Search results for: voltage gated sodium channel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3347

Search results for: voltage gated sodium channel

437 Construction of Microbial Fuel Cells from Local Benthic Zones

Authors: Maria Luiza D. Ramiento, Maria Lissette D. Lucas

Abstract:

Electricity is said to serve as the backbone of modern technology. Considering this, electricity consumption has dynamically grown due to the continuous demand. An alternative producer of energy concerning electricity must therefore be given focus. Microbial fuel cell wholly characterizes a new method of renewable energy recovery: the direct conversion of organic matter to electricity using bacteria. Electricity is produced as fuel or new food is given to the bacteria. The study concentrated in determining the feasibility of electricity production from local benthic zones. Microbial fuel cells were constructed to harvest the possible electricity and to test the presence of electricity producing microorganisms. Soil samples were gathered from Calumpang River, Palawan Mangrove Forest, Rosario River and Batangas Port. Eleven modules were constructed for the different trials of the soil samples. These modules were made of cathode and anode chambers connected by a salt bridge. For 85 days, the harvested voltage was measured daily. No parameter is added for the first 24 days. For the next 61 days, acetic acid was included in the first and second trials of the modules. Each of the trials of the soil samples gave a positive result in electricity production.There were electricity producing microbes in local benthic zones. It is observed that the higher the organic content of the soil sample, the higher the electricity harvested from it. It is recommended to identify the specific species of the electricity-producing microorganism present in the local benthic zone. Complement experiments are encouraged like determining the kind of soil particles to test its effect on the amount electricity that can be harvested. To pursue the development of microbial fuel cells by building a closed circuit in it is also suggested.

Keywords: microbial fuel cell, benthic zone, electricity, reduction-oxidation reaction, bacteria

Procedia PDF Downloads 375
436 Characterization of Electrical Transport across Ultra-Thin SrTiO₃ and BaTiO₃ Barriers in Tunnel Junctions

Authors: Henry Navarro, Martin Sirena, Nestor Haberkorn

Abstract:

We report the electrical transport through voltage-current curves (I-V) in tunnels junction GdBa₂Cu₃O₇-d/ insulator/ GdBa₂Cu₃O₇-d, and Nb/insulator/ GdBa₂Cu₃O₇-d is analyzed using a conducting atomic force microscope (CAFM) at room temperature. The measurements were obtained on tunnel junctions with different areas (900 μm², 400 μm² and 100 μm²). Trilayers with GdBa₂Cu₃O₇-d (GBCO) as the bottom electrode, SrTiO₃ (STO) or BaTiO₃ (BTO) as the insulator barrier (thicknesses between 1.6 nm and 4 nm), and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO₃ substrates. For STO and BTO barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. The main difference is that the BTO is a ferroelectric material, while in the STO the ferroelectricity can be produced by stress or deformation at the interfaces. In addition, hysteretic IV curves are obtained for BTO barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/ BTO/ GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/ insulator/ conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures). The superconducting transition of the GBCO electrode was characterized by electrical transport using the 4-prong configuration with low density of topological defects and with Tc over liquid N₂ can be obtained for thicknesses of 16 nm, our results demonstrate that GBCO films with an average root-mean-square (RMS) smaller than 1 nm and areas (up 100 um²) free of 3-D topological defects can be obtained.

Keywords: thin film, sputtering, conductive atomic force microscopy, tunnel junctions

Procedia PDF Downloads 138
435 Experimental Evaluation of Electrocoagulation for Hardness Removal of Bore Well Water

Authors: Pooja Kumbhare

Abstract:

Water is an important resource for the survival of life. The inadequate availability of surface water makes people depend on ground water for fulfilling their needs. However, ground water is generally too hard to satisfy the requirements for domestic as well as industrial applications. Removal of hardness involves various techniques such as lime soda process, ion exchange, reverse osmosis, nano-filtration, distillation, and, evaporation, etc. These techniques have individual problems such as high annual operating cost, sediment formation on membrane, sludge disposal problem, etc. Electrocoagulation (EC) is being explored as modern and cost-effective technology to cope up with the growing demand of high water quality at the consumer end. In general, earlier studies on electrocoagulation for hardness removal are found to deploy batch processes. As batch processes are always inappropriate to deal with large volume of water to be treated, it is essential to develop continuous flow EC process. So, in the present study, an attempt is made to investigate continuous flow EC process for decreasing excessive hardness of bore-well water. The experimental study has been conducted using 12 aluminum electrodes (25cm*10cm, 1cm thick) provided in EC reactor with volume of 8 L. Bore well water sample, collected from a local bore-well (i.e. at – Vishrambag, Sangli; Maharashtra) having average initial hardness of 680 mg/l (Range: 650 – 700 mg/l), was used for the study. Continuous flow electrocoagulation experiments were carried out by varying operating parameters specifically reaction time (Range: 10 – 60 min), voltage (Range: 5 – 20 V), current (Range: 1 – 5A). Based on the experimental study, it is found that hardness removal to the desired extent could be achieved even for continuous flow EC reactor, so the use of it is found promising.

Keywords: hardness, continuous flow EC process, aluminum electrode, optimal operating parameters

Procedia PDF Downloads 161
434 Alcohol Septal Ablation in a 19-Year-Old with Hypertrophic Obstructive Cardiomyopathy Patient: A Case Report

Authors: Christine Ysabelle G. Roman, Pauline Torres

Abstract:

Background: Hypertrophic cardiomyopathy is a disease of marked heterogeneity. It is a genetically determined heart disease characterized by significant myocardium hypertrophy that results in diastolic dysfunction, left ventricular outflow tract obstruction, and an increased risk of arrhythmias. The primary treatment in patients with such conditions is negative inotropic drugs, such as beta-blockers, calcium channel antagonists, and disopyramide. However, for those who remain symptomatic and need septal reduction therapy, surgical septal myectomy or alcohol septal ablation are options. Case Summary: A 19 – year old female presented in the authors’ institution with easy fatigability. The consult was done a year prior, and 2D echocardiography was requested which showed concentric left ventricular hypertrophy, asymmetrically hypertrophied interventricular septum (IVS) with the largest diameter of 3.3cm & subaortic dynamic obstruction with a maximum gradient of 47 mmHg. A repeat echo a year later showed asymmetric septal hypertrophy (IVS measuring at 3cm) with the systolic anterior motion of anterior mitral valve leaflet and left ventricular outflow tract obstruction (peak gradient of 50mmHg). The patient then underwent alcohol septal ablation and was discharged stable after four days of admission. Conclusion: Hypertrophic obstructive cardiomyopathy, a cardiovascular genetic disease, results in various patterns of left ventricular hypertrophy and abnormality of mitral valve apparatus. The patient is managed medically initially. However, despite optimal drug therapy and significant left ventricular outflow tract obstruction, significant heart failure symptoms or syncope require invasive treatment.

