Search results for: twisted intramolecular charge transfer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3593

Search results for: twisted intramolecular charge transfer

713 The Effect of Law on Society

Authors: Rezki Omar

Abstract:

Openness cosmic shares dramatically in the order of something quite a bit of neglected priorities within the community at the level of thought and consciousness, and these priorities provider of legal and human rights awareness after a long delay in the process of awareness of human rights, there is no doubt that the long and arduous road. As is obvious to any observer public affairs as well as the specialist and the observer that there is growth and development in the scene and the legal movement is unprecedented, many when dealing with many of the details sought and tries as much as possible to know what is the natural rights, and duties that must comply with legally in no charge with the issue of what is going on, any attempt of weakness and lack of self-reliance and obstacles level during the search show him by virtue of the difficulty of the availability of legal information in some cases on a particular issue, whether or not the image is complete, legally insufficient. Law relationship to society basically a close relationship, there is no law society, a society is impossible without both at the level of domestic relations or international law: «There is a close link between law and society. The law remains influenced by the society in which it grew, as well as the law affects the society, which is governed by, the relationship between the community and law affected and the impact of relationship ». The law of the most important objectives of protecting members of society, and its role is based on the distribution of rights and duties in a fair way, and protect the public interest of the citizen’s basis. The word community when some sociologists are limited to the group that gathered, including cultural unity Cultural Group distinguish between society and the last. In the recent period issued a set of regulations in the various branches of law, which is different from the class and important one hand, and here is important study of the interaction between law and society, and how to make the laws effective in the community? The opposite is true as well. The law as a social phenomenon is impossible to understand and analyzed without taking into account the extent of their impact and vulnerability within the community and accepted. Must evoke the basis that it was developed to address the problems faced by citizens. The over-age and amplify the sanctions are a contradiction of that fundamental reform of the basic objectives of the offender more than anything else Calantqam and revenge, and if the process is not human mistakes. Michel Foucault believes that «tighten laws and regulations against criminals will not reduce the crime rate in the community, so you must activate the system of moral values of society after more deterrent, and the threat of scandal on a social level.» Besson and refers to the legislators, saying the law: «The only way to reduce the crime rate to strengthen the ethical system of the society, especially in the social Amnhoha sanctity of conscience, then you will not be forced to issue harsh sentences against criminals».In summary, it is necessary to combine the enactment of laws and activate the system of moral values and educational values on the ground, and to understand the causes of social problems at the root of all for the equation is complete, and that the law was drafted to serve the citizens and not to harm him.

Keywords: legislators, distinguish, awareness, insufficient

Procedia PDF Downloads 493
712 Sex-Dependent Fitness Improvement of Hercules Beetle Larvae by Amendment of Thermophile-Fermented Compost to Humus

Authors: Futo Asano, Yusuke Yatsushiro, Hirokuni Miyamoto, Hiroaki Kodama

Abstract:

A thermophile-fermented compost is produced using small fishes, crabs, and shrimps under a high temperature (approximately 75℃) by fermentation-associated self-heating. This compost has been used as a feed additive for pigs and hens in Japan, and the fecundity of this livestock is enhanced. Firmicutes is a dominant phylum in the microbial composition of the compost. We first reported that improvement of female larval fitness of Hercules beetle can be achieved by amendment of this compost to the humus. When the 90-d-old larvae were reared for subsequent 72 days in the humus with this compost, the growth of female larvae was significantly enhanced when compared with the growth of female larvae in the humus without the compost. In contrast, the growth of male larvae in the compost-free humus was the same as the larvae grow in the compost-amended humus. The bacterial composition of the feces of larvae was determined at 0 days and 46 days after transfer to the humus with or without the compost. The most dominant bacterium in the feces was Xylanimonas. Interestingly, the growth improvement of female larvae was associated with an increased abundance of Mollicutes in the fecal samples. These results indicate that the compost act as a probiotic material for enhancing the female larvae growth by supporting Mollicutes. Here, we tried to isolate Mollicutes from the contents of the midgut and hindgut of the 3rd instar female larvae of the Hercules beetle. These gut contents were spread onto a selective agar medium for Mollicutes (PPLO agar broth, BD Difco, NJ, USA). Although we isolated none of the Mollicutes until now, several bacteria that are closely related to Xylanimonas and Luteimicrobium were isolated. These isolates have xylanase and glucanase (CMCase) activities. We show the gut bacterial profiles of larvae and discuss how the fitness of female larvae of the Hercules beetle is improved by the compost.

