Search results for: herbal products
1680 Oracle JDE Enterprise One ERP Implementation: A Case Study
Authors: Abhimanyu Pati, Krishna Kumar Veluri
Abstract:
The paper intends to bring out a real life experience encountered during actual implementation of a large scale Tier-1 Enterprise Resource Planning (ERP) system in a multi-location, discrete manufacturing organization in India, involved in manufacturing of auto components and aggregates. The business complexities, prior to the implementation of ERP, include multi-product with hierarchical product structures, geographically distributed multiple plant locations with disparate business practices, lack of inter-plant broadband connectivity, existence of disparate legacy applications for different business functions, and non-standardized codifications of products, machines, employees, and accounts apart from others. On the other hand, the manufacturing environment consisted of processes like Assemble-to-Order (ATO), Make-to-Stock (MTS), and Engineer-to-Order (ETO) with a mix of discrete and process operations. The paper has highlighted various business plan areas and concerns, prior to the implementation, with specific focus on strategic issues and objectives. Subsequently, it has dealt with the complete process of ERP implementation, starting from strategic planning, project planning, resource mobilization, and finally, the program execution. The step-by-step process provides a very good learning opportunity about the implementation methodology. At the end, various organizational challenges and lessons emerged, which will act as guidelines and checklist for organizations to successfully align and implement ERP and achieve their business objectives.Keywords: ERP, ATO, MTS, ETO, discrete manufacturing, strategic planning
Procedia PDF Downloads 2451679 Extraction of M. paradisiaca L. Inflorescences Using Compressed Propane
Authors: Michele C. Mesomo, Madeline de Souza Correa, Roberta L. Kruger, Luis R. S. Kanda, Marcos L. Corazza
Abstract:
Natural extracts of plants have been used for many years for different purposes and recently they have been screened for their potential use as alternative remedies and food preservatives. Inflorescences of M. paradisiaca L., also known as the heart of the banana, have great economic interest due to its fruit. All parts of the banana are used for many different purposes, including use in folk medicine. The use of extraction via supercritical technology has grown in recent years, though it is still necessary to obtain experimental information for the construction of industrial plants. This work reports the extraction of Musa paradisiaca L. using compressed propane as solvent. The effects of the supercritical extraction conditions, pressure and temperature on the yield were evaluated. The raw material, inflorescences banana, was dried at 313.15 K and milled. The particle size used for the packaging of the extraction cell was 12 mesh (23.5%), 16 mesh (23.5%), 32 mesh (34.5%), 48 mesh (18.5%). The extractions were performed in a laboratory scale unit at pressures of 3.0 MPa, 6.5 MPa and 10.0 MPa and at 308.15 K, 323.15 K and 338.15 K. The operating conditions tested achieved a maximum yield of 2.94 wt% for the CO2 extraction at 10.0 MPa and 338.15 K, higher pressure and temperature. The lower yield, 2.29 wt%, was obtained in the condition of lower pressure and higher temperature. Temperature presented significant and positive effect on the extraction yield with supercritical CO2, while pressure had no effect on the yield. The overall extraction curves showed typical behavior obtained for the supercritical extraction procedure and and reached a constant extraction rate of about 80 to 100 min. The largest amount of extract was obtained at the beginning of the process, within 10 to 60 min.Keywords: banana, natural products, supercritical extraction, temperature
Procedia PDF Downloads 6141678 Utilization of Whey for the Production of β-Galactosidase Using Yeast and Fungal Culture
Authors: Rupinder Kaur, Parmjit S. Panesar, Ram S. Singh
Abstract:
Whey is the lactose rich by-product of the dairy industry, having good amount of nutrient reservoir. Most abundant nutrients are lactose, soluble proteins, lipids and mineral salts. Disposing of whey by most of milk plants which do not have proper pre-treatment system is the major issue. As a result of which, there can be significant loss of potential food and energy source. Thus, whey has been explored as the substrate for the synthesis of different value added products such as enzymes. β-galactosidase is one of the important enzymes and has become the major focus of research due to its ability to catalyze both hydrolytic as well as transgalactosylation reaction simultaneously. The enzyme is widely used in dairy industry as it catalyzes the transformation of lactose to glucose and galactose, making it suitable for the lactose intolerant people. The enzyme is intracellular in both bacteria and yeast, whereas for molds, it has an extracellular location. The present work was carried to utilize the whey for the production of β-galactosidase enzyme using both yeast and fungal cultures. The yeast isolate Kluyveromyces marxianus WIG2 and various fungal strains have been used in the present study. Different disruption techniques have also been investigated for the extraction of the enzyme produced intracellularly from yeast cells. Among the different methods tested for the disruption of yeast cells, SDS-chloroform showed the maximum β-galactosidase activity. In case of the tested fungal cultures, Aureobasidium pullulans NCIM 1050, was observed to be the maximum extracellular enzyme producer.Keywords: β-galactosidase, fungus, yeast, whey
Procedia PDF Downloads 3251677 An Historical Revision of Change and Configuration Management Process
Authors: Expedito Pinto De Paula Junior
Abstract:
Current systems such as artificial satellites, airplanes, automobiles, turbines, power systems and air traffic controls are becoming increasingly more complex and/or highly integrated as defined in SAE-ARP-4754A (Society Automotive Engineering - Certification considerations for highly-integrated or complex aircraft systems standard). Among other processes, the development of such systems requires careful Change and Configuration Management (CCM) to establish and maintain product integrity. Understand the maturity of CCM process based in historical approach is crucial for better implementation in hardware and software lifecycle. The sense of work organization, in all fields of development is directly related to the order and interrelation of the parties, changes in time, and record of these changes. Generally, is observed that engineers, administrators and managers invest more time in technical activities than in organization of work. More these professionals are focused in solving complex problems with a purely technical bias. CCM process is fundamental for development, production and operation of new products specially in the safety critical systems. The objective of this paper is open a discussion about the historical revision based in standards focus of CCM around the world in order to understand and reflect the importance across the years, the contribution of this process for technology evolution, to understand the mature of organizations in the system lifecycle project and the benefits of CCM to avoid errors and mistakes during the Lifecycle Product.Keywords: changes, configuration management, historical, revision