Keywords: hypertrophic obstructive cardiomyopathy, left ventricular outflow tract obstruction, alcohol septal ablation, alcohol

Procedia PDF Downloads 60
433 Evaluation of Human Amnion Hemocompatibility as a Substitute for Vessels

Authors: Ghasem Yazdanpanah, Mona Kakavand, Hassan Niknejad

Abstract:

Objectives: An important issue in tissue engineering (TE) is hemocompatibility. The current engineered vessels are seriously at risk of thrombus formation and stenosis. Amnion (AM) is the innermost layer of fetal membranes that consists of epithelial and mesenchymal sides. It has the advantages of low immunogenicity, anti-inflammatory and anti-bacterial properties as well as good mechanical properties. We recently introduced the amnion as a natural biomaterial for tissue engineering. In this study, we have evaluated hemocompatibility of amnion as potential biomaterial for tissue engineering. Materials and Methods: Amnions were derived from placentas of elective caesarean deliveries which were in the gestational ages 36 to 38 weeks. Extracted amnions were washed by cold PBS to remove blood remnants. Blood samples were obtained from healthy adult volunteers who had not previously taken anti-coagulants. The blood samples were maintained in sterile tubes containing sodium citrate. Plasma or platelet rich plasma (PRP) were collected by blood sample centrifuging at 600 g for 10 min. Hemocompatibility of the AM samples (n=7) were evaluated by measuring of activated partial thromboplastin time (aPTT), prothrombin time (PT), hemolysis, and platelet aggregation tests. P-selectin was also assessed by ELISA. Both epithelial and mesenchymal sides of amnion were evaluated. Glass slide and expanded polytetrafluoroethylene (ePTFE) samples were defined as control. Results: In comparison with glass as control (13.3 ± 0.7 s), prothrombin time was increased significantly while each side of amnion was in contact with plasma (p<0.05). There was no significant difference in PT between epithelial and mesenchymal surfaces (17.4 ± 0.7 s vs. 15.8 ± 0.7 s, respectively). However, aPPT was not significantly changed after incubation of plasma with amnion epithelial and mesenchymal surfaces or glass (28.61 ± 1.39 s, 31.4 ± 2.66 s, glass, 30.76 ± 2.53 s, respectively, p>0.05). Amnion surfaces, ePTFE and glass samples have less hemolysis induction than water considerably (p<0.001), in which no differences were detected. Platelet aggregation measurements showed that platelets were less stimulated by the amnion epithelial and mesenchymal sides, in comparison with ePTFE and glass. In addition, reduction in amount of p-selectin, as platelet activation factor, after incubation of samples with PRP indicated that amnion has less stimulatory effects on platelets than ePTFE and glass. Conclusion: Amnion as a natural biomaterial has the potential to be used in tissue engineering. Our results suggest that amnion has appropriate hemocompatibility to be employed as a vascular substitute.

Keywords: amnion, hemocompatibility, tissue engineering, biomaterial

Procedia PDF Downloads 372
432 Performance Comparison of Droop Control Methods for Parallel Inverters in Microgrid

Authors: Ahmed Ismail, Mustafa Baysal

Abstract:

Although the energy source in the world is mainly based on fossil fuels today, there is a need for alternative energy generation systems, which are more economic and environmentally friendly, due to continuously increasing demand of electric energy and lacking power resources and networks. Distributed Energy Resources (DERs) such as fuel cells, wind and solar power have recently become widespread as alternative generation. In order to solve several problems that might be encountered when integrating DERs to power system, the microgrid concept has been proposed. A microgrid can operate both grid connected and island mode to benefit both utility and customers. For most distributed energy resources (DER) which are connected in parallel in LV-grid like micro-turbines, wind plants, fuel cells and PV cells electrical power is generated as a direct current (DC) and converted to an alternative currents (AC) by inverters. So the inverters are assumed to be primary components in a microgrid. There are many control techniques of parallel inverters to manage active and reactive sharing of the loads. Some of them are based on droop method. In literature, the studies are usually focused on improving the transient performance of inverters. In this study, the performance of two different controllers based on droop control method is compared for the inverters operated in parallel without any communication feedback. For this aim, a microgrid in which inverters are controlled by conventional droop controller and modified droop controller is designed. Modified controller is obtained by adding PID into conventional droop control. Active and reactive power sharing performance, voltage and frequency responses of those control methods are measured in several operational cases. Study cases have been simulated by MATLAB-SIMULINK.

Keywords: active and reactive power sharing, distributed generation, droop control, microgrid

Procedia PDF Downloads 568
431 Impact of Charging PHEV at Different Penetration Levels on Power System Network

Authors: M. R. Ahmad, I. Musirin, M. M. Othman, N. A. Rahmat

Abstract:

Plug-in Hybrid-Electric Vehicle (PHEV) has gained immense popularity in recent years. PHEV offers numerous advantages compared to the conventional internal-combustion engine (ICE) vehicle. Millions of PHEVs are estimated to be on the road in the USA by 2020. Uncoordinated PHEV charging is believed to cause severe impacts to the power grid; i.e. feeders, lines and transformers overload and voltage drop. Nevertheless, improper PHEV data model used in such studies may cause the findings of their works is in appropriated. Although smart charging is more attractive to researchers in recent years, its implementation is not yet attainable on the street due to its requirement for physical infrastructure readiness and technology advancement. As the first step, it is finest to study the impact of charging PHEV based on real vehicle travel data from National Household Travel Survey (NHTS) and at present charging rate. Due to the lack of charging station on the street at the moment, charging PHEV at home is the best option and has been considered in this work. This paper proposed a technique that comprehensively presents the impact of charging PHEV on power system networks considering huge numbers of PHEV samples with its traveling data pattern. Vehicles Charging Load Profile (VCLP) is developed and implemented in IEEE 30-bus test system that represents a portion of American Electric Power System (Midwestern US). Normalization technique is used to correspond to real time loads at all buses. Results from the study indicated that charging PHEV using opportunity charging will have significant impacts on power system networks, especially whereas bigger battery capacity (kWh) is used as well as for higher penetration level.

Keywords: plug-in hybrid electric vehicle, transportation electrification, impact of charging PHEV, electricity demand profile, load profile

Procedia PDF Downloads 259
430 Optimal Sputtering Conditions for Nickel-Cermet Anodes in Intermediate Temperature Solid Oxide Fuel Cells

Authors: Waqas Hassan Tanveer, Yoon Ho Lee, Taehyun Park, Wonjong Yu, Yaegeun Lee, Yusung Kim, Suk Won Cha

Abstract:

Nickel-Gadolinium Doped Ceria (Ni-GDC) cermet anodic thin films were prepared on Scandia Stabilized Zirconia (ScSZ) electrolyte supports by radio frequency (RF) sputtering, with a range of different sputtering powers (50 – 200W) and background Ar gas pressures (30 – 90mTorr). The effects of varying sputtering power and pressure on the properties of Ni-GDC films were studied using Focused Ion Beam (FIB), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX), and Atomic Force Microscopy (AFM) techniques. The Ni content was found to be always higher than the Ce content, at all sputtering conditions. This increased Ni content was attributed to significantly higher energy transfer efficiency of Ni ions as compared to Ce ions with Ar background sputtering gas. The solid oxide fuel cell configuration was completed by using lanthanum strontium manganite (LSM/YSZ) cathodes on the other side of ScSZ supports. Performance comparison of cells was done by Voltage-Current-Power (VIP) curves, while the resistances of various cell components were observed by nyquist plots. Initial results showed that anode films made by higher powered RF sputtering performed better than lower powered ones for a specific Ar pressure. Interestingly, however, anodes made at highest power and pressure, were not the ones that showed the maximum power output at an intermediate solid oxide fuel cell temperature of 800°C. Finally, an optimal sputtering condition was reported for high performance Ni-GDC anodes.