Keywords: compost, beetle, mollicutes, woody biomass

Procedia PDF Downloads 81
711 An End-to-end Piping and Instrumentation Diagram Information Recognition System

Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha

Abstract:

Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.

Keywords: object recognition system, P&ID, symbol recognition, text recognition

Procedia PDF Downloads 151
710 In-Vitro Dextran Synthesis and Characterization of an Intracellular Glucosyltransferase from Leuconostoc Mesenteroides AA1

Authors: Afsheen Aman, Shah Ali Ul Qader

Abstract:

Dextransucrase [EC 2.4.1.5] is a glucosyltransferase that catalysis the biosynthesis of a natural biopolymer called dextran. It can catalyze the transfer of D-glucopyranosyl residues from sucrose to the main chain of dextran. This unique biopolymer has multiple applications in several industries and the key utilization of dextran lies on its molecular weight and the type of branching. Extracellular dextransucrase from Leuconostoc mesenteroides is most extensively studied and characterized. Limited data is available regarding cell-bound or intracellular dextransucrase and on the characterization of dextran produced by in-vitro reaction of intracellular dextransucrase. L. mesenteroides AA1 is reported to produce extracellular dextransucrase that catalyzes biosynthesis of a high molecular weight dextran with only α-(1→6) linkage. Current study deals with the characterization of an intracellular dextransucrase and in vitro biosynthesis of low molecular weight dextran from L. mesenteroides AA1. Intracellular dextransucrase was extracted from cytoplasm and purified to homogeneity for characterization. Kinetic constants, molecular weight and N-terminal sequence analysis of intracellular dextransucrase reveal unique variation with previously reported extracellular dextransucrase from the same strain. In vitro synthesized biopolymer was characterized using NMR spectroscopic techniques. Intracellular dextransucrase exhibited Vmax and Km values of 130.8 DSU ml-1 hr-1 and 221.3 mM, respectively. Optimum catalytic activity was detected at 35°C in 0.15 M citrate phosphate buffer (pH-5.5) in 05 minutes. Molecular mass of purified intracellular dextransucrase is approximately 220.0 kDa on SDS-PAGE. N-terminal sequence of the intracellular enzyme is: GLPGYFGVN that showed no homology with previously reported sequence for the extracellular dextransucrase. This intracellular dextransucrase is capable of in vitro synthesis of dextran under specific conditions. This intracellular dextransucrase is capable of in vitro synthesis of dextran under specific conditions and this biopolymer can be hydrolyzed into different molecular weight fractions for various applications.

Keywords: characterization, dextran, dextransucrase, leuconostoc mesenteroides

Procedia PDF Downloads 392
709 Microwave Heating and Catalytic Activity of Iron/Carbon Materials for H₂ Production from the Decomposition of Plastic Wastes

Authors: Peng Zhang, Cai Liang

Abstract:

The non-biodegradable plastic wastes have posed severe environmental and ecological contaminations. Numerous technologies, such as pyrolysis, incineration, and landfilling, have already been employed for the treatment of plastic waste. Compared with conventional methods, microwave has displayed unique advantages in the rapid production of hydrogen from plastic wastes. Understanding the interaction between microwave radiation and materials would promote the optimization of several parameters for the microwave reaction system. In this work, various carbon materials have been investigated to reveal microwave heating performance and the ensuing catalytic activity. Results showed that the diversity in the heating characteristic was mainly due to the dielectric properties and the individual microstructures. Furthermore, the gaps and steps among the surface of carbon materials would lead to the distortion of the electromagnetic field, which correspondingly induced plasma discharging. The intensity and location of local plasma were also studied. For high-yield H₂ production, iron nanoparticles were selected as the active sites, and a series of iron/carbon bifunctional catalysts were synthesized. Apart from the high catalytic activity, the iron particles in nano-size close to the microwave skin depth would transfer microwave irradiation to the heat, intensifying the decomposition of plastics. Under microwave radiation, iron is supported on activated carbon material with 10wt.% loading exhibited the best catalytic activity for H₂ production. Specifically, the plastics were rapidly heated up and subsequently converted into H₂ with a hydrogen efficiency of 85%. This work demonstrated a deep understanding of microwave reaction systems and provided the optimization for plastic treatment.

