalyst used has the most significant effect on the transesterification reaction. Admist the metal oxide catalysts examined, CaO gave the best performance. This study indicates the feasibility of producing glycerol carbonate using different grade of glycerol in both conventional thermal activation and microwave irradiation with CaO as catalyst. Microwave assisted transesterification (MAT) of glycerol into glycerol carbonate has demostrated itself as an energy efficient route by achieving 94.3% yield of GC at 65°C, 5 minutes reaction time, 1 wt% CaO and DMC/glycerol molar ratio of 2. The advantages of MAT transesterification route has made the direct utilization of bioglycerol from biodiesel production without the need of purification. This has marked a more economical and less-energy intensive glycerol carbonate synthesis route.

Keywords: base-catalyzed transesterification, glycerol, glycerol carbonate, microwave irradiation

Procedia PDF Downloads 277
1237 Comparison of the Effects of Continuous Flow Microwave Pre-Treatment with Different Intensities on the Anaerobic Digestion of Sewage Sludge for Sustainable Energy Recovery from Sewage Treatment Plant

Authors: D. Hephzibah, P. Kumaran, N. M. Saifuddin

Abstract:

Anaerobic digestion is a well-known technique for sustainable energy recovery from sewage sludge. However, sewage sludge digestion is restricted due to certain factors. Pre-treatment methods have been established in various publications as a promising technique to improve the digestibility of the sewage sludge and to enhance the biogas generated which can be used for energy recovery. In this study, continuous flow microwave (MW) pre-treatment with different intensities were compared by using 5 L semi-continuous digesters at a hydraulic retention time of 27 days. We focused on the effects of MW at different intensities on the sludge solubilization, sludge digestibility, and biogas production of the untreated and MW pre-treated sludge. The MW pre-treatment demonstrated an increase in the ratio of soluble chemical oxygen demand to total chemical oxygen demand (sCOD/tCOD) and volatile fatty acid (VFA) concentration. Besides that, the total volatile solid (TVS) removal efficiency and tCOD removal efficiency also increased during the digestion of the MW pre-treated sewage sludge compared to the untreated sewage sludge. Furthermore, the biogas yield also subsequently increases due to the pre-treatment effect. A higher MW power level and irradiation time generally enhanced the biogas generation which has potential for sustainable energy recovery from sewage treatment plant. However, the net energy balance tabulation shows that the MW pre-treatment leads to negative net energy production.

Keywords: anaerobic digestion, biogas, microwave pre-treatment, sewage sludge

Procedia PDF Downloads 308
1236 Biofuel Potential and Invasive Species Control: Exploring Prosopis Juliflora Pod Mash for Sustainable Energy Production

Authors: Mebrahtu Haile

Abstract:

Fuels obtained from renewable resources have garnered significant enthusiasm in recent decades due to concerns about fossil fuel depletion and climate change. This study aimed to investigate the potential of Prosopis juliflora pods mash for bio-ethanol production and its hydrolysis solid waste for solid fuel. Various parameters, such as acid concentration, hydrolysis times, fermentation times, fermentation temperature, and pH, were evaluated for their impact on bio-ethanol production using Saccharomyces cerevisiae yeast. The results showed that increasing acid concentration (up to 1 molar H₂SO₄) led to an increase in sugar content, reaching a maximum of 96.13%v/v. Optimal conditions for bio-ethanol production were found at 1 molar H₂SO₄ concentration (4.2%v/v), 48 hours fermentation time (5.1%v/v), 20 minutes hydrolysis time (5.57%v/v), 30°C fermentation temperature (5.57%v/v), and pH 5 (6.01%v/v), resulting in a maximum bio-ethanol yield of 6.01%v/v. The solid waste remaining after bio-ethanol production exhibited potential for use as a solid fuel, with a calorific value of 18.22 MJ/kg. These findings demonstrate the promising potential of Prosopis juliflora pods mash for bio-ethanol production and suggest a viable solution for addressing disposal challenges associated with solid waste, contributing to the exploration of renewable fuel sources in the face of fossil fuel depletion and climate change.

Keywords: prosopis juliflora, pods mash, invasive species, bio-ethanol, fermentation, Saccharomyces cerevisiae, solid fuel

Procedia PDF Downloads 16
1235 Efficient Microspore Isolation Methods for High Yield Embryoids and Regeneration in Rice (Oryza sativa L.)