Procedia PDF Downloads 2011676 The Relationship between Human Neutrophil Elastase Levels and Acute Respiratory Distress Syndrome in Patients with Thoracic Trauma
Authors: Wahyu Purnama Putra, Artono Isharanto
Abstract:
Thoracic trauma is trauma that hits the thoracic wall or intrathoracic organs, either due to blunt trauma or sharp trauma. Thoracic trauma often causes impaired ventilation-perfusion due to damage to the lung parenchyma. This results in impaired tissue oxygenation, which is one of the causes of acute respiratory distress syndrome (ARDS). These changes are caused by the release of pro-inflammatory mediators, plasmatic proteins, and proteases into the alveolar space associated with ongoing edema, as well as oxidative products that ultimately result in severe inhibition of the surfactant system. This study aims to predict the incidence of acute respiratory distress syndrome (ARDS) through human neutrophil elastase levels. This study examines the relationship between plasma elastase levels as a predictor of the incidence of ARDS in thoracic trauma patients in Malang. This study is an observational cohort study. Data analysis uses the Pearson correlation test and ROC curve (receiver operating characteristic curve). It can be concluded that there is a significant (p= 0.000, r= -0.988) relationship between elastase levels and BGA-3. If the value of elastase levels is limited to 23.79 ± 3.95, the patient will experience mild ARDS. While if the value of elastase levels is limited to 57.68 ± 18.55, in the future, the patient will experience moderate ARDS. Meanwhile, if the elastase level is between 107.85 ± 5.04, the patient will likely experience severe ARDS. Neutrophil elastase levels correlate with the degree of severity of ARDS incidence.Keywords: ARDS, human neutrophil elastase, severity, thoracic trauma
Procedia PDF Downloads 1491675 Fuel Inventory/ Depletion Analysis for a Thorium-Uranium Dioxide (Th-U) O2 Pin Cell Benchmark Using Monte Carlo and Deterministic Codes with New Version VIII.0 of the Evaluated Nuclear Data File (ENDF/B) Nuclear Data Library
Authors: Jamal Al-Zain, O. El Hajjaji, T. El Bardouni
Abstract:
A (Th-U) O2 fuel pin benchmark made up of 25 w/o U and 75 w/o Th was used. In order to analyze the depletion and inventory of the fuel for the pressurized water reactor pin-cell model. The new version VIII.0 of the ENDF/B nuclear data library was used to create a data set in ACE format at various temperatures and process the data using the MAKXSF6.2 and NJOY2016 programs to process the data at the various temperatures in order to conduct this study and analyze cross-section data. The infinite multiplication factor, the concentrations and activities of the main fission products, the actinide radionuclides accumulated in the pin cell, and the total radioactivity were all estimated and compared in this study using the Monte Carlo N-Particle 6 (MCNP6.2) and DRAGON5 programs. Additionally, the behavior of the Pressurized Water Reactor (PWR) thorium pin cell that is dependent on burn-up (BU) was validated and compared with the reference data obtained using the Massachusetts Institute of Technology (MIT-MOCUP), Idaho National Engineering and Environmental Laboratory (INEEL-MOCUP), and CASMO-4 codes. The results of this study indicate that all of the codes examined have good agreements.Keywords: PWR thorium pin cell, ENDF/B-VIII.0, MAKXSF6.2, NJOY2016, MCNP6.2, DRAGON5, fuel burn-up.
Procedia PDF Downloads 1031674 Innovative Housing Construction Technologies in Slum Upgrading
Authors: Edmund M. Muthigani
Abstract:
Innovation in the construction industry has been characterized by new products and processes especially in slum upgrading. The need for low cost housing has motivated stakeholders to think outside the box in coming up with solutions. This paper explored innovative construction technologies that have been used in slum upgrading. The main objectives of the paper was to examine innovations in the construction housing sector and to show how incremental derived demand for decent housing has led to adoption of innovative technologies and materials. Systematic literature review was used to review studies on innovative construction technologies in slum upgrading. The review revealed slow process of innovations in the construction industry due to risk aversion by firms and the hesitance to adopt by firms and individuals. Low profit margins in low cost housing and lack of sufficient political support remain the major hurdles to innovative techniques adoption that can actualize right to decent housing. Conventional construction materials have remained unaffordable to many people and this has negated them decent housing. This has necessitated exploration of innovative materials to realize low cost housing. Stabilized soil blocks and sisal-cement roofing blocks are some of the innovative construction materials that have been utilized in slum upgrading. These innovative materials have not only lowered the cost of production of building elements but also eased costs of transport as the raw materials to produce them are readily available in or within the slum sites. Despite their shortcomings in durability and compressive strength, they have proved worthwhile in slum upgrading. Production of innovative construction materials and use of innovative techniques in slum upgrading also provided employment to the locals.Keywords: construction, housing, innovation, slum, technology
Procedia PDF Downloads 2071673 Characterization of Caneberry Juices Enriched by Natural Antioxidants
Authors: Jelena Vulić, Jasna Čanadanović-Brunet, Gordana Ćetković, Sonja Djilas, Vesna Tumbas Šaponjac
Abstract:
Caneberries (raspberries and blackberries) are among the most popular berries in the world, which are consumed as fresh and processed to juice, jams, confitures and other products or as ingredients for different foods. These fruits are known as a rich source of phenolic compounds such as phenolic acids and anthocyanins. Antioxidant activity (AA) of caneberry juices was improved by addition of phenolic compounds which were extracted from two raspberry cultivars (Rubus idaeus, cv. 'Willamette' (RW) and 'Meeker' (RM)) and two blackberry cultivars (Rubus fruticosus, cv. 'Čačanka' (BC) and 'Thornfree' (BT)) pomace, a by-product in juice processing. The total phenolic contents in raspberry and blackberry pomace extracts were determined spectrophotometrically using the Folin-Ciocalteu reagens. The phenolic concentrations in caneberries (RW, RM, BC and BT) pomace extracts were 43.67 ± 2.13 mg GAE/g, 26.25 ± 1.18 mg GAE/g, 46.01 ± 3.26 mg GAE/g and 61.59 ± 1.14 mg GAE/g, respectively. In order to obtain enriched juices, phenolic compounds were applied at concentration of 0.05 mg GAE/ 100 ml. Antioxidant activities of caneberry juices and caneberry enriched juices were measured using stable 1.1-diphenyl-2-picrylhydrazyl (DPPH) radicals. AADPPH of RW, RM, BC and BT juices and enriched juices with addition of 0.01 µg GAE/ml, changed from 37.12% to 93.01%, 23.26% to 91.57%, 53.61% to 95.65% and 52.06% to 93.13%, respectively, while IC50 values of RW, RM, BC and BT juices and enriched juices were diminished 6.33, 19.00, 6.33 and 4.75 times, respectively. Based on the obtained results it can be concluded that phenolic enriched juices were significantly more effective on DPPH radicals. Caneberry juices enriched with waste material are a good source of natural pigments and antioxidants and could be used as functional foods.Keywords: caneberry, enriched juice, phenolic antioxidant, DPPH radical
Procedia PDF Downloads 3531672 Recent Advancements and Future Trends in the Development of Antimicrobial Edible Films for Food Preservation
Authors: Raana Babadi Fathipour
Abstract:
Food packaging plays a crucial role in protecting food from unwanted external factors. Antibacterial edible films are a promising option for food packaging due to their biodegradability, environmental friendliness, and safety. This paper reviews recent research progress on antimicrobial edible films, focusing on those made from polysaccharides, proteins, and lipids. Polysaccharides and proteins are the primary components of antimicrobial edible films, while lipids primarily serve as plasticizers and carriers for active substances in composite films. For instance, second-generation liposomes have shown great potential as carriers for antimicrobial substances and other bioactive compounds due to their exceptional stability. Furthermore, this paper analyzes recent advancements and future trends in antimicrobial edible films. One promising direction is the integration of antimicrobial edible film materials with delivery systems, such as nanoemulsion and microencapsulation technologies, to ensure stable loading of bioactive substances. Another emerging area of interest is the development of smart and active packaging that allows consumers to assess the freshness of food products without opening the package. pH-sensitive films and smart fluorescent "on-off" sensors for humidity are currently being explored as materials for smart and active packaging to monitor food product freshness, with further exploration anticipated in the future.Keywords: antimicrobial edible film, biopolymer, antimicrobial agent, encapsulation, antimicrobial assay
Procedia PDF Downloads 581671 Screening and Optimization of Pretreatments for Rice Straw and Their Utilization for Bioethanol Production Using Developed Yeast Strain
Authors: Ganesh Dattatraya Saratale, Min Kyu Oh
Abstract:
Rice straw is one of the most abundant lignocellulosic waste materials and its annual production is about 731 Mt in the world. This study treats the subject of effective utilization of this waste biomass for biofuels production. We have showed a comparative assessment of numerous pretreatment strategies for rice straw, comprising of major physical, chemical and physicochemical methods. Among the different methods employed for pretreatment alkaline pretreatment in combination with sodium chlorite/acetic acid delignification found efficient pretreatment with significant improvement in the enzymatic digestibility of rice straw. A cellulase dose of 20 filter paper units (FPU) released a maximum 63.21 g/L of reducing sugar with 94.45% hydrolysis yield and 64.64% glucose yield from rice straw, respectively. The effects of different pretreatment methods on biomass structure and complexity were investigated by FTIR, XRD and SEM analytical techniques. Finally the enzymatic hydrolysate of rice straw was used for ethanol production using developed Saccharomyces cerevisiae SR8. The developed yeast strain enabled efficient fermentation of xylose and glucose and produced higher ethanol production. Thus development of bioethanol production from lignocellulosic waste biomass is generic, applicable methodology and have great implication for using ‘green raw materials’ and producing ‘green products’ much needed today.Keywords: rice straw, pretreatment, enzymatic hydrolysis, FPU, Saccharomyces cerevisiae SR8, ethanol fermentation
Procedia PDF Downloads 5381670 A Review of Food Reformulation of Sweetened Baked Goods to Reduce Added Sugar Intake
Authors: Xiao Luo, Jayashree Arcot, Timothy P. Gill, Jimmy C. Louie, Anna M. Rangan
Abstract:
Excessive consumption of added sugar is negatively associated with many health outcomes such as lower diet quality, dental diseases and other non-communicable diseases. Sugar-sweetened baked goods are popular discretionary foods that contribute significant amounts of added sugar to people’s diets worldwide. Food reformulation is of the most effective methods to reduce consumption of added sugar without significantly altering individual's diet pattern. However, sucrose, as the major sugar in baked goods, plays several vital functional roles such as providing sweetness and bulking, and suitable substitutes must be able to address these. The review examines the literature on sugar-reduced baked goods to summarise the feasible reformulations of low/no added sugar baked goods, and indicates the future directions for healthier baked goods reformulation. Based on this review, polyols and non-nutritive sweeteners (NNS) are suitable for alternative sweeteners to partially or fully replace sucrose in baked goods. Low-calorie carbohydrates such as oligofructose, polydextrose, maltodextrins are the mostly used bulking agents to compensate the loss of bulk due to the removal of sucrose. This review found that maltitol seems the most suitable sole sucrose substitution at present, while diverse mixtures of NNS( stevia, sucralose, acesulfame-K), other polyols and inulins can also deliver the functionalities of sucrose in baked products.Keywords: alternative sweeteners, baked goods, reformulation, sugar reduction
Procedia PDF Downloads 2701669 Application Potential of Forward Osmosis-Nanofiltration Hybrid Process for the Treatment of Mining Waste Water