Keywords: plastic waste, recycling, hydrogen, microwave

Procedia PDF Downloads 66
708 Role of Calcination Treatment on the Structural Properties and Photocatalytic Activity of Nanorice N-Doped TiO₂ Catalyst

Authors: Totsaporn Suwannaruang, Kitirote Wantala

Abstract:

The purposes of this research were to synthesize titanium dioxide photocatalyst doped with nitrogen (N-doped TiO₂) by hydrothermal method and to test the photocatalytic degradation of paraquat under UV and visible light illumination. The effect of calcination treatment temperature on their physical and chemical properties and photocatalytic efficiencies were also investigated. The characterizations of calcined N-doped TiO₂ photocatalysts such as specific surface area, textural properties, bandgap energy, surface morphology, crystallinity, phase structure, elements and state of charges were investigated by Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) equations, UV-Visible diffuse reflectance spectroscopy (UV-Vis-DRS) by using the Kubelka-Munk theory, Wide-angle X-ray scattering (WAXS), Focussed ion beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS), respectively. The results showed that the effect of calcination temperature was significant on surface morphology, crystallinity, specific surface area, pore size diameter, bandgap energy and nitrogen content level, but insignificant on phase structure and oxidation state of titanium (Ti) atom. The N-doped TiO₂ samples illustrated only anatase crystalline phase due to nitrogen dopant in TiO₂ restrained the phase transformation from anatase to rutile. The samples presented the nanorice-like morphology. The expansion on the particle was found at 650 and 700°C of calcination temperature, resulting in increased pore size diameter. The bandgap energy was determined by Kubelka-Munk theory to be in the range 3.07-3.18 eV, which appeared slightly lower than anatase standard (3.20 eV), resulting in the nitrogen dopant could modify the optical absorption edge of TiO₂ from UV to visible light region. The nitrogen content was observed at 100, 300 and 400°C only. Also, the nitrogen element disappeared at 500°C onwards. The nitrogen (N) atom can be incorporated in TiO₂ structure with the interstitial site. The uncalcined (100°C) sample displayed the highest percent paraquat degradation under UV and visible light irradiation due to this sample revealed both the highest specific surface area and nitrogen content level. Moreover, percent paraquat removal significantly decreased with increasing calcination treatment temperature. The nitrogen content level in TiO₂ accelerated the rate of reaction with combining the effect of the specific surface area that generated the electrons and holes during illuminated with light. Therefore, the specific surface area and nitrogen content level demonstrated the important roles in the photocatalytic activity of paraquat under UV and visible light illumination.

Keywords: restraining phase transformation, interstitial site, chemical charge state, photocatalysis, paraquat degradation

Procedia PDF Downloads 156
707 Detection of Pollution in the Catchment Area of Baha Region by Using Some Common Plants as a Bioindicators

Authors: Saad M. Howladar

Abstract:

Although, there are a little data on the use of littoral plants as heavy metals bioaccumulators over large areas of the wetlands environment. So, soil samples and biomass of the five plant species: Pluchea dioscroides, Pulicaria crispa, Lavandula pubescens, Tarchononthus comporatus and Argemone ochroleuca were collected from two different sites (basin and mouth) of four dams at Baha province, KSA. Nutrients and heavy metals were extracted from plant samples (leaves and stems) for analyzing elements (Na, K, Ca, P and N) and heavy metals (Pb, Cu and Ni). The soils of the mouth of the dam had the highest concentrations of all elements, while that of basin had the highest ones of most heavy metals except Pb. The soil elements in relation to the two sites arranged as: Ca > K > P > Na > N; and the heavy metals as: Cu > Ni > Pb. The present study indicated that Pluchea dioscroides had the highest values of most elements and heavy metals, while Lavandula pubescens had the lowest. In general, leaves attain the highest concentrations of all nutrients and heavy metals in most studied species as compared with stem. It was indicated that Pluchea dioscroides showed a high transfer factor for almost elements and heavy metals such as K, Na, Cu, Ni and Pb, while Pulicaria crispa showed the highest translocation factor of N, P, Ca-Na ratio and Cu. All studied species growing in the basin had almost the highest concentrations of elements and heavy metals as compared with that in the mouth of dam except K in Pluchea dioscroides, Tarchononthus comporatus and Argemone ochroleuca tissues. Otherwise tissues of Tarchononthus comporatus growing in the basin had the lowest concentrations of K and Ni, while that growing in the mouth had the highest of P and N.