Keywords: intermediate temperature solid oxide fuel cells, nickel-cermet anodic thin films, nyquist plots, radio frequency sputtering

Procedia PDF Downloads 216
429 Fabrication of Glucose/O₂ Microfluidic Biofuel Cell with Double Layer of Electrodes

Authors: Haroon Khan, Chul Min Kim, Sung Yeol Kim, Sanket Goel, Prabhat K. Dwivedi, Ashutosh Sharma, Gyu Man Kim

Abstract:

Enzymatic biofuel cells (EBFCs) have drawn the attention of researchers due to its demanding application in medical implants. In EBFCs, electricity is produced with the help of redox enzymes. In this study, we report the fabrication of membraneless EBFC with new design of electrodes to overcome microchannel related limitations. The device consists of double layer of electrodes on both sides of Y-shaped microchannel to reduce the effect of oxygen depletion layer and diffusion of fuel and oxidant at the end of microchannel. Moreover, the length of microchannel was reduced by half keeping the same area of multiwalled carbon nanotubes (MWCNT) electrodes. Polydimethylsiloxane (PDMS) stencils were used to pattern MWCNT electrodes on etched Indium Tin Oxide (ITO) glass. PDMS casting was used to fabricate microchannel of the device. Both anode and cathode were modified with glucose oxidase and laccase. Furthermore, these enzymes were covalently bound to carboxyl MWCNTs with the help of EDC/NHS. Glucose used as fuel was oxidized by glucose oxidase at anode while oxygen was reduced to water at the cathode side. The resulted devices were investigated with the help of polarization curves obtained from Chronopotentiometry technique by using potentiostat. From results, we conclude that the performance of double layer EBFC is improved 15 % as compared to single layer EBFC delivering maximum power density of 71.25 µW cm-2 at a cell potential of 0.3 V and current density of 250 µA cm-2 at micro channel height of 450-µm and flow rate of 25 ml hr-1. However, the new device was stable only for three days after which its power output was rapidly dropped by 75 %. This work demonstrates that the power output of membraneless EBFC is improved comparatively, but still efforts will be needed to make the device stable over long period of time.

Keywords: EBFC, glucose, MWCNT, microfluidic

Procedia PDF Downloads 303
428 The Effect of Addition of Some Rare Earth Materials to Zinc Aluminum Alloy ZA-22

Authors: Adnan I. O. Zaid

Abstract:

Zinc aluminum alloys are versatile materials which are widely used in manufacturing several parts in the automobile and aircraft industries. The effect of grain refinement of these alloys by rare earth elements on their mechanical characteristics is scarce. The equal channel angular pressing is relatively recent method for producing severe plastic deformation in materials subjected to it resulting in refinement of their structure and enhancement of their mechanical characteristics. The phase diagram of these alloys indicates that large dendrites of large grain size can be formed during their solidification of the cast which tends to deteriorate their mechanical strength and surface quality. To overcome this problem they are normally grain refined by either titanium or titanium + boron to their melt prior to solidification. In this paper, comparison between the effect of adding either titanium, (Ti), titanium+boron, (Ti+B), or Molybdenum, Mo, to zinc-aluminum22, alloy, (ZA22) on its metallurgical and mechanical characteristics in the cast condition and after pressing by the ECAP process is investigated. It was found that addition of either Ti, Ti+B, or Mo to the ZA22 alloy in the cast condition resulted in refining of their structure being more refined by the addition of Mo, then .Ti+B and less refining by Ti addition. Furthermore, the ECAP process resulted in further refinement of the alloy micro structure except in case of Ti+B addition where poisoning i.e. coarsening of the grains has occurred. Regarding the addition of these element on the mechanical behavior; it was found that addition of Ti Or Ti+B resulted in little enhancement of the alloy strength factor and its flow stress at 20% true strain; whereas, the addition of resulted in deteriorating of its mechanical behavior as % decrease in the strength factor and % in its flow stress of 20%. As for the strain hardening index; addition of any of these elements resulted in decreasing the strain hardening index.

Keywords: addition, grain refinement, mechanical characteristics, microstructure, rare earth elements, ZA-22, Zinc- aluminum alloy

Procedia PDF Downloads 504
427 Efficient Compact Micro Dielectric Barrier Discharge (DBD) Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems

Authors: D. Kuvshinov, A. Siswanto, J. Lozano-Parada, W. Zimmerman

Abstract:

Ozone is well known as a powerful fast reaction rate oxidant. The ozone based processes produce no by-product left as a non-reacted ozone returns back to the original oxygen molecule. Therefore an application of ozone is widely accepted as one of the main directions for a sustainable and clean technologies development. There are number of technologies require ozone to be delivered to specific points of a production network or reactors construction. Due to space constrains, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units. Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented. At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28E-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure. The MROG construction makes it applicable for emerged and dry systems. With a robust compact design MROG can be used as incorporated unit for production lines of high complexity.

Keywords: dielectric barrier discharge (DBD), micro reactor, ozone, plasma

Procedia PDF Downloads 317
426 Effect of Tool Size and Cavity Depth on Response Characteristics during Electric Discharge Machining on Superalloy Metal - An Experimental Investigation

Authors: Sudhanshu Kumar

Abstract:

Electrical discharge machining, also known as EDM, process is one of the most applicable machining process for removal of material in hard to machine materials like superalloy metals. EDM process utilizes electrical energy into sparks to erode the metals in presence of dielectric medium. In the present investigation, superalloy, Inconel 718 has been selected as workpiece and electrolytic copper as tool electrode. Attempt has been made to understand the effect of size of tool with varying cavity depth during drilling of hole through EDM process. In order to systematic investigate, tool size in terms of tool diameter and cavity depth along with other important electrical parameters namely, peak current, pulse-on time and servo voltage have been varied at three different values and the experiments has been designed using fractional factorial (Taguchi) method. Each experiment has been repeated twice under the same condition in order to understand the variability within the experiments. The effect of variations in parameters has been evaluated in terms of material removal rate, tool wear rate and surface roughness. Results revel that change in tool diameter during machining affects the response characteristics significantly. Larger tool diameter yielded 13% more material removal rate than smaller tool diameter. Analysis of the effect of variation in cavity depth is notable. There is no significant effect of cavity depth on material removal rate, tool wear rate and surface quality. This indicates that number of experiments can be performed to analyze other parameters effect even at smaller depth of cavity which can reduce the cost and time of experiments. Further, statistical analysis has been carried out to identify the interaction effect between parameters.

Keywords: EDM, Inconel 718, material removal rate, roughness, tool wear, tool size

Procedia PDF Downloads 189
425 Adoption of Risk and Insurance among Aquaculture Producers in Khuzestan Province, Iran

Authors: Kiyanoush Ghalavand

Abstract:

Aquaculture production is inherently a risky business, and farmers face a variety of weather, pest, disease, inptut supply, and market related risks. There are many factors out farmers control and unpredictable. Insurance has an important role in aquaculture production and is a tool to support farmers against threats. Investigation of factors affecting aquaculture farmers' adoption of aquaculture insurance strategy was the objective of this study. The purpose of this study was determining the related factors to adoption of insurance by aquaculture farmers in Khuzestan province, Iran. The research design was a descriptive and correlation surveying method. Aquaculture farmers in Khuzestan province were the target population for this study. A random sample of aquaculture selected (N=1830, n =139). The main result of the study reveled that exist correlation between the level of education, knowledge about purpose of insurance, participation in extension course, visit with insurance organization, and contact with extension agents to the adoption of insurance by aquaculture farmers were significantly positive. By using Bartlett's test and KMO test, determine whether research variables are appropriate for factor analysis (Sig = 0.000, Bartlett test = 0.9724, KMO = 0.74). The number of factors was determined using a split plot, eigenvalue, and percent of variance. An examination of the items and their factors loadings was used to understand the nature of the nine factors. To reduce subjectivity, items with factor loading equal to or greater than 0.5 were considered most important when factors were labeled. The nine factors were labeled (1) Extension and education activities, (2) Economical characteristics, (3) Governmental support, (4) communicational channel, (5) local leaders, (6) Facilitate in given damage (7) Motivation establishing, (8) Given damage in appropriate methods and (9) Appropriate activities by insurance organization. The results obtained from the factors analysis reveal that the nine factors explain percentage75 of the variation of the adoption of insurance of the adoption of insurance by aquaculture farmers in Khuzestan province.