Authors: Ketan Mahawer, Abeer Mutto, S. K. Gupta
Abstract:
The mining wastewater contains inorganic metal salts, which makes it saline and additionally contributes to contaminating the surface and underground freshwater reserves that exist nearby mineral processing industries. Therefore, treatment of wastewater and water recovery is obligatory by any available technology before disposing it into the environment. Currently, reverse osmosis (RO) is the commercially acceptable conventional membrane process for saline wastewater treatment, but consumes an enormous amount of energy and makes the process expensive. To solve this industrial problem with minimum energy consumption, we tested the feasibility of forward osmosis-nanofiltration (FO-NF) hybrid process for the mining wastewater treatment. The FO-NF process experimental results for 0.029M concentration of saline wastewater treated by 0.42 M sodium-sulfate based draw solution shows that specific energy consumption of the FO-NF process compared with standalone NF was slightly above (between 0.5-1 kWh/m3) from conventional process. However, average freshwater recovery was 30% more from standalone NF with same feed and operating conditions. Hence, FO-NF process in place of RO/NF offers a huge possibility for treating mining industry wastewater and concentrates the metals as the by-products without consuming an excessive/large amount of energy and in addition, mitigates the fouling in long periods of treatment, which also decreases the maintenance and replacement cost of the separation process.Keywords: forward osmosis, nanofiltration, mining, draw solution, divalent solute
Procedia PDF Downloads 1181668 Improving the Dimensional Stability of Medium-Density Fiberboard with Bio-Based Additives
Authors: Reza Hosseinpourpia, Stergios Adamopoulos, Carsten Mai
Abstract:
Medium density fiberboard (MDF) is a common category of wood-based panels that are widely used in the furniture industry. Fine lignocellulosic fibres are combined with a synthetic resin, mostly urea formaldehyde (UF), and joined together under heat and pressure to form panels. Like solid wood, MDF is a hygroscopic material; therefore, its moisture content depends on the surrounding relative humidity and temperature. In addition, UF is a hydrophilic resin and susceptible to hydrolysis under certain conditions of elevated temperatures and humidity, which cause dimensional instability of the panels. The latter directly affect the performance of final products such as furniture, when they are used in situations of high relative humidity. Existing water-repellent formulations, such as paraffin, present limitations related to their non-renewable nature, cost and highest allowed added amount. Therefore, the aim of the present study was to test the suitability of renewable water repellents as alternative chemicals for enhancing the dimensional stability of MDF panels. A small amount of tall oil based formulations were used as water-repellent agents in the manufacturing of laboratory scale MDF. The effects on dimensional stability, internal bond strength and formaldehyde release of MDF were tested. The results indicated a good potential of tall oil as a bio-based substance of water repellent formulations for improving the dimensional stability of MDF.Keywords: dimensional stability, medium density fiberboard, tall oil, urea formaldehyde
Procedia PDF Downloads 2401667 Bioremediation of Disposed X-Ray Film for Nanoparticles Production
Authors: Essam A. Makky, Siti H. Mohd Rasdi, J. B. Al-Dabbagh, G. F. Najmuldeen
Abstract:
The synthesis of silver nano particles (SNPs) extensively studied by using chemical and physical methods. Here, the biological methods were used and give benefits in research field in the aspect of very low cost (from waste to wealth) and safe time as well. The study aims to isolate and exploit the microbial power in the production of industrially important by-products in nano-size with high economic value, to extract highly valuable materials from hazardous waste, to quantify nano particle size, and characterization of SNPs by X-Ray Diffraction (XRD) analysis. Disposal X-ray films were used as substrate because it consumes about 1000 tons of total silver chemically produced worldwide annually. This silver is being wasted when these films are used and disposed. Different bacterial isolates were obtained from various sources. Silver was extracted as nano particles by microbial power degradation from disposal X-ray film as the sole carbon source for ten days incubation period in darkness. The protein content was done and all the samples were analyzed using XRD, to characterize of silver (Ag) nano particles size in the form of silver nitrite. Bacterial isolates CL4C showed the average size of SNPs about 19.53 nm, GL7 showed average size about 52.35 nm and JF Outer 2A (PDA) showed 13.52 nm. All bacterial isolates partially identified using Gram’s reaction and the results obtained exhibited that belonging to Bacillus sp.Keywords: nanotechnology, bioremediation, disposal X-ray film, nanoparticle, waste, XRD
Procedia PDF Downloads 4831666 RP-HPLC Method Development and Its Validation for Simultaneous Estimation of Metoprolol Succinate and Olmesartan Medoxomil Combination in Bulk and Tablet Dosage Form
Authors: S. Jain, R. Savalia, V. Saini
Abstract:
A simple, accurate, precise, sensitive and specific RP-HPLC method was developed and validated for simultaneous estimation of Metoprolol Succinate and Olmesartan Medoxomil in bulk and tablet dosage form. The RP-HPLC method has shown adequate separation for Metoprolol Succinate and Olmesartan Medoxomil from its degradation products. The separation was achieved on a Phenomenex luna ODS C18 (250mm X 4.6mm i.d., 5μm particle size) with an isocratic mixture of acetonitrile: 50mM phosphate buffer pH 4.0 adjusted with glacial acetic acid in the ratio of 55:45 v/v. The mobile phase at a flow rate of 1.0ml/min, Injection volume 20μl and wavelength of detection was kept at 225nm. The retention time for Metoprolol Succinate and Olmesartan Medoxomil was 2.451±0.1min and 6.167±0.1min, respectively. The linearity of the proposed method was investigated in the range of 5-50μg/ml and 2-20μg/ml for Metoprolol Succinate and Olmesartan Medoxomil, respectively. Correlation coefficient was 0.999 and 0.9996 for Metoprolol Succinate and Olmesartan Medoxomil, respectively. The limit of detection was 0.2847μg/ml and 0.1251μg/ml for Metoprolol Succinate and Olmesartan Medoxomil, respectively and the limit of quantification was 0.8630μg/ml and 0.3793μg/ml for Metoprolol and Olmesartan, respectively. Proposed methods were validated as per ICH guidelines for linearity, accuracy, precision, specificity and robustness for estimation of Metoprolol Succinate and Olmesartan Medoxomil in commercially available tablet dosage form and results were found to be satisfactory. Thus the developed and validated stability indicating method can be used successfully for marketed formulations.Keywords: metoprolol succinate, olmesartan medoxomil, RP-HPLC method, validation, ICH
