Search results for: traditional coal mining
3349 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population
Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath
Abstract:
Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics
Procedia PDF Downloads 1673348 Unveiling the Domino Effect: Barriers and Strategies in the Adoption of Telecommuting as a Post-Pandemic Workspace
Authors: Divnesh Lingam, Devi Rengamani Seenivasagam, Prashant Chand, Caleb Yee, John Chief, Rajeshkannan Ananthanarayanan
Abstract:
Telecommuting Post-Pandemic: Barriers, Solutions, and Strategies. Amidst the COVID-19 outbreak in 2020, remote work emerged as a vital business continuity measure. This study investigates telecommuting’s modern work model, exploring its benefits and obstacles. Utilizing Interpretive Structural Modelling uncovers barriers hindering telecommuting adoption. A validated set of thirteen barriers is examined through departmental surveys, revealing interrelationships. The resulting model highlights interactions and dependencies, forming a foundational framework. By addressing dominant barriers, a domino effect on subservient barriers is demonstrated. This research fosters further exploration, proposing management strategies for successful telecommuting adoption and reshaping the traditional workspace.Keywords: barriers, interpretive structural modelling, post-pandemic, telecommuting
Procedia PDF Downloads 983347 Harnessing Renewable Energy as a Strategy to Combating Climate Change in Sub Saharan Africa
Authors: Gideon Nyuimbe Gasu
Abstract:
Sub Saharan Africa is at a critical point, experiencing rapid population growth, particularly in urban areas and young growing force. At the same time, the growing risk of catastrophic global climate change threatens to weaken food production system, increase intensity and frequency of drought, flood, and fires and undermine gains on development and poverty reduction. Although the region has the lowest per capital greenhouse gas emission level in the world, it will need to join global efforts to address climate change, including action to avoid significant increases and to encourage a green economy. Thus, there is a need for the concept of 'greening the economy' as was prescribed at Rio Summit of 1992. Renewable energy is one of the criterions to achieve this laudable goal of maintaining a green economy. There is need to address climate change while facilitating continued economic growth and social progress as energy today is critical to economic growth. Fossil fuels remain the major contributor of greenhouse gas emission. Thus, cleaner technologies such as carbon capture storage, renewable energy have emerged to be commercially competitive. This paper sets out to examine how to achieve a low carbon economy with minimal emission of carbon dioxide and other greenhouse gases which is one of the outcomes of implementing a green economy. Also, the paper examines the different renewable energy sources such as nuclear, wind, hydro, biofuel, and solar voltaic as a panacea to the looming climate change menace. Finally, the paper assesses the different renewable energy and energy efficiency as a propeller to generating new sources of income and jobs and in turn reduces carbon emission. The research shall engage qualitative, evaluative and comparative methods. The research will employ both primary and secondary sources of information. The primary sources of information shall be drawn from the sub Saharan African region and the global environmental organizations, energy legislation, policies and related industries and the judicial processes. The secondary sources will be made up of some books, journal articles, commentaries, discussions, observations, explanations, expositions, suggestions, prescriptions and other material sourced from the internet on renewable energy as a panacea to climate change. All information obtained from these sources will be subject to content analysis. The research result will show that the entire planet is warming as a result of the activities of mankind which is clear evidence that the current development is fundamentally unsustainable. Equally, the study will reveal that a low carbon development pathway in the sub Saharan African region should be embraced to minimize emission of greenhouse gases such as using renewable energy rather than coal, oil, and gas. The study concludes that until adequate strategies are devised towards the use of renewable energy the region will continue to add and worsen the current climate change menace and other adverse environmental conditions.Keywords: carbon dioxide, climate change, legislation/law, renewable energy
Procedia PDF Downloads 2343346 Disrupting Traditional Industries: A Scenario-Based Experiment on How Blockchain-Enabled Trust and Transparency Transform Nonprofit Organizations
Authors: Michael Mertel, Lars Friedrich, Kai-Ingo Voigt
Abstract:
Based on principle-agent theory, an information asymmetry exists in the traditional donation process. Consumers cannot comprehend whether nonprofit organizations (NPOs) use raised funds according to the designated cause after the transaction took place (hidden action). Therefore, charity organizations have tried to appear transparent and gain trust by using the same marketing instruments for decades (e.g., releasing project success reports). However, none of these measures can guarantee consumers that charities will use their donations for the purpose. With awareness of misuse of donations rising due to the Ukraine conflict (e.g., funding crime), consumers are increasingly concerned about the destination of their charitable purposes. Therefore, innovative charities like the Human Rights Foundation have started to offer donations via blockchain. Blockchain technology has the potential to establish profound trust and transparency in the donation process: Consumers can publicly track the progress of their donation at any time after deciding to donate. This ensures that the charity is not using donations against its original intent. Hence, the aim is to investigate the effect of blockchain-enabled transactions on the willingness to donate. Sample and Design: To investigate consumers' behavior, we use a scenario-based experiment. After removing participants (e.g., due to failed attention checks), 3192 potential donors participated (47.9% female, 62.4% bachelor or above). Procedure: We randomly assigned the participants to one of two scenarios. In all conditions, the participants read a scenario about a fictive charity organization called "Helper NPO." Afterward, the participants answered questions regarding their perception of the charity. Manipulation: The first scenario (n = 1405) represents a typical donation process, where consumers donate money without any option to track and trace. The second scenario (n = 1787) represents a donation process via blockchain, where