Keywords: aquaculture farmers, insurance, factorial analysis, Khuzestan province, risks

Procedia PDF Downloads 133
424 Evaluation of Elements Impurities in Drugs According to Pharmacopoeia by use FESEM-EDS Technique

Authors: Rafid Doulab

Abstract:

Elemental Impurities in the Pharmaceuticals industryis are indispensable to ensure pharmaceuticalssafety for 24 elements. Although atomic absorption and inductively coupled plasma are used in the U.S Pharmacopeia and the European Pharmacopoeia, FESEM with energy dispersive spectrometers can be applied as an alternative analysis method for quantitative and qualitative results for a variety of elements without chemical pretreatment, unlike other techniques. This technique characterizes by shortest time, with more less contamination, no reagent consumption, and generation of minimal residue or waste, as well as sample preparations time limiting, with minimal analysis error. Simple dilution for powder or direct analysis for liquid, we analyzed the usefulness of EDS method in testing with field emission scanning electron microscopy (FESEM, SUPRA 55 Carl Zeiss Germany) with an X-ray energy dispersion (XFlash6l10 Bruker Germany). The samples analyzed directly without coating by applied 5µ of known concentrated diluted sample on carbon stub with accelerated voltage according to sample thickness, the result for this spot was in atomic percentage, and by Avogadro converted factor, the final result will be in microgram. Conclusion and recommendation: The conclusion of this study is application of FESEM-EDS in US pharmacopeia and ICH /Q3D guideline to reach a high-precision and accurate method in element impurities analysis of drugs or bulk materials to determine the permitted daily exposure PDE in liquid or solid specimens, and to obtain better results than other techniques, by the way it does not require complex methods or chemicals for digestion, which interfere with the final results with the possibility of to keep the sample at any time for re analysis. The recommendation is to use this technique in pharmacopeia as standard methods like inductively coupled plasma both ICP-AES, ICP-OES, and ICP-MS.

Keywords: pharmacopoeia, FESEM-EDS, element impurities, atomic concentration

Procedia PDF Downloads 95
423 Enzyme Immobilization on Functionalized Polystyrene Nanofibersfor Bioprocessing Applications

Authors: Mailin Misson, Bo Jin, Sheng Dai, Hu Zhang

Abstract:

Advances in biotechnology have witnessed a growing interest in enzyme applications for the development of green and sustainable bio processes. While known as powerful bio catalysts, enzymes are no longer of economic value when extended to large commercialization. Alternatively, immobilization technology allows enzyme recovery and continuous reuse which subsequently compensates high operating costs. Employment of enzymes on nano structured materials has been recognized as a promising approach to enhance enzyme catalytic performances. High porosity, inter connectivity and self-assembling behaviors endow nano fibers as exciting candidate for enzyme carrier in bio reactor systems. In this study, nano fibers were successfully fabricated via electro spinning system by optimizing the polymer concentration (10-30 %, w/v), applied voltage (10-30 kV) and discharge distance (11-26 cm). Microscopic images have confirmed the quality as homogeneous and good fiber alignment. The nano fibers surface was modified using strong oxidizing agent to facilitate bio molecule binding. Bovine serum albumin and β-galactosidase enzyme were employed as model bio catalysts and immobilized onto the oxidized surfaces through covalent binding. Maximum enzyme adsorption capacity of the modified nano fibers was 3000 mg/g, 3-fold higher than the unmodified counterpart (1000 mg/g). The highest immobilization yield was 80% and reached the saturation point at 2 mg/ml of enzyme concentration. The results indicate a significant increase of activity retention by the enzyme-bound modified nano fibers (80%) as compared to the nascent one (60%), signifying excellent enzyme-nano carrier bio compatibility. The immobilized enzyme was further used for the bio conversion of dairy wastes into value-added products. This study demonstrates great potential of acid-modified electrospun polystyrene nano fibers as enzyme carriers.

Keywords: immobilization, enzyme, nanocarrier, nanofibers

Procedia PDF Downloads 275
422 Shelf Life and Overall Quality of Pretreated and Modified Atmosphere Packaged ‘Ready-To-Eat’ Pomegranate arils cv. Bhagwa Stored at 1⁰C

Authors: Sangram Dhumal, Anil Karale

Abstract:

The effect of different pretreatments and modified atmosphere packaging on the quality of minimally processed pomegranate arils of Bhagwa cultivar was evaluated during storage at 1⁰C for 16 days. Hand extracted pomegranate arils were pretreated with different antioxidants and surfactants viz., 100ppm sodium hypochlorite plus 0.5 percent ascorbic acid plus 0.5 percent citric acid, 10 and 20 percent honey solution, 0.1 percent nanosilver stipulated food grade hydrogen peroxide alone and in combination with 10 percent honey solution and control. The disinfected, rinsed and air-dried pomegranate arils were packed in polypropylene punnets (135g each) with different modified atmospheres and stored up to 16 days at 1⁰C. Changes in colour, pH, total soluble solids, sugars, anthocyanins, phenols, acidity, antioxidant activity, microbial and yeast and mold count over initial values were recorded in all the treatments under study but highest on those without antioxidant and surfactant treatments. Pretreated arils stored at 1⁰C recorded decrease in L*, b* value, pH, levels of non-reducing and total sugars, polyphenols, antioxidant activity and acceptability of arils and increase in total soluble solids, a* value, anthocyanins and microbial count. Increase in anthocyanin content was observed in modified atmosphere packaged pretreated arils stored at 1⁰C. Modified atmosphere packaging with 100 percent nitrogen recorded minimum changes in physicochemical and sensorial parameters with minimum microbial growth. Untreated arils in perforated punnets and with air (control) gave shelf life up to 6 days only. The pretreatment of arils with 10 percent honey plus 0.1 percent nanosilver stipulated food grade hydrogen peroxide and packaging in 100 percent nitrogen recorded minimum changes in physicochemical parameters. The treatment also restricted microbial growth and maintained colour, anthocyanin pigmentation, antioxidant activity and overall fresh like quality of arils. The same dipping treatment along with modified atmosphere packaging extended the shelf life of fresh ready to eat arils up to 14 to 16 days with enhanced acceptability when stored at 1⁰C.