Procedia PDF Downloads 3151665 Microbiome Role in Tumor Environment
Authors: Chro Kavian
Abstract:
The studies conducted show that cancer is a disease caused by populations of microbes, a notion gaining traction as the interaction between the human microbiome and the tumor microenvironment (TME) increasingly shows how environment and microbes dictate the progress and treatment of neoplastic diseases. A person’s human microbiome is defined as a collection of bacteria, fungi, viruses, and other microorganisms whose structure and composition influence biological processes like immune system modulation and nutrient metabolism, which, in turn, affect how susceptible a person is to neoplastic diseases, and response to different therapies. Recent reports demonstrated the influence specific microbiome bacterial populations have on the TME, thereby altering tumoral behaviors and the TME’s contributing factors that impact patients' lives. In addition, gut microbes and their SCFA products are important determinants of the inflammatory landscape of tumors and augment anti-tumor immunity, which can influence immunotherapy outcomes. Studies have also found that dysbiosis, or microbial imbalance, correlates with biological processes such as cancer progression, metastasis, and therapy resistance, leading scientists to explore the use of microbiome deficiencies as adjunctive approaches to chemotherapy and other, more traditional treatments. Nonetheless, mental health practitioners struggling to comprehend the existent gap between cancer patients with pronounced resolutive capabilities and the profound clinical impact Microbiome-targeted cancer therapy has been proven to possess.Keywords: microbiome, cancer, tumor, immune system
Procedia PDF Downloads 191664 Elaboration and Physico-Chemical Characterization of Edible Films Made from Chitosan and Spray Dried Ethanolic Extracts of Propolis
Authors: David Guillermo Piedrahita Marquez, Hector Suarez Mahecha, Jairo Humberto Lopez
Abstract:
It was necessary to establish which formulation is suitable for the preservation of aquaculture products, that why edible films were made. These were to a characterization in order to meet their morphology physicochemical and mechanical properties, optical. Six Formulations of chitosan and propolis ethanolic extract encapsulated were developed because of their activity against pathogens and due to their properties, which allows the creation waterproof polymer networks against gasses, vapor, and physical damage. In the six Formulations, the concentration of comparison material (1% w/v, 2% pv) and the bioactive concentrations (0.5% w/v, 1% w/v, 1.5% pv) were changed and the results obtained were compared with statistical and multivariate analysis methods. It was observed that the matrices showed a mayor impermeability and thickness control samples and the samples reported in the literature. Also, these films showed a notorious uniformity of the films and a bigger resistance to the physical damage compared with other edible films made of other biopolymers. However the action of some compounds had a negative effect on the mechanical properties and changed drastically the optical properties, the bioactive has an effect on Polymer Matrix and it was determined that the films with 2% w / v of chitosan and 1.5% w/v encapsulated, exhibited the best properties and suffered to a lesser extent the negative impact of immiscible substances.Keywords: chitosan, edible films, ethanolic extract of propolis, mechanical properties, optical properties, physical characterization, scanning electron microscopy (SEM)
Procedia PDF Downloads 4461663 Mobile Assembly of Electric Vehicles: Decentralized, Low-Invest and Flexible
Authors: Achim Kampker, Kai Kreiskoether, Johannes Wagner, Sarah Fluchs
Abstract:
The growing speed of innovation in related industries requires the automotive industry to adapt and increase release frequencies of new vehicle derivatives which implies a significant reduction of investments per vehicle and ramp-up times. Emerging markets in various parts of the world augment the currently dominating established main automotive markets. Local content requirements such as import tariffs on final products impede the accessibility of these micro markets, which is why in the future market exploitation will not be driven by pure sales activities anymore but rather by setting up local assembly units. The aim of this paper is to provide an overview of the concept of decentralized assembly and to discuss and critically assess some currently researched and crucial approaches in production technology. In order to determine the scope in which complementary mobile assembly can be profitable for manufacturers, a general cost model is set up and each cost driver is assessed with respect to varying levels of decentralization. One main result of the paper is that the presented approaches offer huge cost-saving potentials and are thus critical for future production strategies. Nevertheless, they still need to be further exploited in order for decentralized assembly to be profitable for companies. The optimal level of decentralization must, however, be specifically determined in each case and cannot be defined in general.Keywords: automotive assembly, e-mobility, production technology, release capability, small series assembly
Procedia PDF Downloads 2011662 The Study of Effective Microorganism's Biopreperation for Wastewater Treatment
Authors: Batsukh Chultem, Oyunbileg Natsagdorj, Namsrai Steyrmunkh
Abstract:
Many industries, tourist camps and houses, discharge aqueous effluents containing relatively high levels of heavy metals, harmful organic compounds water. Untreated effluent from these manufacturing processes has an adverse impact on the environment. A specific problem associated with waste water in the environment is accumulation in the food chain and persistence in the environment. The screening of microorganisms resistant to pollution and able to detoxification them is essential for the development of clean-up technologies. The purpose of this study is to use advanced microbiological technology products for oxidizing organic and heavy metals pollutants as a biological treatment, to reduce water pollution, which arise as a result of waste water due to day-to-day operations of industries and houses of Ulaanbaatar city and tourist camps located around the lake Hovsgol, in Hovsgol province of Mongolia. By comparing the results from tests of effective microorganism’s bio-preparation treated sewage samples and not treated sewage samples shows that the treated sewage samples pollution decreased defending on treatment period and ratio. Treated water analyses show that: the suspended solids 352 mg/l, pH 5.85-7.95, ammonium nitrate 81.25-221.2 mg NH₄/l, nitrite 0.088-0.227 mg NO₂/l, nitrate 8.5-11.5 mg NO₃/l, and orthophosphate 1.06-15.46 mg PO₄/l. Also, heavy metals were decreased and microbiological test results defined parameters, respectively show the waste water pollution was reduced.Keywords: effective microorganims, environment, pollution, treatment