Keywords: Baha Region, bioindicators, plant, pollution, dams, heavy metals

Procedia PDF Downloads 464
706 Temperature Dependence of the Optoelectronic Properties of InAs(Sb)-Based LED Heterostructures

Authors: Antonina Semakova, Karim Mynbaev, Nikolai Bazhenov, Anton Chernyaev, Sergei Kizhaev, Nikolai Stoyanov

Abstract:

At present, heterostructures are used for fabrication of almost all types of optoelectronic devices. Our research focuses on the optoelectronic properties of InAs(Sb) solid solutions that are widely used in fabrication of light emitting diodes (LEDs) operating in middle wavelength infrared range (MWIR). This spectral range (2-6 μm) is relevant for laser diode spectroscopy of gases and molecules, for systems for the detection of explosive substances, medical applications, and for environmental monitoring. The fabrication of MWIR LEDs that operate efficiently at room temperature is mainly hindered by the predominance of non-radiative Auger recombination of charge carriers over the process of radiative recombination, which makes practical application of LEDs difficult. However, non-radiative recombination can be partly suppressed in quantum-well structures. In this regard, studies of such structures are quite topical. In this work, electroluminescence (EL) of LED heterostructures based on InAs(Sb) epitaxial films with the molar fraction of InSb ranging from 0 to 0.09 and multi quantum-well (MQW) structures was studied in the temperature range 4.2-300 K. The growth of the heterostructures was performed by metal-organic chemical vapour deposition on InAs substrates. On top of the active layer, a wide-bandgap InAsSb(Ga,P) barrier was formed. At low temperatures (4.2-100 K) stimulated emission was observed. As the temperature increased, the emission became spontaneous. The transition from stimulated emission to spontaneous one occurred at different temperatures for structures with different InSb contents in the active region. The temperature-dependent carrier lifetime, limited by radiative recombination and the most probable Auger processes (for the materials under consideration, CHHS and CHCC), were calculated within the framework of the Kane model. The effect of various recombination processes on the carrier lifetime was studied, and the dominant role of Auger processes was established. For MQW structures quantization energies for electrons, light and heavy holes were calculated. A characteristic feature of the experimental EL spectra of these structures was the presence of peaks with energy different from that of calculated optical transitions between the first quantization levels for electrons and heavy holes. The obtained results showed strong effect of the specific electronic structure of InAsSb on the energy and intensity of optical transitions in nanostructures based on this material. For the structure with MQWs in the active layer, a very weak temperature dependence of EL peak was observed at high temperatures (>150 K), which makes it attractive for fabricating temperature-resistant gas sensors operating in the middle-infrared range.

Keywords: Electroluminescence, InAsSb, light emitting diode, quantum wells

Procedia PDF Downloads 208
705 Kinetic Study of Physical Quality Changes on Jumbo Squid (Dosidicus gigas) Slices during Application High-Pressure Impregnation

Authors: Mario Perez-Won, Roberto Lemus-Mondaca, Fernanda Marin, Constanza Olivares

Abstract:

This study presents the simultaneous application of high hydrostatic pressure (HHP) and osmotic dehydration of jumbo squid (Dosidicus gigas) slice. Diffusion coefficients for both components water and solids were improved by the process pressure, being influenced by pressure level. The working conditions were different pressures such as 100, 250, 400 MPa and pressure atmospheric (0.1 MPa) for time intervals from 30 to 300 seconds and a 15% NaCl concentration. The mathematical expressions used for mass transfer simulations both water and salt were those corresponding to Newton, Henderson and Pabis, Page and Weibull models, where the Weibull and Henderson-Pabis models presented the best fitted to the water and salt experimental data, respectively. The values for water diffusivity coefficients varied from 1.62 to 8.10x10⁻⁹ m²/s whereas that for salt varied among 14.18 to 36.07x10⁻⁹ m²/s for selected conditions. Finally, as to quality parameters studied under the range of experimental conditions studied, the treatment at 250 MPa yielded on the samples a minimum hardness, whereas springiness, cohesiveness and chewiness at 100, 250 and 400 MPa treatments presented statistical differences regarding to unpressurized samples. The colour parameters L* (lightness) increased, however, but b* (yellowish) and a* (reddish) parameters decreased when increasing pressure level. This way, samples presented a brighter aspect and a mildly cooked appearance. The results presented in this study can support the enormous potential of hydrostatic pressure application as a technique important for compounds impregnation under high pressure.