Keywords: anthocyanin content, pomegranate, MAP, minimally processed, microbial quality, Bhagwa, shelf-life, overall quality

Procedia PDF Downloads 159
421 Management of Nutrition Education in Spa Resorts in Poland

Authors: Joanna Wozniak-Holecka, Sylwia Jaruga-Sekowska

Abstract:

There are 45 statutory spa and treatment areas in Poland, and the demand for spa and treatment services increases year by year. Within each type of spa treatment facilities, nutritional education services are provided. During spa treatment, the patient learns the principles of rational nutrition and applied diet therapy. It should help him develop proper eating habits, which will also follow at home. However, the nutrition education system of spa resort patients should be considered as very imperfect and requiring a definite systemic correction. It has, at the same time, a wide human and infrastructure base, which guarantees to obtain positive reinforcement in the scope of undertaken activities and management. Unfortunately, this advantage is not fully used. The aim of the project was to assess the quality of implemented nutritional education and to assess the diet of patients in spa treatment entities from a nationwide perspective. The material for the study was data obtained as part of an in-depth interview conducted among nutrition department managers (25 interviews) and a survey addressed to patients (600 questionnaires) of a selected group of spa resorts from across the country about the implementation of nutritional education in institutions. Also, decade menus for the basic diet, easily digestible diet and diet with limitation of easily digestible carbohydrates (a total of 1,120 menus) were obtained for the study. Almost 2/3 of respondents (73.2%) were overweight or obese, but only 32.8% decided on an easily digestible or low-energy diet during the treatment. Most of the surveyed patients rated the nutrition in spa resorts as satisfactory. Classes on nutrition education were carried out mainly by a dietitian (65% of meetings), the other educators were doctors and nurses. The meetings (95%) were of a group nature and lasted only 30 minutes on average. The subjects of the classes concerned the principles of proper nutrition and composition of meals, a nutrition pyramid and a diet adapted to a given disease. The assessed menus did not meet the nutrition standards and, therefore, did not provide patients with the correct quality of nutrition. The norm of protein, fat, vitamin A, B12, phosphorus, iron and sodium was exceeded, while vitamin D, folic acid, magnesium and zinc were not enough than recommended. The study allowed to conclude that there is a large discrepancy between the recommendations presented during the nutrition education classes and the quality of diet implemented in the examined institutions. The project may contribute to the development of effective educational tools in nutrition, especially about a specific group of chronically ill patients.

Keywords: diet, management, nutritional education, spa resort

Procedia PDF Downloads 124
420 Jagiellonian-PET: A Novel TOF-PET Detector Based on Plastic Scintillators

Authors: P. Moskal, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, A. Gruntowski, D. Kaminska, L. Kaplon, G. Korcyl, P. Kowalski, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, L. Raczynski, Z. Rudy, P. Salabura, N. G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, W. Wislicki, M. Zielinski, N. Zon

Abstract:

A new concept and results of the performance tests of the TOF-PET detection system developed at the Jagiellonian University will be presented. The novelty of the concept lies in employing long strips of polymer scintillators instead of crystals as detectors of annihilation quanta, and in using predominantly the timing of signals instead of their amplitudes for the reconstruction of Lines-of-Response. The diagnostic chamber consists of plastic scintillator strips readout by pairs of photo multipliers arranged axially around a cylindrical surface. To take advantage of the superior timing properties of plastic scintillators the signals are probed in the voltage domain with the accuracy of 20 ps by a newly developed electronics, and the data are collected by the novel trigger-less and reconfigurable data acquisition system. The hit-position and hit-time are reconstructed by the dedicated reconstruction methods based on the compressing sensing theory and the library of synchronized model signals. The solutions are subject to twelve patent applications. So far a time-of-flight resolution of ~120 ps (sigma) was achieved for a double-strip prototype with 30 cm field-of-view (FOV). It is by more than a factor of two better than TOF resolution achievable in current TOF-PET modalities and at the same time the FOV of 30 cm long prototype is significantly larger with respect to typical commercial PET devices. The Jagiellonian PET (J-PET) detector with plastic scintillators arranged axially possesses also another advantage. Its diagnostic chamber is free of any electronic devices and magnetic materials thus giving unique possibilities of combining J-PET with CT and J-PET with MRI for scanning the same part of a patient at the same time with both methods.

Keywords: PET-CT, PET-MRI, TOF-PET, scintillator

Procedia PDF Downloads 467
419 Selection of Suitable Reference Genes for Assessing Endurance Related Traits in a Native Pony Breed of Zanskar at High Altitude

Authors: Prince Vivek, Vijay K. Bharti, Manishi Mukesh, Ankita Sharma, Om Prakash Chaurasia, Bhuvnesh Kumar

Abstract:

High performance of endurance in equid requires adaptive changes involving physio-biochemical, and molecular responses in an attempt to regain homeostasis. We hypothesized that the identification of the suitable reference genes might be considered for assessing of endurance related traits in pony at high altitude and may ensure for individuals struggling to potent endurance trait in ponies at high altitude. A total of 12 mares of ponies, Zanskar breed, were divided into three groups, group-A (without load), group-B, (60 Kg) and group-C (80 Kg) on backpack loads were subjected to a load carry protocol, on a steep climb of 4 km uphill, and of gravel, uneven rocky surface track at an altitude of 3292 m to 3500 m (endpoint). Blood was collected before and immediately after the load carry on sodium heparin anticoagulant, and the peripheral blood mononuclear cell was separated for total RNA isolation and thereafter cDNA synthesis. Real time-PCR reactions were carried out to evaluate the mRNAs expression profile of a panel of putative internal control genes (ICGs), related to different functional classes, namely glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β₂ microglobulin (β₂M), β-actin (ACTB), ribosomal protein 18 (RS18), hypoxanthine-guanine phosophoribosyltransferase (HPRT), ubiquitin B (UBB), ribosomal protein L32 (RPL32), transferrin receptor protein (TFRC), succinate dehydrogenase complex subunit A (SDHA) for normalizing the real-time quantitative polymerase chain reaction (qPCR) data of native pony’s. Three different algorithms, geNorm, NormFinder, and BestKeeper software, were used to evaluate the stability of reference genes. The result showed that GAPDH was best stable gene and stability value for the best combination of two genes was observed TFRC and β₂M. In conclusion, the geometric mean of GAPDH, TFRC and β₂M might be used for accurate normalization of transcriptional data for assessing endurance related traits in Zanskar ponies during load carrying.

Keywords: endurance exercise, ubiquitin B (UBB), β₂ microglobulin (β₂M), high altitude, Zanskar ponies, reference gene

Procedia PDF Downloads 115
418 Evaluation of the Irritation Potential of Three Topical Formulations of Minoxidil 5% + Finasteride 0.1% Using Patch Test

Authors: Joshi Rajiv, Shah Priyank, Thavkar Amit, Rohira Poonam, Mehta Suyog

Abstract:

Topical formulation containing minoxidil and finasteride helps hair growth in the treatment of male androgenetic alopecia. The objective of this study is to compare the irritation potential of three conventional formulations of minoxidil 5% + finasteride 0.1% topical solution of in human patch test. The study was a single centre, double blind, non-randomized controlled study in 53 healthy adult Indian subjects. Occlusive patch test for 24 hours was performed with three formulations of minoxidil 5% + finasteride 0.1% topical solution. Products tested included aqueous based minoxidil 5% + finasteride 0.1% (AnasureTM-F, Sun Pharma, India – Brand A), lipid based minoxidil 5% + finasteride 0.1% (Brand B) and aqueous based minoxidil 5% + finasteride 0.1% (Brand C). Isotonic saline 0.9% and 1% w/w sodium lauryl sulphate were included as negative control and positive control respectively. Patches were applied and removed after 24 hours. The skin reaction was assessed and clinically scored 24 hours after the removal of the patches under constant artificial daylight source using the Draize scale (0-4 points scale for erythema/dryness//wrinkles and for oedema). Follow-up was scheduled after one week to confirm recovery for any reaction. A combined mean score up to 2.0/8.0 indicates a product is “non-irritant” and a score between 2.0/8.0 and 4.0/8.0 indicates “mildly irritant” and a score above 4.0/8.0 indicates “irritant”. The procedure of the patch test followed the principles outlined by the Bureau of Indian Standards (BIS) (IS 4011:2018; Methods of Test for safety evaluation of Cosmetics-3rd revision). Fifty three subjects with mean age 31.9 years (25 males and 28 females) participated in the study. The combined mean score ± standard deviation were: 0.06 ± 0.23 (Brand A), 0.81 ± 0.59 (Brand B), 0.38 ± 0.49 (Brand C), 2.92 ± 0.47 (positive control) and 0.0 ± 0.0 (Negative control). This means the score of Brand A (Sun Pharma product) was significantly lower than that of Brand B (p=0.001) and that of Brand C (p=0.001). The combined mean erythema score ± standard deviation were: 0.06 ± 0.23 (Brand A), 0.81 ± 0.59 (Brand B), 0.38 ± 0.49 (Brand C), 2.09 ± 0.4 (Positive control) and 0.0 ± 0.0 (Negative control). The mean erythema score of Brand A was significantly lower than Brand B (p=0.001) and that of Brand C (p=0.001). Any reaction observed at 24hours after patch removal subsided in a week. All the three topical formulations of minoxidil 5% + finasteride 0.1% were non-irritant. Brand A of minoxidil 5% + finasteride 0.1% (Sun Pharma) was found to be the least irritant than Brand B and Brand C based on the combined mean score and mean erythema score in the human patch test as per the BIS, IS 4011:2018