Procedia PDF Downloads 1311661 The Multipurpose Usage of Livestock Animal Dungs for Food Production in Gwagwalada Area Council of the Federal Capital Territory, Abuja Nigeria
Authors: Michael Adedotun Oke
Abstract:
This paper, therefore, under study the various multiplier usages of the different Animal Dungs, from the animals such as Rabbits, Cows, Fishes, Sheep, and Poultry manure in the areas council of the Federal Capital Territory Abuja, Nigeria. Thus the various observations, with the pictorial representation, that was taken with the field survey from the different farms in Gwagawalada. Shows that the rabbits dungs are being used in some of the vegetables and crop farms, which serves as the nutrients, reduces the cost of production, ensure profitability, which also increases the different vegetative growth, early maturity, and the development of the crop and this is also applicable to some crops like maize, sweet potatoes. While the manure of the poultry products are being incorporated to fish ponds and the cows dungs are being used to serve as some manure to some certain crops, e.g. Okro, Maize, Pepper. Which provides the necessary nutritious values, but the various number of quantity of different bags of the various application are lacking, and the time of usage, it is also a life germane questions, which there are needs for further adaptive research, that will be involved and the reintroduction of new technology, that will be used in terms of the different methodology such as broadcasting and ring applications, of the dungs at large, while the seasons of the various applications. Thus the paper, therefore, suggested a training programs and production of manuals that will guide the various applications and usage and the effective dissemination of the various used of the simple technology, that will advances and teaching of a new mode of and the time of applications and the various quantity to used, during the applications.Keywords: animals, usage, livestock, dungs, feaces, gwagawalada
Procedia PDF Downloads 1781660 Influence of JHA and Ecdysteroid on Reproduction in Dysdercus similis (Hemiptera: Pyrrhocoridae)
Authors: Versha Sharma
Abstract:
Juvenile hormone analogue, fenoxycarb and ecdysterone, when applied at varying concentrations in the adult females of Dysdercus similis, in situ histochemical observations of treated ovarian and adipose tissues during the first gonotrophic cycle elicited drastic histomorphological changes in both tissues. The action and effect of both JHa and ecdysterone on ovarian development, vitellogenesis, the activity of follicular epithelium, chorion formation all were monitored in detail. SDS-PAGE electrophoretic analysis showed drastic downregulation on the protein profile of differently treated tissue samples. After exogenous JHa supply, resorption of the developing oocytes was also often noticed. Gradational decline and disappearance of different protein bands in treated both ovarian and adipose tissues noticed could be due to the depletion of specific metabolites essential for oocyte development and maturation. Natural products support both crop production and the environment that being effective in pest control, less toxic to non-target organisms and at the same time biodegradable. Hence, these could be utilized as an attractive alternative to the synthetic chemical insecticides for at least cotton bug pest management. Increasing IGR dosages is found to elicit both qualitative and quantitative depletion of protein metabolites and drastic histochemical changes in the gonads of the treated forms brought forth the production of a large number of immature mal-formed oocytes. Findings in greater detail could be discussed.Keywords: juvenile hormone, ecdysone, P. picta, Dysdercus similis
Procedia PDF Downloads 2521659 H₆P₂W₁₈O₆₂.14H₂O Catalyzed Synthesis of α-Aminophosphonates from Amino Acids Esters
Authors: Sarra Boughaba
Abstract:
α-aminophosphonates have found a wide range of applications in organic and medicinal chemistry; they are considered as pharmacological agents, anti-inflammatory antitumor agents, and antibiotics. A number of procedures have been developed for their synthesis. However, many of these methods suffer from some disadvantages such as long reaction times, environmental pollution, utilization of organic solvents, and expensive catalysts. In the past few years, heteropolyacids have received great attention as environmentally benign catalysts for organic synthetic processes, they possess unique physicochemical properties, such as super-acidity, high thermal and chemical stability, ability to accept and release electrons and high proton mobility, and the possibility of varying their acidity and oxidizing potential. In this context, an efficient and eco-friendly protocol has been described for the synthesis of α-aminophosphonates via one pot, three component reaction catalyzed by H₆P₂W₁₈O₆₂.14H₂O as reusable catalyst, by condensation of amino acids esters, various aromatic aldehydes and triethylphosphite under solvent-free conditions, the corresponding α-aminophosphonates were formed in good yields as racemic or diastereomericmixture. All the new products were systematically characterized by IR, MS, and ¹H, ¹³C-³¹P-NMR analyses. This method offers advantages such as simplicity workup with the green aspects by avoiding expensive catalysts and toxic solvents, good yields, short reaction times.Keywords: amino acids esters, α-aminophosphonates, H₆P₂W₁₈O₆₂.14H₂O catalyst, green chemistry
Procedia PDF Downloads 1271658 Biotechonomy System Dynamics Modelling: Sustainability of Pellet Production
Authors: Andra Blumberga, Armands Gravelsins, Haralds Vigants, Dagnija Blumberga
Abstract:
The paper discovers biotechonomy development analysis by use of system dynamics modelling. The research is connected with investigations of biomass application for production of bioproducts with higher added value. The most popular bioresource is wood, and therefore, the main question today is about future development and eco-design of products. The paper emphasizes and evaluates energy sector which is open for use of wood logs, wood chips, wood pellets and so on. The main aim for this research study was to build a framework to analyse development perspectives for wood pellet production. To reach the goal, a system dynamics model of energy wood supplies, processing, and consumption is built. Production capacity, energy consumption, changes in energy and technology efficiency, required labour source, prices of wood, energy and labour are taken into account. Validation and verification tests with available data and information have been carried out and indicate that the model constitutes the dynamic hypothesis. It is found that the more is invested into pellets production, the higher the specific profit per production unit compared to wood logs and wood chips. As a result, wood chips production is decreasing dramatically and is replaced by wood pellets. The limiting factor for pellet industry growth is availability of wood sources. This is governed by felling limit set by the government based on sustainable forestry principles.Keywords: bioenergy, biotechonomy, system dynamics modelling, wood pellets
Procedia PDF Downloads 4101657 Effect of Catalyst Preparation Method on Dry Reforming of Methane with Supported and Promoted Catalysts
Authors: Sanjay P. Gandhi, Sanjay S. Patel
Abstract:
Dry (CO2) reforming of methane (DRM) is both scientific and industrial importance. In recent decades, CO2 utilization has become increasingly important in view of the escalating global warming phenomenon. This reaction produces syngas that can be used to produce a wide range of products, such as higher alkanes and oxygenates by means of Fischer–Tropsch synthesis. DRM is inevitably accompanied by deactivation due to carbon deposition. DRM is also a highly endothermic reaction and requires operating temperatures of 800–1000 °C to attain high equilibrium conversion of CH4 and CO2 to H2 and CO and to minimize the thermodynamic driving force for carbon deposition. The catalysts used are often composed of transition Methods like Nickel, supported on metallic and non-metallic oxides such as alumina and silica. However, many of these catalysts undergo severe deactivation due to carbon deposition. Noble metals have also been studied and are typically found to be much more resistant to carbon deposition than Ni catalysts, but are generally uneconomical. Noble metals can also be used to promote the Ni catalysts in order to increase their resistance to deactivation. In order to design catalysts that minimize deactivation, it is necessary to understand the elementary steps involved in the activation and conversion of CH4 and CO2. CO2 reforming methane over promoted catalyst was studied. The influence of ZrO2, CeO2 and the behavior of Ni-Al2O3 Catalyst, prepare by wet-impregnation and Co-precipitated method was studied. XRD, BET Analysis for different promoted and unprompted Catalyst was studied.Keywords: CO2 reforming of methane, Ni catalyst, promoted and unprompted catalyst, effect of catalyst preparation
Procedia PDF Downloads 4721656 Fabrication and Characterization of Cu50 (Zr50-xNix) 50 Nanocrystalline Coating by Cold Spray Technique for Potential Antibiofilm Application
Authors: Ahmad Alazemi, M. Sherif El-Eskandrany, Mohamad Kishk, Thanyan AlOnaizi, Ahmad Alduweesh, Shorouq Abdullaleel
Abstract:
Arc melting technique followed by top-down approach, using a high-energy ball milling technique were employed to synthesize nanocrystalline of Cu50(Zr50-xNix)50 (x = 0, 10, 20 and 30 at.%) powder particles. The end-products of the alloy powders obtained after 50 h of the ball milling time were uniform in composition and had spherical-like morphology with an average particle size of 0.75 µm in diameter. The powders, which consisted of nanocrystalline grains with an average grain size of 10 nm in diameter, were used as feedstock materials for double face coating of stainless (SUS304) sheets, using cold spraying process. The coating materials enjoyed nanocrystalline structure and uniform composition. Biofilms were grown on 20-mm2 SUS304 sheets coated coupons inoculated with 1.5 × 108 CFU ml−1 E. coli. Significant biofilm inhibition was recorded in the nanoparticles coated coupons in comparison to non-coated SUS304 coupon. In conclusion, this study demonstrates that formation of biofilms can be significantly inhibited by Cu-based alloys especially in case of high (Ni) content. The inhibition of biofilm formation by nanocrystalline powders of Cu-based provides a practical approach to achieve the inhibition of biofilms formed by an emerging pathogen.Keywords: biofilm, Cu, E.coli, FE-HRTEM/EDS, nanomaterials, nanocrystalline
Procedia PDF Downloads 4191655 A Method for Reconfigurable Manufacturing Systems Customization Measurement
Authors: Jesus Kombaya, Nadia Hamani, Lyes Kermad
Abstract:
The preservation of a company’s place on the market in such aggressive competition is becoming a survival challenge for manufacturers. In this context, survivors are only those who succeed to satisfy their customers’ needs as quickly as possible. The production system should be endowed with a certain level of flexibility to eliminate or reduce the rigidity of the production systems in order to facilitate the conversion and/or the change of system’s features to produce different products. Therefore, it is essential to guarantee the quality, the speed and the flexibility to survive in this competition. According to literature, this adaptability is referred to as the notion of "change". Indeed, companies are trying to establish a more flexible and agile manufacturing system through several reconfiguration actions. Reconfiguration contributes to the extension of the manufacturing system life cycle by modifying its physical, organizational and computer characteristics according to the changing market conditions. Reconfigurability is characterized by six key elements that are: modularity, integrability, diagnosability, convertibility, scalability and customization. In order to control the production systems, it is essential for manufacturers to make good use of this capability in order to be sure that the system has an optimal and adapted level of reconfigurability that allows it to produce in accordance with the set requirements. This document develops a measure of customization of reconfigurable production systems. These measures do not only impact the production system but also impact the product design and the process design, which can therefore serve as a guide for the customization of manufactured product. A case study is presented to show the use of the proposed approach.Keywords: reconfigurable manufacturing systems, customization, measure, flexibility
Procedia PDF Downloads 1281654 Molecular Characterization of Functional Domain (LRR) of TLR9 Genes in Malnad Gidda Cattle and Their Comparison to Cross Breed Cattle
Authors: Ananthakrishna L. R., Ramesh D., Kumar Wodeyar, Kotresh A. M., Gururaj P. M.