Keywords: colour, diffusivity, high pressure, jumbo squid, modelling, texture

Procedia PDF Downloads 343
704 Assessment of Taiwan Railway Occurrences Investigations Using Causal Factor Analysis System and Bayesian Network Modeling Method

Authors: Lee Yan Nian

Abstract:

Safety investigation is different from an administrative investigation in that the former is conducted by an independent agency and the purpose of such investigation is to prevent accidents in the future and not to apportion blame or determine liability. Before October 2018, Taiwan railway occurrences were investigated by local supervisory authority. Characteristics of this kind of investigation are that enforcement actions, such as administrative penalty, are usually imposed on those persons or units involved in occurrence. On October 21, 2018, due to a Taiwan Railway accident, which caused 18 fatalities and injured another 267, establishing an agency to independently investigate this catastrophic railway accident was quickly decided. The Taiwan Transportation Safety Board (TTSB) was then established on August 1, 2019 to take charge of investigating major aviation, marine, railway and highway occurrences. The objective of this study is to assess the effectiveness of safety investigations conducted by the TTSB. In this study, the major railway occurrence investigation reports published by the TTSB are used for modeling and analysis. According to the classification of railway occurrences investigated by the TTSB, accident types of Taiwan railway occurrences can be categorized into: derailment, fire, Signal Passed at Danger and others. A Causal Factor Analysis System (CFAS) developed by the TTSB is used to identify the influencing causal factors and their causal relationships in the investigation reports. All terminologies used in the CFAS are equivalent to the Human Factors Analysis and Classification System (HFACS) terminologies, except for “Technical Events” which was added to classify causal factors resulting from mechanical failure. Accordingly, the Bayesian network structure of each occurrence category is established based on the identified causal factors in the CFAS. In the Bayesian networks, the prior probabilities of identified causal factors are obtained from the number of times in the investigation reports. Conditional Probability Table of each parent node is determined from domain experts’ experience and judgement. The resulting networks are quantitatively assessed under different scenarios to evaluate their forward predictions and backward diagnostic capabilities. Finally, the established Bayesian network of derailment is assessed using investigation reports of the same accident which was investigated by the TTSB and the local supervisory authority respectively. Based on the assessment results, findings of the administrative investigation is more closely tied to errors of front line personnel than to organizational related factors. Safety investigation can identify not only unsafe acts of individual but also in-depth causal factors of organizational influences. The results show that the proposed methodology can identify differences between safety investigation and administrative investigation. Therefore, effective intervention strategies in associated areas can be better addressed for safety improvement and future accident prevention through safety investigation.

Keywords: administrative investigation, bayesian network, causal factor analysis system, safety investigation

Procedia PDF Downloads 122
703 Application of Hydrological Model in Support of Streamflow Allocation in Arid Watersheds in Northwestern China

Authors: Chansheng He, Lanhui Zhang, Baoqing Zhang

Abstract:

Spatial heterogeneity of landscape significantly affects watershed hydrological processes, particularly in high elevation and cold mountainous watersheds such as the inland river (terminal lake) basins in Northwest China, where the upper reach mountainous areas are the main source of streamflow for the downstream agricultural oases and desert ecosystems. Thus, it is essential to take into account spatial variations of hydrological processes in streamflow allocation at the watershed scale. This paper adapts the Distributed Large Basin Runoff Model (DLBRM) to the Heihe River Watershed, the second largest inland river with a drainage area of about 128,000 km2 in Northwest China, for understanding the transfer and partitioning mechanism among the glacier and snowmelt, surface runoff, evapotranspiration, and groundwater recharge among the upper, middle, and lower reaches in the study area. Results indicate that the upper reach Qilian Mountain area is the main source of streamflow for the middle reach agricultural oasis and downstream desert areas. Large withdrawals for agricultural irrigation in the middle reach had significantly depleted river flow for the lower reach desert ecosystems. Innovative conservation and enforcement programs need to be undertaken to ensure the successful implementation of water allocation plan of delivering 0.95 x 109 m3 of water downstream annually by the State Council in the Heihe River Watershed.