Keywords: erythema, finasteride, irritation, minoxidil, patch test

Procedia PDF Downloads 64
417 Evaluation of the Irritation Potential of Three Topical Formulations of Minoxidil 2% Using Patch Test

Authors: Sule Pallavi, Shah Priyank, Thavkar Amit, Rohira Poonam, Mehta Suyog

Abstract:

Introduction: Minoxidil has been used topically for a long time to assist hair growth in the management of male androgenetic alopecia. The aim of this study was a comparative assessment of the irritation potential of three commercial formulations of minoxidil 2% topical solution in a human patch test. Methodology: The study was a non-randomized, double-blind, controlled, single-center study of 56 healthy adult Indian subjects. A 24-hour occlusive patch test was conducted with three formulations of minoxidil 2% topical solution. Products tested were aqueous-based minoxidil 2% (AnasureTM 2%, Sun Pharma, India – Brand A), alcohol-based minoxidil 2% (Brand B) and aqueous-based minoxidil 2% (Brand C). Isotonic saline 0.9% and 1% w/w sodium lauryl sulphate as a negative and positive control, respectively, were included. Patches were applied on the back, followed by removal after 24 hours. The Draize scale (0-4 points scale for erythema/dryness/wrinkles and for oedema) was used to evaluate and clinically score the skin reaction under constant artificial daylight 24 hours after the removal of the patches. The patch test was based on the principles outlined by Bureau of Indian Standards (BIS) (IS 4011:2018; Methods of Test for safety evaluation of Cosmetics-3rd revision). A mean combined score up to 2.0/8.0 indicates that a product is “non-irritant,” and a score between 2.0/8.0 and 4.0/8.0 indicates “mildly irritant” and a score above 4.0/8.0 indicates “irritant”. In case of any skin reaction that was observed, a follow-up was planned after one week to confirm recovery. Results: The 56 subjects who participated in the study had a mean age of 28.7 years (28 males and 28 females). The combined mean score ± standard deviation was: 0.09 ± 0.29 (Brand A), 0.29± 0.53 (Brand B), 0.30 ± 0.46 (Brand C), 3.25 ± 0.77 (positive control) and 0.02 ± 0.13 (negative control). This mean score of Brand A (Sun Pharma) was significantly lower than that of Brand B (p=0.016) and that of Brand C (p=0.004). The mean erythema score ± standard deviation was: 0.09 ± 0.29 (Brand A), 0.27 ± 0.49 (Brand B), 0.30 ± 0.46 (Brand C), 2.5 ± 0.66 (positive control) and 0.02 ± 0.13 (negative control). The mean erythema score of Brand A (Sun Pharma) was significantly lower than that of Brand B (p=0.019) and that of Brand C (p=0.004). Reactions that were observed 24 hours after patch removal subsided in a week’s time. Conclusion: Based on the human patch test as per the BIS, IS 4011:2018, all the three topical formulations of minoxidil 2% were found to be non-irritant. Brand A of 2% minoxidil (Sun Pharma) was found to be the least irritant than Brand B and Brand C based on the combined mean score and mean erythema score.

Keywords: erythema, irritation, minoxidil, patch test

Procedia PDF Downloads 71
416 Performance Monitoring and Environmental Impact Analysis of a Photovoltaic Power Plant: A Numerical Modeling Approach

Authors: Zahzouh Zoubir

Abstract:

The widespread adoption of photovoltaic panel systems for global electricity generation is a prominent trend. Algeria, demonstrating steadfast commitment to strategic development and innovative projects for harnessing solar energy, emerges as a pioneering force in the field. Heat and radiation, being fundamental factors in any solar system, are currently subject to comprehensive studies aiming to discern their genuine impact on crucial elements within photovoltaic systems. This endeavor is particularly pertinent given that solar module performance is exclusively assessed under meticulously defined Standard Test Conditions (STC). Nevertheless, when deployed outdoors, solar modules exhibit efficiencies distinct from those observed under STC due to the influence of diverse environmental factors. This discrepancy introduces ambiguity in performance determination, especially when surpassing test conditions. This article centers on the performance monitoring of an Algerian photovoltaic project, specifically the Oued El Keberite power (OKP) plant boasting a 15 megawatt capacity, situated in the town of Souk Ahras in eastern Algeria. The study elucidates the behavior of a subfield within this facility throughout the year, encompassing various conditions beyond the STC framework. To ensure the optimal efficiency of solar panels, this study integrates crucial factors, drawing on an authentic technical sheet from the measurement station of the OKP photovoltaic plant. Numerical modeling and simulation of a sub-field of the photovoltaic station were conducted using MATLAB Simulink. The findings underscore how radiation intensity and temperature, whether low or high, impact the short-circuit current, open-circuit voltage; fill factor, and overall efficiency of the photovoltaic system.

Keywords: performance monitoring, photovoltaic system, numerical modeling, radiation intensity

Procedia PDF Downloads 47
415 Size Optimization of Microfluidic Polymerase Chain Reaction Devices Using COMSOL

Authors: Foteini Zagklavara, Peter Jimack, Nikil Kapur, Ozz Querin, Harvey Thompson

Abstract:

The invention and development of the Polymerase Chain Reaction (PCR) technology have revolutionised molecular biology and molecular diagnostics. There is an urgent need to optimise their performance of those devices while reducing the total construction and operation costs. The present study proposes a CFD-enabled optimisation methodology for continuous flow (CF) PCR devices with serpentine-channel structure, which enables the trade-offs between competing objectives of DNA amplification efficiency and pressure drop to be explored. This is achieved by using a surrogate-enabled optimisation approach accounting for the geometrical features of a CF μPCR device by performing a series of simulations at a relatively small number of Design of Experiments (DoE) points, with the use of COMSOL Multiphysics 5.4. The values of the objectives are extracted from the CFD solutions, and response surfaces created using the polyharmonic splines and neural networks. After creating the respective response surfaces, genetic algorithm, and a multi-level coordinate search optimisation function are used to locate the optimum design parameters. Both optimisation methods produced similar results for both the neural network and the polyharmonic spline response surfaces. The results indicate that there is the possibility of improving the DNA efficiency by ∼2% in one PCR cycle when doubling the width of the microchannel to 400 μm while maintaining the height at the value of the original design (50μm). Moreover, the increase in the width of the serpentine microchannel is combined with a decrease in its total length in order to obtain the same residence times in all the simulations, resulting in a smaller total substrate volume (32.94% decrease). A multi-objective optimisation is also performed with the use of a Pareto Front plot. Such knowledge will enable designers to maximise the amount of DNA amplified or to minimise the time taken throughout thermal cycling in such devices.