consumers can track and trace their donations respectively. Using t-statistics, the findings demonstrate a positive effect of donating via blockchain on participants’ willingness to donate (mean difference = 0.667, p < .001, Cohen’s d effect size = 0.482). A mediation analysis shows significant effects for the mediation of transparency (Estimate = 0.199, p < .001), trust (Estimate = 0.144, p < .001), and transparency and trust (Estimate = 0.158, p < .001). The total effect of blockchain usage on participants’ willingness to donate (Estimate = 0.690, p < .001) consists of the direct effect (Estimate = 0.189, p < .001) and the indirect effects of transparency and trust (Estimate = 0.501, p < .001). Furthermore, consumers' affinity for technology moderates the direct effect of blockchain usage on participants' willingness to donate (Estimate = 0.150, p < .001). Donating via blockchain is a promising way for charities to engage consumers for several reasons: (1) Charities can emphasize trust and transparency in their advertising campaigns. (2) Established charities can target new customer segments by specifically engaging technology-affine consumers in the future. (3) Charities can raise international funds without previous barriers (e.g., setting up bank accounts). Nevertheless, increased transparency can also backfire (e.g., disclosure of costs). Such cases require further research.Keywords: blockchain, social sector, transparency, trust
Procedia PDF Downloads 1043345 Gamification to Enhance Learning Using Gagne's Learning Model
Authors: M. L. McLain, R. Sreelakshmi, Abhishek, Rajeshwaran, Bhavani Rao, Kamal Bijlani, R. Jayakrishnan
Abstract:
Technology enhanced learning has brought drastic changes in the field of education in the modern world. In this study we explore a novel way to improve how high school students learn by building a serious game that uses a pedagogical model developed by Robert Gagne. By integrating serious game with principles of Gagne’s learning model can provide engaging and meaningful instructions to students. The game developed in this study is a waste sorting game that can easily and succinctly demonstrate the principles of this learning model. All the tasks in the game that the player has to accomplish correspond to Gagne’s “Nine Events of Learning”. A quiz is incorporated in order to get data on the progress made by the player in understanding the concept and as well as to assess them. Additionally, an experimental study was conducted which demonstrates that game based learning using Gagne’s event is more effective than a traditional classroom setup.Keywords: game based learning, sorting and recycling of waste, Gagne’s learning model, e-Learning, technology enhanced learning
Procedia PDF Downloads 6363344 Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches
Authors: Chaima Babi, Said Gadri
Abstract:
The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications.Keywords: machine learning, deep learning, natural language, fake news, Bi-LSTM, LSTM, multiclass classification
Procedia PDF Downloads 993343 Use of Benin Laterites for the Mix Design of Structural Concrete
Authors: Yemalin D. Agossou, Andre Lecomte, Remi Boissiere, Edmond C. Adjovi, Abdelouahab Khelil
Abstract:
This paper presents a mixed design trial of structural concretes with laterites from Benin. These materials are often the only granular resources readily available in many tropical regions. In the first step, concretes were designed with raw laterites, but the performances obtained were rather disappointing in spite of high cement dosages. A detailed physical characterization of these materials then showed that they contained a significant proportion of fine clays and that the coarsest fraction (gravel) contained a variety of facies, some of which were not very dense or indurated. Washing these laterites, and even the elimination of the most friable grains of the gravel fraction, made it possible to obtain concretes with satisfactory properties in terms of workability, density and mechanical strength. However, they were found to be slightly less stiff than concretes made with more traditional aggregates. It is, therefore, possible to obtain structural concretes with only laterites and cement but at the cost of eliminating some of their granular constituents.Keywords: laterites, aggregates, concretes, mix design, mechanical properties
Procedia PDF Downloads 1643342 Performance Evaluation of Routing Protocols for Video Conference over MPLS VPN Network
Authors: Abdullah Al Mamun, Tarek R. Sheltami
Abstract:
Video conferencing is a highly demanding facility now a days in order to its real time characteristics, but faster communication is the prior requirement of this technology. Multi Protocol Label Switching (MPLS) IP Virtual Private Network (VPN) address this problem and it is able to make a communication faster than others techniques. However, this paper studies the performance comparison of video traffic between two routing protocols namely the Enhanced Interior Gateway Protocol(EIGRP) and Open Shortest Path First (OSPF). The combination of traditional routing and MPLS improve the forwarding mechanism, scalability and overall network performance. We will use GNS3 and OPNET Modeler 14.5 to simulate many different scenarios and metrics such as delay, jitter and mean opinion score (MOS) value are measured. The simulation result will show that OSPF and BGP-MPLS VPN offers best performance for video conferencing application.Keywords: OSPF, BGP, EIGRP, MPLS, Video conference, Provider router, edge router, layer3 VPN
Procedia PDF Downloads 3323341 Performance Analysis of Pumps-as-Turbine Under Cavitating Conditions
Authors: Calvin Stephen, Biswajit Basu, Aonghus McNabola
Abstract:
Market liberalization in the power sector has led to the emergence of micro-hydropower schemes that are dependent on the use of pumps-as-turbines in applications that were not suitable as potential hydropower sites in earlier years. These applications include energy recovery in water supply networks, sewage systems, irrigation systems, alcohol breweries, underground mining and desalination plants. As a result, there has been an accelerated adoption of pumpsas-turbine technology due to the economic advantages it presents in comparison to the conventional turbines in the micro-hydropower space. The performance of this machines under cavitation conditions, however, is not well understood as there is a deficiency of knowledge in literature focused on their turbine mode of operation. In hydraulic machines, cavitation is a common occurrence which needs to be understood to safeguard them and prolong their operation life. The overall purpose of this study is to investigate the effects of cavitation on the performance of a pumps-as-turbine system over its entire operating range. At various operating speeds, the cavitating region is identified experimentally while monitoring the effects this has on the power produced by the machine. Initial results indicate occurrence of cavitation at higher flow rates for lower operating speeds and at lower flow rates at higher operating speeds. This implies that for cavitation free operation, low speed pumps-as-turbine must be used for low flow rate conditions whereas for sites with higher flow rate conditions high speed turbines should be adopted. Such a complete understanding of pumps-as-turbine suction performance can aid avoid cavitation induced failures hence improved reliability of the micro-hydropower plant.Keywords: cavitation, micro-hydropower, pumps-as-turbine, system design