Abstract:
Malnad Gidda is the indigenous recognized cattle breed of Shivamogga District of Karnataka state, India is known for its disease resistance to many of the infectious diseases. There are 25 LRR (Leucine Rich Repeats) identified in bovine (Bos indicus) TLR9. The amino acid sequence of LRR is deduced to nucleotide sequence in BLASTx bioinformatic online tools. LRR2 to LRR10 are involved in pathogen recognition and binding in human TLR9 which showed a higher degree of nucleotide variations with respect to disease resistance to various pathogens. Hence, primers were designed to amplify the flanking sequences of LRR2 to LRR10, to discover the nucleotide variations if any, in Malnad Gidda breed of Cattle which is associated with disease resistance. The DNA isolated from peripheral blood mononuclear cells of ten Malnad Gidda cattle. A desired and specific amplification product of 0.8 kb was obtained at an annealing temperature of 56.6ᵒC. All the PCR products were sequenced on both sides by gene-specific primers. The sequences were compared with TLR9 sequence of cross breed cattle obtained from NCBI data bank. The sequence analysis between Malnad Gidda and crossbreed cattle revealed no nucleotide variations in the region LRR2 to LRR9 which shows the conserved in pathogen binding domain (LRR) of TLR9.Keywords: leucine rich repeats, Malnad Gidda, cross breed, TLR9
Procedia PDF Downloads 2261653 Development of Membrane Reactor for Auto Thermal Reforming of Dimethyl Ether for Hydrogen Production
Authors: Tie-Qing Zhang, Seunghun Jung, Young-Bae Kim
Abstract:
This research is devoted to developing a membrane reactor to flexibly meet the hydrogen demand of onboard fuel cells, which is an important part of green energy development. Among many renewable chemical products, dimethyl ether (DME) has the advantages of low reaction temperature (400 °C in this study), high hydrogen atom content, low toxicity, and easy preparation. Autothermal reforming, on the other hand, has a high hydrogen recovery rate and exhibits thermal neutrality during the reaction process, so the additional heat source in the hydrogen production process can be omitted. Therefore, the DME auto thermal reforming process was adopted in this study. To control the temperature of the reaction catalyst bed and hydrogen production rate, a Model Predictive Control (MPC) scheme was designed. Taking the above two variables as the control objectives, stable operation of the reformer can be achieved by controlling the flow rates of DME, steam, and high-purity air in real-time. To prevent catalyst poisoning in the fuel cell, the hydrogen needs to be purified to reduce the carbon monoxide content to below 50 ppm. Therefore, a Pd-Ag hydrogen semi-permeable membrane with a thickness of 3-5 μm was inserted into the auto thermal reactor, and the permeation efficiency of hydrogen was improved by steam purging on the permeation side. Finally, hydrogen with a purity of 99.99 was obtained.Keywords: hydrogen production, auto thermal reforming, membrane, fuel cell
Procedia PDF Downloads 1041652 Urban Forest Innovation Lab as a Driver to Boost Forest Bioeconomy
Authors: Carmen Avilés Palacios, Camilo Muñoz Arenas, Joaquín García Alfonso, Jesús González Arteaga, Alberto Alcalde Calonge
Abstract:
There is a need for review of the consumption and production models of industrialized states in accordance with the Paris Agreement and the Sustainable Development Goals (1) (OECD, 2016). This constitutes the basis of the bioeconomy (2) that is focused on striking a balance between economic development, social development and environmental protection. Bioeconomy promotes the adequate use and consumption of renewable natural resources (3) and involves developing new products and services adapted to the principles of circular economy: more sustainable (reusable, biodegradable, renewable and recyclable) and with a lower carbon footprint (4). In this context, Urban Forest Innovation Lab (UFIL) grows, an Urban Laboratory for experimentation focused on promoting entrepreneurship in forest bioeconomy (www.uiacuenca.es). UFIL generates local wellness taking sustainable advantage of an endogenous asset, forests. UFIL boosts forest bioeconomy opening its doors of knowledge to pioneers in this field, giving the opportunity to be an active part of a change in the way of understanding the exploitation of natural resources, discovering business, learning strategies and techniques and incubating business ideas So far now, 100 entrepreneurs are incubating their nearly 30 new business plans. UFIL has promoted an ecosystem to connect the rural-urban world that promotes sustainable rural development around the forest.Keywords: bioeconomy, forestry, innovation, entrepreneurship
Procedia PDF Downloads 1171651 Financial Technology: The Key to Achieving Financial Inclusion in Developing Countries Post COVID-19 from an East African Perspective
Authors: Yosia Mulumba, Klaus Schmidt
Abstract:
Financial Inclusion is considered a key pillar for development in most countries around the world. Access to affordable financial services in a country’s economy can be a driver to overcome poverty and reduce income inequalities, and thus increase economic growth. Nevertheless, the number of financially excluded populations in developing countries continues to be very high. This paper explores the role of Financial Technology (Fintech) as a key driver for achieving financial inclusion in developing countries post the COVID-19 pandemic with an emphasis on four East African countries: Kenya, Tanzania, Uganda, and Rwanda. The research paper is inspired by the positive disruption caused by the pandemic, which has compelled societies in East Africa to adapt and embrace the use of financial technology innovations, specifically Mobile Money Services (MMS), to access financial services. MMS has been further migrated and integrated with other financial technology innovations such as Mobile Banking, Micro Savings, and Loans, and Insurance, to mention but a few. These innovations have been adopted across key sectors such as commerce, health care, or agriculture. The research paper will highlight the Mobile Network Operators (MNOs) that are behind MMS, along with numerous innovative products and services being offered to the customers. It will also highlight the regulatory framework under which these innovations are being governed to ensure the safety of the customers' funds.Keywords: financial inclusion, financial technology, regulatory framework, mobile money services
Procedia PDF Downloads 146