Keywords: PCR, optimisation, microfluidics, COMSOL

Procedia PDF Downloads 136
414 Experimental Design in Extraction of Pseudomonas sp. Protease from Fermented Broth by Polyethylene Glycol/Citrate Aqueous Two-Phase System

Authors: Omar Pillaca-Pullo, Arturo Alejandro-Paredes, Carol Flores-Fernandez, Marijuly Sayuri Kina, Amparo Iris Zavaleta

Abstract:

Aqueous two-phase system (ATPS) is an interesting alternative for separating industrial enzymes due to it is easy to scale-up and low cost. Polyethylene glycol (PEG) mixed with potassium phosphate or magnesium sulfate is one of the most frequently polymer/salt ATPS used, but the consequences of its use is a high concentration of phosphates and sulfates in wastewater causing environmental issues. Citrate could replace these inorganic salts due to it is biodegradable and does not produce toxic compounds. On the other hand, statistical design of experiments is widely used for ATPS optimization and it allows to study the effects of the involved variables in the purification, and to estimate their significant effects on selected responses and interactions. The 24 factorial design with four central points (20 experiments) was employed to study the partition and purification of proteases produced by Pseudomonas sp. in PEG/citrate ATPS system. ATPS was prepared with different sodium citrate concentrations [14, 16 and 18% (w/w)], pH values (7, 8 and 9), PEG molecular weight (2,000; 4,000 and 6,000 g/mol) and PEG concentrations [18, 20 and 22 % (w/w)]. All system components were mixed with 15% (w/w) of the fermented broth and deionized water was added to a final weight of 12.5 g. Then, the systems were mixed and kept at room temperature until to reach two-phases separation. Volumes of the top and bottom phases were measured, and aliquots from both phases were collected for subsequent proteolytic activity and total protein determination. Influence of variables such as PEG molar mass (MPEG), PEG concentration (CPEG), citrate concentration (CSal) and pH were evaluated on the following responses: purification factor (PF), activity yield (Y), partition coefficient (K) and selectivity (S). STATISTICA program version 10 was used for the analysis. According to the obtained results, higher levels of CPEG and MPEG had a positive effect on extraction, while pH did not influence on the process. On the other hand, the CSal could be related with low values of Y because of the citrate ions have a negative effect on solubility and enzymatic structure. The optimum values of Y (66.4 %), PF (1.8), K (5.5) and S (4.3) were obtained at CSal (18%), MPEG (6,000 g/mol), CPEG (22%) and pH 9. These results indicated that the PEG/citrate system is accurate to purify these Pseudomonas sp. proteases from fermented broth as a first purification step.

Keywords: citrate, polyethylene glycol, protease, Pseudomonas sp

Procedia PDF Downloads 175
413 Finite Element Modelling for the Development of a Planar Ultrasonic Dental Scaler for Prophylactic and Periodontal Care

Authors: Martin Hofmann, Diego Stutzer, Thomas Niederhauser, Juergen Burger

Abstract:

Dental biofilm is the main etiologic factor for caries, periodontal and peri-implant infections. In addition to the risk of tooth loss, periodontitis is also associated with an increased risk of systemic diseases such as atherosclerotic cardiovascular disease and diabetes. For this reason, dental hygienists use ultrasonic scalers for prophylactic and periodontal care of the teeth. However, the current instruments are limited to their dimensions and operating frequencies. The innovative design of a planar ultrasonic transducer introduces a new type of dental scalers. The flat titanium-based design allows the mass to be significantly reduced compared to a conventional screw-mounted Langevin transducer, resulting in a more efficient and controllable scaler. For the development of the novel device, multi-physics finite element analysis was used to simulate and optimise various design concepts. This process was supported by prototyping and electromechanical characterisation. The feasibility and potential of a planar ultrasonic transducer have already been confirmed by our current prototypes, which achieve higher performance compared to commercial devices. Operating at the desired resonance frequency of 28 kHz with a driving voltage of 40 Vrms results in an in-plane tip oscillation with a displacement amplitude of up to 75 μm by having less than 8 % out-of-plane movement and an energy transformation factor of 1.07 μm/mA. In a further step, we will adapt the design to two additional resonance frequencies (20 and 40 kHz) to obtain information about the most suitable mode of operation. In addition to the already integrated characterization methods, we will evaluate the clinical efficiency of the different devices in an in vitro setup with an artificial biofilm pocket model.

Keywords: ultrasonic instrumentation, ultrasonic scaling, piezoelectric transducer, finite element simulation, dental biofilm, dental calculus

Procedia PDF Downloads 96
412 Improved Benzene Selctivity for Methane Dehydroaromatization via Modifying the Zeolitic Pores by Dual Templating Approach

Authors: Deepti Mishra, K. K Pant, Xiu Song Zhao, Muxina Konarova

Abstract:

Catalytic transformation of simplest hydrocarbon methane into benzene and valuable chemicals over Mo/HZSM-5 has a great economic potential, however, it suffers serious hurdles due to the blockage in the micropores because of extensive coking at high temperature during methane dehydroaromatization (MDA). Under such conditions, it necessitates the design of micro/mesoporous ZSM-5, which has the advantages viz. uniform dispersibility of MoOx species, consequently the formation of active Mo sites in the micro/mesoporous channel and lower carbon deposition because of improved mass transfer rate within the hierarchical pores. In this study, we report a unique strategy to control the porous structures of ZSM-5 through a dual templating approach, utilizing C6 and C12 -surfactants as porogen. DFT studies were carried out to correlate the ZSM-5 framework development using the C6 and C12 surfactants with structure directing agent. The structural and morphological parameters of the synthesized ZSM-5 were explored in detail to determine the crystallinity, porosity, Si/Al ratio, particle shape, size, and acidic strength, which were further correlated with the physicochemical and catalytic properties of Mo modified HZSM-5 catalysts. After Mo incorporation, all the catalysts were tested for MDA reaction. From the activity test, it was observed that C6 surfactant-modified hierarchically porous Mo/HZSM-5(H) showed the highest benzene formation rate (1.5 μmol/gcat. s) and longer catalytic stability up to 270 min of reaction as compared to the conventional microporous Mo/HZSM-5(C). In contrary, C12 surfactant modified Mo/HZSM-5(D) is inferior towards MDA reaction (benzene formation rate: 0.5 μmol/gcat. s). We ascribed that the difference in MDA activity could be due to the hierarchically interconnected meso/microporous feature of Mo/HZSM-5(H) that precludes secondary reaction of coking from benzene and hence contributing substantial stability towards MDA reaction.