Procedia PDF Downloads 1263340 Healing Performances: Ethnographic Concepts and Emic Perspectives
Authors: S. Ishak, M. G. Nasuruddin
Abstract:
This paper looks at healing performances as ethnographic expressions of local knowledge and culture embedded within the Malay psyche and gemeinschaft. As society develops and progresses, these healing performances are caught within conflicting trajectories which become compounded by the contestations of tradition, religious concerns, locality and modernity. As exemplifications of the Malay ethos, these performances practice common rituals, cater to the innate needs of the practitioners and serve the targeted, closed, local community. This paper traces the ethnographic methods in documenting these practices as rituals of healing in a post-modern world. It delineates the ethnographic concepts used to analyze these rituals, and to semiotically read the varied binarial oppositions and juxtapositions. The paper concludes by highlighting the reconciliatory processes involved in maintaining these ritual performances as exemplifications of the Malay ethos playing an important role in the re-aligning, re-balancing and healing of the Malay community’s psyche.Keywords: angina, winds, semangat, spirits, traditional theatres, trance
Procedia PDF Downloads 3553339 Precision Assessment of the Orthometric Heights Determination in the Northern Part of Libya
Authors: Jamal A. Gledan, Akrm H. Algnin
Abstract:
The Global Positioning System (GPS) satellite-based technology has been utilized extensively in the last few years in a wide range of Geomatics and Geographic Information Systems (GIS) applications. One of the main challenges dealing with GPS-based heights consists of converting them into Mean Sea Level (MSL) heights which is used in surveys and mapping. In this research work, differences in heights of 50 points, in northern part of Libya were carried out using both ordinary levelling (in which Geoid is the reference datum) and GPS techniques (in which Ellipsoid is the reference datum). In addition, this study has utilized the EGM2008 model to obtain the undulation values between the ellipsoidal and orthometric heights. From these values with ellipsoidal heights which can be obtained from GPS observations to compute the orthomteric heights. This research presented a suitable alternative, from an economical point of view, to substitute the expensive traditional levelling technique particularly for topographic mapping.Keywords: geoid undulation, GPS, ordinary and geodetic levelling, orthometric height
Procedia PDF Downloads 4533338 Agroecology Approaches Towards Sustainable Agriculture and Food System: Reviewing and Exploring Selected Policies and Strategic Documents through an Agroecological Lens
Authors: Dereje Regasa
Abstract:
The global food system is at a crossroads, which requires prompt action to minimize the effects of the crises. Agroecology is gaining prominence due to its contributions to sustainable food systems. To support efforts in mitigating the crises, the Food and Agriculture Organization (FAO) established alternative approaches for sustainable agri-food systems. Agroecological elements and principles were developed to guide and support measures that countries need to achieve the Sustainable Development Goals (SDGs). The SDGs require the systemic integration of practices for a smart intensification or adaptation of traditional or industrial agriculture. As one of the countries working towards SDGs, the agricultural practices in Ethiopia need to be guided by these agroecological elements and principles. Aiming at the identification of challenging aspects of a sustainable agri-food system and the characterization of an enabling environment for agroecology, as well as exploring to what extent the existing policies and strategies support the agroecological transition process, five policy and strategy documents were reviewed. These documents are the Rural Development Policy and Strategy, the Environment Policy, the Biodiversity Policy, and the Soil Strategy of the Ministry of Agriculture (MoA). Using the Agroecology Criteria Tool (ACT), the contents were reviewed, focusing on agroecological requirements and the inclusion of sustainable practices. ACT is designed to support a self-assessment of elements supporting agroecology. For each element, binary values were assigned based on the inclusion of the minimum requirements index and then validated through discussion with the document owners. The results showed that the documents were well below the requirements for an agroecological transition of the agri-food system. The Rural Development Policy and Strategy only suffice to 83% in Human and Social Value. It does not support the transition concerning the other elements. The Biodiversity Policy and Soil Strategy suffice regarding the inclusion of Co-creation and Sharing of knowledge (100%), while the remaining elements were not considered sufficiently. In contrast, the Environment Policy supports the transition with three elements accounting for 100%. These are Resilience, Recycling, and Human and Social Care. However, when the four documents were combined, elements such as Synergies, Diversity, Efficiency, Human and Social value, Responsible governance, and Co-creation and Sharing of knowledge were identified as fully supportive (100%). This showed that the policies and strategies complemented one another to a certain extent. However, the evaluation results call for improvements concerning elements like Culture and food traditions, Circular and solidarity economy, Resilience, Recycling, and Regulation and balance since the majority of the elements were not sufficiently observed. Consequently, guidance for the smart intensification of local practices is needed, as well as traditional knowledge enriched with advanced technologies. Ethiopian agricultural and environmental policies and strategies should provide sufficient support and guidance for the intensification of sustainable practices and should provide a framework for an agroecological transition towards a sustainable agri-food system.Keywords: agroecology, diversity, recycling, sustainable food system, transition