Authors: S. M. Shahinul Islam, Israt Ara, Narendra Tuteja, Sreeramanan Subramaniam

Abstract:

Through anther and microspore culture methods, complete homozygous plants can be produced within a year as compared to the long inbreeding method. Isolated microspore culture is one of the most important techniques for rapid development of haploid plants. The efficiency of this method is influenced by several factors such as cultural conditions, growth regulators, plant media, pretreatments, physical and growth conditions of the donor plants, pollen isolation procedure, etc. The main purpose of this study was to improve the isolated microspore culture protocol in order to increase the efficiency of embryoids, its regeneration and reducing albinisms. Under this study we have tested mainly three different microspore isolation procedures by glass rod, homozeniger and by blending and found the efficiency on gametic embryogenesis. There are three types of media viz. washing, pre-culture and induction was used. The induction medium as AMC (modified MS) supplemented by 2, 4-D (2.5 mg/l), kinetin (0.5 mg/l) and higher amount of D-Manitol (90 g/l) instead of sucrose and two types of amino acids (L-glutamine and L-serine) were used. Out of three main microspore isolation procedure by homogenizer isolation (P4) showed best performance on ELS induction (177%) and green plantlets (104%) compared with other techniques. For all cases albinisims occurred but microspore isolation from excised anthers by glass rod and homogenizer showed lesser numbers of albino plants that was also one of the important findings in this study.

Keywords: androgenesis, pretreatment, microspore culture, regeneration, albino plants, Oryza sativa

Procedia PDF Downloads 346
1234 Quantifying and Prioritizing Agricultural Residue Biomass Energy Potential in Ethiopia

Authors: Angesom Gebrezgabiher Tesfay, Afafaw Hailesilasie Tesfay, Muyiwa Samuel Adaramola

Abstract:

The energy demand boost in Ethiopia urges sustainable fuel options while it is mainly supplemented by traditional biomass and imported conventional fuels. To satisfy the deficiency it has to be sourced from all renewables. Thus identifying resources and estimating potential is vital to the sector. This study aims at an in-depth assessment to quantify, prioritize, and analyze agricultural residue biomass energy and related characteristic forms. Biomass use management and modernization seeks successive information and a clue about the resource quantity and characteristic. Five years of crop yield data for thirteen crops were collected. Conversion factors for their 20 residues are surveyed from the literature. Then residues amount potentially available for energy and their energy is estimated regional, crop-wise, residue-wise, and shares compared. Their potential value for energy is analyzed from two perspectives and prioritized. The gross potential is estimated to be 495PJ, equivalent to 12/17 million tons of oil/coal. At 30% collection efficiency, it is the same as conventional fuel import in 2018. Maize and sorghum potential and spatial availability are preeminent. Cotton and maize presented the highest potential values for energy from application and resource perspectives. Oromia and Amhara regions' contributions are the highest. The resource collection and application trends are required for future management that implicates a prospective study.

Keywords: crop residue, biomass potential, biomass resource, Ethiopian energy

Procedia PDF Downloads 104
1233 Evaluation of Antioxidants in Medicinal plant Limoniastrum guyonianum

Authors: Assia Belfar, Mohamed Hadjadj, Messaouda Dakmouche, Zineb Ghiaba

Abstract:

Introduction: This study aims to phytochemical screening; Extracting the active compounds and estimate the effectiveness of antioxidant in Medicinal plants desert Limoniastrum guyonianum (Zeïta) from South Algeria. Methods: Total phenolic content and total flavonoid content using Folin-Ciocalteu and aluminum chloride colorimetric methods, respectively. The total antioxidant capacity was estimated by the following methods: DPPH (1.1-diphenyl-2-picrylhydrazyl radical) and reducing power assay. Results: Phytochemical screening of the plant part reveals the presence of phenols, saponins, flavonoids and tannins. While alkaloids and Terpenoids were absent. The acetonic extract of L. guyonianum was extracted successively with ethyl acetate and butanol. Extraction of yield varied widely in the L. guyonianum ranging from (0.9425 %to 11.131%). The total phenolic content ranged from 53.33 mg GAE/g DW to 672.79 mg GAE/g DW. The total flavonoid concentrations varied from 5.45 to 21.71 mg/100g. IC50 values ranged from 0.02 ± 0.0004 to 0.13 ± 0.002 mg/ml. All extracts showed very good activity of ferric reducing power, the higher power was in butanol fraction (23.91 mM) more effective than BHA, BHT and VC. Conclusions: Demonstrated this study that the acetonic extract of L. guyonianum contain a considerable quantity of phenolic compounds and possess a good antioxidant activity. Can be used as an easily accessible source of Natural Antioxidants and as a possible food supplement and in the pharmaceutical industry.

Keywords: limoniastrum guyonianum, phenolics compounds, flavonoid compound, antioxidant activity

Procedia PDF Downloads 333