Keywords: hierarchical pores, Mo/HZSM-5, methane dehydroaromatization, coke deposition

Procedia PDF Downloads 57
411 Effects of Hawthorn (Crataegus monogyna) Polyphenols on Oxymyoglobin and Myofibrillar Proteins Stability in Meat

Authors: Valentin Nicorescu, Nicoleta C. Predescu, Camelia Papuc, Iuliana Gajaila, Carmen D. Petcu

Abstract:

The oxidation of the fresh muscle oxymyoglobin (bright red colour) to metmyoglobin (brown colour) leads to discoloration of red meats. After slaughter, enzymatic systems involved in metmyoglobin reduction are continually depleted as time post-mortem progresses, thus the meat colour is affected. Phenolic compounds are able to scavenge reactive species involved in oxymyoglobin oxidation and to reduce metmyoglobin to oxymyoglobin. The aim of this study was to investigate the effect of polyphenols extracted from hawthorn fruits on the stability of oxymyoglobin and myofibrillar proteins in ground pork subject to refrigeration for 6 days. Hawthorn polyphenols (HP) were added in ground pork in 100, 200 and 300 ppm concentrations. Oxymyoglobin and metmyoglobin were evaluated spectrophotometrically at every 2 days and electrophoretic pattern of myofibrillar proteins was investigated at days 0 and 6 by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE). For all meat samples, oxymyoglobin concentration significantly decreased during the first 4 days of refrigeration. After 6 days, the significant decrease of oxymyoglobin concentration continued only in the negative control samples. In samples treated with HP and butylated hydroxylanisole (BHA - positive control), oxymyoglobin concentration increased after 6 days of refrigeration, the highest levels complying with the following order: 100 ppm HP > 200 ppm HP > 300 ppm HP > 100 ppm BHA. The increase in metmyoglobin was coincidental with the decrease in oxymyoglobin; metmyoglobin concentration progressively increased during the first 4 days of refrigeration in all meat samples. After 6 days, in meat samples treated with HP and BHA, lower metmyoglobin concentrations were found (compared to day 4), respecting the following order: 100 ppm HP < 200 ppm HP < 300 ppm HP < 100 ppm BHA. These results showed that hawthorn polyphenols and BHA reduced metmyoglobin (MbFe3+) to oxymyoglobin (MbFe2+), and the strongest reducing character was recorded for 100 ppm HP. After 6 days of refrigeration, electrophoretic pattern of myofibrillar proteins showed minor changes compared to day 0, indicating that HP prevent protein degradation as well as synthetic antioxidant BHA. Also, HP did not induce cross-links in the myofibrillar proteins, to form protein aggregates, and no risk of reducing their ability to retain water was identified. The pattern of oxymyoglobin and metmyoglobin concentrations determined in this study showed that hawthorn polyphenols are able to reduce metmyoglobin to oxymyoglobin and to delay oxymyoglobin oxidation, especially when they are added to ground meat in concentration of 100 ppm. This work was carried out through Partnerships in priority areas Program – PN II, implemented with the support of MEN – UEFISCDI (Romania), project nr. 149/2014.

Keywords: Hawthorn polyphenols, metmyoglobin, oxymyoglobin, proteins stability

Procedia PDF Downloads 198
410 Design and Implementation of 3kVA Grid-Tied Transformerless Power Inverter for Solar Photovoltaic Application

Authors: Daniel O. Johnson, Abiodun A. Ogunseye, Aaron Aransiola, Majors Samuel

Abstract:

Power Inverter is a very important device in renewable energy use particularly for solar photovoltaic power application because it is the effective interface between the DC power generator and the load or the grid. Transformerless inverter is getting more and more preferred to the power converter with galvanic isolation transformer and may eventually supplant it. Transformerless inverter offers advantages of improved DC to AC conversion and power delivery efficiency; and reduced system cost, weight and complexity. This work presents thorough analysis of the design and prototyping of 3KVA grid-tie transformerless inverter. The inverter employs electronic switching method with minimised heat generation in the system and operates based on the principle of pulse-width modulation (PWM). The design is such that it can take two inputs, one from PV arrays and the other from Battery Energy Storage BES and addresses the safety challenge of leakage current. The inverter system was designed around microcontroller system, modeled with Proteus® software for simulation and testing of the viability of the designed inverter circuit. The firmware governing the operation of the grid-tied inverter is written in C language and was developed using MicroC software by Mikroelectronica® for writing sine wave signal code for synchronization to the grid. The simulation results show that the designed inverter circuit performs excellently with very high efficiency, good quality sinusoidal output waveform, negligible harmonics and gives very stable performance under voltage variation from 36VDC to 60VDC input. The prototype confirmed the simulated results and was successfully synchronized with the utility supply. The comprehensive analyses of the circuit design, the prototype and explanation on overall performance will be presented.

Keywords: grid-tied inverter, leakage current, photovoltaic system, power electronic, transformerless inverter

Procedia PDF Downloads 268
409 Enhancing the Stability of Vietnamese Power System - from Theory to Practical

Authors: Edwin Lerch, Dirk Audring, Cuong Nguyen Mau, Duc Ninh Nguyen, The Cuong Nguyen, The Van Nguyen

Abstract:

The National Load Dispatch Centre of Electricity Vietnam (EVNNLDC) and Siemens PTI investigated the stability of the electrical 500/220 kV transportation system of Vietnam. The general scope of the investigations is improving the stability of the Vietnam power system and giving the EVNNLDC staff the capability to decide how to deal with expected stability challenges in the future, which are related to the very fast growth of the system. Rapid system growth leads to a very high demand of power transmission from North to South. This was investigated by stability studies of interconnected power system with neighboring countries. These investigations are performed in close cooperation and coordination with the EVNNLDC project team. This important project includes data collection, measurement, model validation and investigation of relevant stability phenomena as well as training of the EVNNLDC staff. Generally, the power system of Vietnam has good voltage and dynamic stability. The main problems are related to the longitudinal system with more power generation in the North and Center, especially hydro power, and load centers in the South of Vietnam. Faults on the power transmission system from North to South risks the stability of the entire system due to a high power transfer from North to South and high loading of the 500 kV backbone. An additional problem is the weak connection to Cambodia power system which leads to interarea oscillations mode. Therefore, strengthening the power transfer capability by new 500kV lines or HVDC connection and balancing the power generation across the country will solve many challenges. Other countermeasures, such as wide area load shedding, PSS tuning and correct SVC placement will improve and stabilize the power system as well. Primary frequency reserve should be increased.

Keywords: dynamic power transmission system studies, blackout prevention, power system interconnection, stability

Procedia PDF Downloads 332
408 A Computational Study of Very High Turbulent Flow and Heat Transfer Characteristics in Circular Duct with Hemispherical Inline Baffles

Authors: Dipak Sen, Rajdeep Ghosh

Abstract:

This paper presents a computational study of steady state three dimensional very high turbulent flow and heat transfer characteristics in a constant temperature-surfaced circular duct fitted with 900 hemispherical inline baffles. The computations are based on realizable k-ɛ model with standard wall function considering the finite volume method, and the SIMPLE algorithm has been implemented. Computational Study are carried out for Reynolds number, Re ranging from 80000 to 120000, Prandtl Number, Pr of 0.73, Pitch Ratios, PR of 1,2,3,4,5 based on the hydraulic diameter of the channel, hydrodynamic entry length, thermal entry length and the test section. Ansys Fluent 15.0 software has been used to solve the flow field. Study reveals that circular pipe having baffles has a higher Nusselt number and friction factor compared to the smooth circular pipe without baffles. Maximum Nusselt number and friction factor are obtained for the PR=5 and PR=1 respectively. Nusselt number increases while pitch ratio increases in the range of study; however, friction factor also decreases up to PR 3 and after which it becomes almost constant up to PR 5. Thermal enhancement factor increases with increasing pitch ratio but with slightly decreasing Reynolds number in the range of study and becomes almost constant at higher Reynolds number. The computational results reveal that optimum thermal enhancement factor of 900 inline hemispherical baffle is about 1.23 for pitch ratio 5 at Reynolds number 120000.It also shows that the optimum pitch ratio for which the baffles can be installed in such very high turbulent flows should be 5. Results show that pitch ratio and Reynolds number play an important role on both fluid flow and heat transfer characteristics.

Keywords: friction factor, heat transfer, turbulent flow, circular duct, baffle, pitch ratio

Procedia PDF Downloads 352