Procedia PDF Downloads 913337 3D Design of Orthotic Braces and Casts in Medical Applications Using Microsoft Kinect Sensor
Authors: Sanjana S. Mallya, Roshan Arvind Sivakumar
Abstract:
Orthotics is the branch of medicine that deals with the provision and use of artificial casts or braces to alter the biomechanical structure of the limb and provide support for the limb. Custom-made orthoses provide more comfort and can correct issues better than those available over-the-counter. However, they are expensive and require intricate modelling of the limb. Traditional methods of modelling involve creating a plaster of Paris mould of the limb. Lately, CAD/CAM and 3D printing processes have improved the accuracy and reduced the production time. Ordinarily, digital cameras are used to capture the features of the limb from different views to create a 3D model. We propose a system to model the limb using Microsoft Kinect2 sensor. The Kinect can capture RGB and depth frames simultaneously up to 30 fps with sufficient accuracy. The region of interest is captured from three views, each shifted by 90 degrees. The RGB and depth data are fused into a single RGB-D frame. The resolution of the RGB frame is 1920px x 1080px while the resolution of the Depth frame is 512px x 424px. As the resolution of the frames is not equal, RGB pixels are mapped onto the Depth pixels to make sure data is not lost even if the resolution is lower. The resulting RGB-D frames are collected and using the depth coordinates, a three dimensional point cloud is generated for each view of the Kinect sensor. A common reference system was developed to merge the individual point clouds from the Kinect sensors. The reference system consisted of 8 coloured cubes, connected by rods to form a skeleton-cube with the coloured cubes at the corners. For each Kinect, the region of interest is the square formed by the centres of the four cubes facing the Kinect. The point clouds are merged by considering one of the cubes as the origin of a reference system. Depending on the relative distance from each cube, the three dimensional coordinate points from each point cloud is aligned to the reference frame to give a complete point cloud. The RGB data is used to correct for any errors in depth data for the point cloud. A triangular mesh is generated from the point cloud by applying Delaunay triangulation which generates the rough surface of the limb. This technique forms an approximation of the surface of the limb. The mesh is smoothened to obtain a smooth outer layer to give an accurate model of the limb. The model of the limb is used as a base for designing the custom orthotic brace or cast. It is transferred to a CAD/CAM design file to design of the brace above the surface of the limb. The proposed system would be more cost effective than current systems that use MRI or CT scans for generating 3D models and would be quicker than using traditional plaster of Paris cast modelling and the overall setup time is also low. Preliminary results indicate that the accuracy of the Kinect2 is satisfactory to perform modelling.Keywords: 3d scanning, mesh generation, Microsoft kinect, orthotics, registration
Procedia PDF Downloads 1913336 Swedish–Nigerian Extrusion Research: Channel for Traditional Grain Value Addition
Authors: Kalep Filli, Sophia Wassén, Annika Krona, Mats Stading
Abstract:
Food security challenge and the growing population in Sub-Saharan Africa centers on its agricultural transformation, where about 70% of its population is directly involved in farming. Research input can create economic opportunities, reduce malnutrition and poverty, and generate faster, fairer growth. Africa is discarding $4 billion worth of grain annually due to pre and post-harvest losses. Grains and tubers play a central role in food supply in the region but their production has generally lagged behind because no robust scientific input to meet up with the challenge. The African grains are still chronically underutilized to the detriment of the well-being of the people of Africa and elsewhere. The major reason for their underutilization is because they are under-researched. Any commitment by scientific community to intervene needs creative solutions focused on innovative approaches that will meet the economic growth. In order to mitigate this hurdle, co-creation activities and initiatives are necessary.An example of such initiatives has been initiated through Modibbo Adama University of Technology Yola, Nigeria and RISE (The Research Institutes of Sweden) Gothenburg, Sweden. Exchange of expertise in research activities as a possibility to create channel for value addition to agricultural commodities in the region under the ´Traditional Grain Network programme´ is in place. Process technologies, such as extrusion offers the possibility of creating products in the food and feed sectors, with better storage stability, added value, lower transportation cost and new markets. The Swedish–Nigerian initiative has focused on the development of high protein pasta. Dry microscopy of pasta sample result shows a continuous structural framework of proteins and starch matrix. The water absorption index (WAI) results showed that water was absorbed steadily and followed the master curve pattern. The WAI values ranged between 250 – 300%. In all aspect, the water absorption history was within a narrow range for all the eight samples. The total cooking time for all the eight samples in our study ranged between 5 – 6 minutes with their respective dry sample diameter ranging between 1.26 – 1.35 mm. The percentage water solubility index (WSI) ranged from 6.03 – 6.50% which was within a narrow range and the cooking loss which is a measure of WSI is considered as one of the main parameters taken into consideration during the assessment of pasta quality. The protein contents of the samples ranged between 17.33 – 18.60 %. The value of the cooked pasta firmness ranged from 0.28 - 0.86 N. The result shows that increase in ratio of cowpea flour and level of pregelatinized cowpea tends to increase the firmness of the pasta. The breaking strength represent index of toughness of the dry pasta ranged and it ranged from 12.9 - 16.5 MPa.Keywords: cowpea, extrusion, gluten free, high protein, pasta, sorghum
Procedia PDF Downloads 2023335 The Emotional Experience of Urban Ruins and the Exploration of Urban Memory
Authors: Yan Jia China
Abstract:
The ruins is a kind of historical intention, which is also the current real existence of developing city. Zen culture of ancient China has a profound esthetic emotion, similarly, the west establish the concept of aesthetics of relic along with the Romanism’s (such as Rousseau etc.) sentiment to historical ruins at the end of 18th century. Nowadays, with the decline of traditional industrial society as well as the rise of post-industrial age, contemporary society must face the ruins and garbage problem which is left by industrial society. Commencing from the perspective of emotion and memory, this paper analyzes the importance for emotional needs as well as their existing status of several projects, such as the Capital Steelworks in Beijing (industrial devastation), the Shibati old section in Chongqing (urban slums) and the Old Hurva Synagogue in Jerusalem (ruins of war). It emphasizes urban design which is started from emotion and the sustainable development of city memory through managing the urban ruins which is criticized by people with the perspective of ecology and art.Keywords: cultural heritage, urban ruins, ecology, emotion, sustainable urban memory
Procedia PDF Downloads 4443334 A Literature Review of Servant Leadership and Criticism of Advanced Research
Authors: So-Jung Kim, Kyoung-Seok Kim, Yeong-Gyeong Choi
Abstract:
Although there are many theories and discussion of leadership, the necessity of having a new leadership paradigm was emphasized. The existing leadership characteristic of instruction and control revealed its limitations. Market competition becomes fierce and economic recession never ends worldwide. Of the leadership theories, servant leadership was introduced recently and is in line with the environmental changes of the organization. Servant leadership is a combination of two words, 'servant' and 'leader' and can be defined as the role of the leader who focuses on doing voluntary work for others with altruistic ethics, makes members, customers, and local communities a priority, and makes a commitment to satisfying their needs. This leadership received attention as one field of leadership in the late 1990s and secured its legitimacy. This study discusses the existing research trends of leadership, the concept, behavior characteristics, and lower dimensions of servant leadership, compares servant leadership with the existing leadership researches and diagnoses if servant leadership is a useful concept for further leadership researches. Finally, this study criticizes the limitations in the existing researches on servant leadership.Keywords: leadership philosophy, leadership theory, servant leadership, traditional leadership
Procedia PDF Downloads 3693333 Detection of Adulterants in Milk Using IoT
Authors: Shaik Mohammad Samiullah Shariff, Siva Sreenath, Sai Haripriya, Prathyusha, M. Padma Lalitha
Abstract:
The Internet of Things (IoT) is the emerging technology that has been utilized to extend the possibilities for smart dairy farming (SDF). Milk consumption is continually increasing due to the world's growing population. As a result, some providers are prone to using dishonest measures to close the supply-demand imbalance, such as adding adulterants to milk. To identify the presence of adulterants in milk, traditional testing methods necessitate the use of particular chemicals and equipment. While efficient, this method has the disadvantage of yielding difficult and time-consuming qualitative results. Furthermore, same milk sample cannot be tested for other adulterants later. As a result, this study proposes an IoT-based approach for identifying adulterants in milk by measuring electrical conductivity (EC) or Total Dissolved Solids (TDS) and PH. In order to achieve this, an Arduino UNO microcontroller is used to assess the contaminants. When there is no adulteration, the pH and TDS values of milk range from 6.45 to 6.67 and 750 to 780ppm, respectively, according to this study. Finally, the data is uploaded to the cloud via an IoT device attached to the Ubidot web platform.Keywords: internet of things (IoT), pH sensor, TDS sensor, EC sensor, industry 4.0
Procedia PDF Downloads 823332 Soft Pneumatic Actuators Fabricated Using Soluble Polymer Inserts and a Single-Pour System for Improved Durability
Authors: Alexander Harrison Greer, Edward King, Elijah Lee, Safa Obuz, Ruhao Sun, Aditya Sardesai, Toby Ma, Daniel Chow, Bryce Broadus, Calvin Costner, Troy Barnes, Biagio DeSimone, Yeshwin Sankuratri, Yiheng Chen, Holly Golecki
Abstract:
Although a relatively new field, soft robotics is experiencing a rise in applicability in the secondary school setting through The Soft Robotics Toolkit, shared fabrication resources and a design competition. Exposing students outside of university research groups to this rapidly growing field allows for development of the soft robotics industry in new and imaginative ways. Soft robotic actuators have remained difficult to implement in classrooms because of their relative cost or difficulty of fabrication. Traditionally, a two-part molding system is used; however, this configuration often results in delamination. In an effort to make soft robotics more accessible to young students, we aim to develop a simple, single-mold method of fabricating soft robotic actuators from common household materials. These actuators are made by embedding a soluble polymer insert into silicone. These inserts can be made from hand-cut polystyrene, 3D-printed polyvinyl alcohol (PVA) or acrylonitrile butadiene styrene (ABS), or molded sugar. The insert is then dissolved using an appropriate solvent such as water or acetone, leaving behind a negative form which can be pneumatically actuated. The resulting actuators are seamless, eliminating the instability of adhering multiple layers together. The benefit of this approach is twofold: it simplifies the process of creating a soft robotic actuator, and in turn, increases its effectiveness and durability. To quantify the increased durability of the single-mold actuator, it was tested against the traditional two-part mold. The single-mold actuator could withstand actuation at 20psi for 20 times the duration when compared to the traditional method. The ease of fabrication of these actuators makes them more accessible to hobbyists and students in classrooms. After developing these actuators, they were applied, in collaboration with a ceramics teacher at our school, to a glove used to transfer nuanced hand motions used to throw pottery from an expert artist to a novice. We quantified the improvement in the users’ pottery-making skill when wearing the glove using image analysis software. The seamless actuators proved to be robust in this dynamic environment. Seamless soft robotic actuators created by high school students show the applicability of the Soft Robotics Toolkit for secondary STEM education and outreach. Making students aware of what is possible through projects like this will inspire the next generation of innovators in materials science and robotics.Keywords: pneumatic actuator fabrication, soft robotic glove, soluble polymers, STEM outreach
Procedia PDF Downloads 1383331 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks
Authors: Adrian Ionita, Ana-Maria Ghimes
Abstract:
The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling
Procedia PDF Downloads 1663330 On the Framework of Contemporary Intelligent Mathematics Underpinning Intelligent Science, Autonomous AI, and Cognitive Computers
Authors: Yingxu Wang, Jianhua Lu, Jun Peng, Jiawei Zhang
Abstract:
The fundamental demand in contemporary intelligent science towards Autonomous AI (AI*) is the creation of unprecedented formal means of Intelligent Mathematics (IM). It is discovered that natural intelligence is inductively created rather than exhaustively trained. Therefore, IM is a family of algebraic and denotational mathematics encompassing Inference Algebra, Real-Time Process Algebra, Concept Algebra, Semantic Algebra, Visual Frame Algebra, etc., developed in our labs. IM plays indispensable roles in training-free AI* theories and systems beyond traditional empirical data-driven technologies. A set of applications of IM-driven AI* systems will be demonstrated in contemporary intelligence science, AI*, and cognitive computers.Keywords: intelligence mathematics, foundations of intelligent science, autonomous AI, cognitive computers, inference algebra, real-time process algebra, concept algebra, semantic algebra, applications
Procedia PDF Downloads 643329 Conceptualizing the Knowledge to Manage and Utilize Data Assets in the Context of Digitization: Case Studies of Multinational Industrial Enterprises
Authors: Martin Böhmer, Agatha Dabrowski, Boris Otto
Abstract:
The trend of digitization significantly changes the role of data for enterprises. Data turn from an enabler to an intangible organizational asset that requires management and qualifies as a tradeable good. The idea of a networked economy has gained momentum in the data domain as collaborative approaches for data management emerge. Traditional organizational knowledge consequently needs to be extended by comprehensive knowledge about data. The knowledge about data is vital for organizations to ensure that data quality requirements are met and data can be effectively utilized and sovereignly governed. As this specific knowledge has been paid little attention to so far by academics, the aim of the research presented in this paper is to conceptualize it by proposing a “data knowledge model”. Relevant model entities have been identified based on a design science research (DSR) approach that iteratively integrates insights of various industry case studies and literature research.Keywords: data management, digitization, industry 4.0, knowledge engineering, metamodel
Procedia PDF Downloads 3593328 Creativity and Stereotype Threat: Analysis of the Impact of Creativity on Eliminating the Stereotype Threat in the Educational Setting
Authors: Aleksandra Gajda
Abstract:
Among students between 12 and 13, the probability of activating the stereotype threat increases noticeably. Girls consider themselves weaker in science, while boys consider themselves weaker in the field of language skills. This phenomenon is disturbing because it may result in wrong choices of the further path of education, not consistent with the actual competences of the students. Meanwhile, negative effects of the stereotype threat, observable in the loss of focus on the task and transferring it to dealing with fear of failure, can be reduced by various factors. The study examined the impact of creativity on eliminating the stereotype threat. The experiment in the form of a 2 (gender: male vs. female) x 3 (traditional gender roles: neutral version vs. nontraditional gender roles) x 2 (creativity: low vs. high) factorial design was conducted. The results showed that a high level of creative abilities may reduce the negative effects of stereotype threat in educational setting.Keywords: creativity, education, language skills, mathematical skills, stereotype threat
Procedia PDF Downloads 1223327 Coupling Large Language Models with Disaster Knowledge Graphs for Intelligent Construction
Authors: Zhengrong Wu, Haibo Yang
Abstract:
In the context of escalating global climate change and environmental degradation, the complexity and frequency of natural disasters are continually increasing. Confronted with an abundance of information regarding natural disasters, traditional knowledge graph construction methods, which heavily rely on grammatical rules and prior knowledge, demonstrate suboptimal performance in processing complex, multi-source disaster information. This study, drawing upon past natural disaster reports, disaster-related literature in both English and Chinese, and data from various disaster monitoring stations, constructs question-answer templates based on large language models. Utilizing the P-Tune method, the ChatGLM2-6B model is fine-tuned, leading to the development of a disaster knowledge graph based on large language models. This serves as a knowledge database support for disaster emergency response.Keywords: large language model, knowledge graph, disaster, deep learning
Procedia PDF Downloads 613326 Sustainable Transition of Universal Design for Learning-Based Teachers’ Latent Profiles from Contact to Distance Education
Authors: Alvyra Galkienė, Ona Monkevičienė
Abstract:
The full participation of all pupils in the overall educational process is defined by the concept of inclusive education, which is gradually evolving in education policy and practice. It includes the full participation of all pupils in a shared learning experience and educational practices that address barriers to learning. Inclusive education applying the principles of Universal Design for Learning (UDL), which includes promoting students' involvement in learning processes, guaranteeing a deep understanding of the analysed phenomena, initiating self-directed learning, and using e-tools to create a barrier-free environment, is a prerequisite for the personal success of each pupil. However, the sustainability of quality education is affected by the transformation of education systems. This was particularly evident during the period of the forced transition from contact to distance education in the COVID-19 pandemic. Research Problem: The transformation of the educational environment from real to virtual one and the loss of traditional forms of educational support highlighted the need for new research, revealing the individual profiles of teachers using UDL-based learning and the pathways of sustainable transfer of successful practices to non-conventional learning environments. Research Methods: In order to identify individual latent teacher profiles that encompass the essential components of UDL-based inclusive teaching and direct leadership of students' learning, the quantitative analysis software Mplius was used for latent profile analysis (LPA). In order to reveal proven, i.e., sustainable, pathways for the transit of the components of UDL-based inclusive learning to distance learning, latent profile transit analysis (LPTA) via Mplius was used. An online self-reported questionnaire was used for data collection. It consisted of blocks of questions designed to reveal the experiences of subject teachers in contact and distance learning settings. 1432 Lithuanian, Latvian, and Estonian subject teachers took part in the survey. Research Results: The LPA analysis revealed eight latent teacher profiles with different characteristics of UDL-based inclusive education or traditional teaching in contact teaching conditions. Only 4.1% of the subject teachers had a profile characterised by a sustained UDL approach to teaching: promoting pupils' self-directed learning; empowering pupils' engagement, understanding, independent action, and expression; promoting pupils' e-inclusion; and reducing the teacher's direct supervision of the students. Other teacher profiles were characterised by limited UDL-based inclusive education either due to the lack of one or more of its components or to the predominance of direct teacher guidance. The LPTA analysis allowed us to highlight the following transit paths of teacher profiles in the extreme conditions of the transition from contact to distance education: teachers staying in the same profile of UDL-based inclusive education (sustainable transit) or jumping to other profiles (unsustainable transit in case of barriers), and teachers from other profiles moving to this profile (ongoing transit taking advantage of the changed new possibilities in the teaching process).Keywords: distance education, latent teacher profiles, sustainable transit, UDL
Procedia PDF Downloads 1033325 Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines
Authors: Alexander Guzman Urbina, Atsushi Aoyama
Abstract:
The sustainability of traditional technologies employed in energy and chemical infrastructure brings a big challenge for our society. Making decisions related with safety of industrial infrastructure, the values of accidental risk are becoming relevant points for discussion. However, the challenge is the reliability of the models employed to get the risk data. Such models usually involve large number of variables and with large amounts of uncertainty. The most efficient techniques to overcome those problems are built using Artificial Intelligence (AI), and more specifically using hybrid systems such as Neuro-Fuzzy algorithms. Therefore, this paper aims to introduce a hybrid algorithm for risk assessment trained using near-miss accident data. As mentioned above the sustainability of traditional technologies related with energy and chemical infrastructure constitutes one of the major challenges that today’s societies and firms are facing. Besides that, the adaptation of those technologies to the effects of the climate change in sensible environments represents a critical concern for safety and risk management. Regarding this issue argue that social consequences of catastrophic risks are increasing rapidly, due mainly to the concentration of people and energy infrastructure in hazard-prone areas, aggravated by the lack of knowledge about the risks. Additional to the social consequences described above, and considering the industrial sector as critical infrastructure due to its large impact to the economy in case of a failure the relevance of industrial safety has become a critical issue for the current society. Then, regarding the safety concern, pipeline operators and regulators have been performing risk assessments in attempts to evaluate accurately probabilities of failure of the infrastructure, and consequences associated with those failures. However, estimating accidental risks in critical infrastructure involves a substantial effort and costs due to number of variables involved, complexity and lack of information. Therefore, this paper aims to introduce a well trained algorithm for risk assessment using deep learning, which could be capable to deal efficiently with the complexity and uncertainty. The advantage point of the deep learning using near-miss accidents data is that it could be employed in risk assessment as an efficient engineering tool to treat the uncertainty of the risk values in complex environments. The basic idea of using a Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines is focused in the objective of improve the validity of the risk values learning from near-miss accidents and imitating the human expertise scoring risks and setting tolerance levels. In summary, the method of Deep Learning for Neuro-Fuzzy Risk Assessment involves a regression analysis called group method of data handling (GMDH), which consists in the determination of the optimal configuration of the risk assessment model and its parameters employing polynomial theory.Keywords: deep learning, risk assessment, neuro fuzzy, pipelines
Procedia PDF Downloads 2933324 Enhancing Visual Corporate Identity on Festive Money Packets Design with Cultural Symbolisms
Authors: Noranis Ismail, Shamsul H. A. Rahman
Abstract:
The objective of this research is to accentuate the importance of Visual Corporate Identity by utilizing Malay motifs amalgamated with Malay proverbs to enhance the corporate brand of The Design School (TDS) of Taylor’s University. The researchers aim to manipulate festive money packet as a mean to communicate to the audience by using non-verbal visual cues such as colour, languages, and symbols that reflect styles and cultural heritage. The paper concluded that it is possible to utilize Hari Raya packet as a medium for creative expressions by creating high-impact design through the symbolism of selected Malay proverbs and traditional Malay motifs to enhance TDS corporate visual identity. It also provides a vital contribution to other organizations to understand an integral part of corporate visual identity in heightening corporate brand by communicating indirectly to its stakeholders using visual mnemonic and cultural heritage.Keywords: corporate branding, cultural cues, Malay culture, visual identity
Procedia PDF Downloads 4313323 Microwave Assisted Synthesis and Metal Complexes of Some Copolymers Based on Itaconic Acid
Authors: Mohamed H. El-Newehy, Sameh M. Osman, Moamen S. Refat, Salem S. Al-Deyab, Ayman El-Faham
Abstract:
The two copolymers itaconic acid-methyl methacrylate and itaconic acid-acrylamide have been prepared in different ratio by radical copolymerization in the presence of azobisisobutyronitrile (AIBN) as initiator and using 2-butanone as reaction medium using microwave irradiation. The microwave technique is safe, fast, and gives high yield of the products with high purity in an optimum time, comparing to the traditional conventional heating. All the prepared copolymers were characterized by FT-IR, thermal analysis and elemental microanalysis. The itaconic acid-based copolymers showed a good sensitivity in alkaline media for scavenging Cu (II) and Pb (II). The chelation behavior of both Cu (II) and Pb (II) complexes were checked using FT-IR, thermogravimetric analysis (TGA), and differential scanning calorimetery (DSC). The infrared data are in a good agreement with the coordination through carboxylate-to-metal, in which the copolymers acting as a bidentate ligand.Keywords: microwave synthesis, itaconic acid, copolymerization, scavenging, thermal stability
Procedia PDF Downloads 4623322 From Sampling to Sustainable Phosphate Recovery from Mine Waste Rock Piles
Authors: Hicham Amar, Mustapha El Ghorfi, Yassine Taha, Abdellatif Elghali, Rachid Hakkou, Mostafa Benzaazoua
Abstract:
Phosphate mine waste rock (PMWR) generated during ore extraction is continuously increasing, resulting in a significant environmental footprint. The main objectives of this study consist of i) elaboration of the sampling strategy of PMWR piles, ii) a mineralogical and chemical characterization of PMWR piles, and iii) 3D block model creation to evaluate the potential valorization of the existing PMWR. Destructive drilling using reverse circulation from 13 drills was used to collect samples for chemical (X-ray fluorescence analysis) and mineralogical assays. The 3D block model was created based on the data set, including chemical data of the realized drills using Datamine RM software. The optical microscopy observations showed that the sandy phosphate from drills in the PMWR piles is characterized by the abundance of carbonate fluorapatite with the presence of calcite, dolomite, and quartz. The mean grade of composite samples was around 19.5±2.7% for P₂O₅. The mean grade of P₂O₅ exhibited an increasing tendency by depth profile from bottom to top of PMWR piles. 3D block model generated with chemical data confirmed the tendency of the mean grades’ variation and may allow a potential selective extraction according to %P₂O₅. The 3D block model of P₂O₅ grade is an efficient sampling approach that confirmed the variation of P₂O₅ grade. This integrated approach for PMWR management will be a helpful tool for decision-making to recover the residual phosphate, adopting the circular economy and sustainability in the phosphate mining industry.Keywords: 3D modelling, reverse circulation drilling, circular economy, phosphate mine waste rock, sampling
Procedia PDF Downloads 813321 Comparison Physicochemical Properties of Hexane Extracted Aniseed Oil from Cold Press Extraction Residue and Cold Press Aniseed Oil
Authors: Derya Ören, Şeyma Akalın
Abstract:
Cold pres technique is a traditional method to obtain oil. The cold-pressing procedure, involves neither heat nor chemical treatments, so cold press technique has low oil yield and cold pressed herbal material residue still contains some oil. In this study, the oil that is remained in the cold pressed aniseed extracted with hegzan and analysed to determine physicochemical properties and quality parameters. It is found that the aniseed after cold press process contains % 10 oil. Other analysis parametres free fatty acid (FFA) is 2,1 mgKOH/g, peroxide value is 7,6 meq02/kg. Cold pressed aniseed oil values are determined for fatty acid (FFA) value as 2,1 mgKOH/g, peroxide value 4,5 meq02/kg respectively. Also fatty acid composition is analysed, it is found that both of these oil have same fatty acid composition. The main fatty acids are; oleic, linoleic, and palmitic acids.Keywords: aniseed oil, cold press, extraction, residue
Procedia PDF Downloads 4113320 Physico-Mechanical Behavior of Indian Oil Shales
Authors: K. S. Rao, Ankesh Kumar
Abstract:
The search for alternative energy sources to petroleum has increased these days because of increase in need and depletion of petroleum reserves. Therefore the importance of oil shales as an economically viable substitute has increased many folds in last 20 years. The technologies like hydro-fracturing have opened the field of oil extraction from these unconventional rocks. Oil shale is a compact laminated rock of sedimentary origin containing organic matter known as kerogen which yields oil when distilled. Oil shales are formed from the contemporaneous deposition of fine grained mineral debris and organic degradation products derived from the breakdown of biota. Conditions required for the formation of oil shales include abundant organic productivity, early development of anaerobic conditions, and a lack of destructive organisms. These rocks are not gown through the high temperature and high pressure conditions in Mother Nature. The most common approach for oil extraction is drastically breaking the bond of the organics which involves retorting process. The two approaches for retorting are surface retorting and in-situ processing. The most environmental friendly approach for extraction is In-situ processing. The three steps involved in this process are fracturing, injection to achieve communication, and fluid migration at the underground location. Upon heating (retorting) oil shale at temperatures in the range of 300 to 400°C, the kerogen decomposes into oil, gas and residual carbon in a process referred to as pyrolysis. Therefore it is very important to understand the physico-mechenical behavior of such rocks, to improve the technology for in-situ extraction. It is clear from the past research and the physical observations that these rocks will behave as an anisotropic rock so it is very important to understand the mechanical behavior under high pressure at different orientation angles for the economical use of these resources. By knowing the engineering behavior under above conditions will allow us to simulate the deep ground retorting conditions numerically and experimentally. Many researchers have investigate the effect of organic content on the engineering behavior of oil shale but the coupled effect of organic and inorganic matrix is yet to be analyzed. The favourable characteristics of Assam coal for conversion to liquid fuels have been known for a long time. Studies have indicated that these coals and carbonaceous shale constitute the principal source rocks that have generated the hydrocarbons produced from the region. Rock cores of the representative samples are collected by performing on site drilling, as coring in laboratory is very difficult due to its highly anisotropic nature. Different tests are performed to understand the petrology of these samples, further the chemical analyses are also done to exactly quantify the organic content in these rocks. The mechanical properties of these rocks are investigated by considering different anisotropic angles. Now the results obtained from petrology and chemical analysis are correlated with the mechanical properties. These properties and correlations will further help in increasing the producibility of these rocks. It is well established that the organic content is negatively correlated to tensile strength, compressive strength and modulus of elasticity.Keywords: oil shale, producibility, hydro-fracturing, kerogen, petrology, mechanical behavior
Procedia PDF Downloads 352