Keywords: DLBRM, Northwestern China, spatial variation, water allocation

Procedia PDF Downloads 300
702 Localization of Pyrolysis and Burning of Ground Forest Fires

Authors: Pavel A. Strizhak, Geniy V. Kuznetsov, Ivan S. Voytkov, Dmitri V. Antonov

Abstract:

This paper presents the results of experiments carried out at a specialized test site for establishing macroscopic patterns of heat and mass transfer processes at localizing model combustion sources of ground forest fires with the use of barrier lines in the form of a wetted lay of material in front of the zone of flame burning and thermal decomposition. The experiments were performed using needles, leaves, twigs, and mixtures thereof. The dimensions of the model combustion source and the ranges of heat release correspond well to the real conditions of ground forest fires. The main attention is paid to the complex analysis of the effect of dispersion of water aerosol (concentration and size of droplets) used to form the barrier line. It is shown that effective conditions for localization and subsequent suppression of flame combustion and thermal decomposition of forest fuel can be achieved by creating a group of barrier lines with different wetting width and depth of the material. Relative indicators of the effectiveness of one and combined barrier lines were established, taking into account all the main characteristics of the processes of suppressing burning and thermal decomposition of forest combustible materials. We performed the prediction of the necessary and sufficient parameters of barrier lines (water volume, width, and depth of the wetted lay of the material, specific irrigation density) for combustion sources with different dimensions, corresponding to the real fire extinguishing practice.

Keywords: forest fire, barrier water lines, pyrolysis front, flame front

Procedia PDF Downloads 132
701 Environmental Protection by Optimum Utilization of Car Air Conditioners

Authors: Sanchita Abrol, Kunal Rana, Ankit Dhir, S. K. Gupta

Abstract:

According to N.R.E.L.’s findings, 700 crore gallons of petrol is used annually to run the air conditioners of passenger vehicles (nearly 6% of total fuel consumption in the USA). Beyond fuel use, the Environmental Protection Agency reported that refrigerant leaks from auto air conditioning units add an additional 5 crore metric tons of carbon emissions to the atmosphere each year. The objective of our project is to deal with this vital issue by carefully modifying the interiors of a car thereby increasing its mileage and the efficiency of its engine. This would consequently result in a decrease in tail emission and generated pollution along with improved car performance. An automatic mechanism, deployed between the front and the rear seats, consisting of transparent thermal insulating sheet/curtain, would roll down as per the requirement of the driver in order to optimize the volume for effective air conditioning, when travelling alone or with a person. The reduction in effective volume will yield favourable results. Even on a mild sunny day, the temperature inside a parked car can quickly spike to life-threatening levels. For a stationary parked car, insulation would be provided beneath its metal body so as to reduce the rate of heat transfer and increase the transmissivity. As a result, the car would not require a large amount of air conditioning for maintaining lower temperature, which would provide us similar benefits. Authors established the feasibility studies, system engineering and primarily theoretical and experimental results confirming the idea and motivation to fabricate and test the actual product.

Keywords: automation, car, cooling insulating curtains, heat optimization, insulation, reduction in tail emission, mileage

Procedia PDF Downloads 276
700 Analyzing the Support to Fisheries in the European Union: Modelling Budgetary Transfers in Wild Fisheries

Authors: Laura Angulo, Petra Salamon, Martin Banse, Frederic Storkamp

Abstract:

Fisheries subsidies are focus on reduce management costs or deliver income benefits to fishers. In 2015, total fishery budgetary transfers in 31 OECD countries represented 35% of their total landing value. However, subsidies to fishing have adverse effects on trade and it has been claimed that they may contribute directly to overfishing. Therefore, this paper analyses to what extend fisheries subsidies may 1) influence capture production facing quotas and 2) affect price dynamics. The study uses the fish module in AGMEMOD (Agriculture Member States Modelling, details see Chantreuil et al. (2012)) which covers eight fish categories (cephalopods; crustaceans; demersal marine fish; pelagic marine fish; molluscs excl. cephalopods; other marine finfish species; freshwater and diadromous fish) for EU member states and other selected countries developed under the SUCCESS project. This model incorporates transfer payments directly linked to fisheries operational costs. As aquaculture and wild fishery are not included within the WTO Agreement on Agriculture, data on fisheries subsidies is obtained from the OECD Fisheries Support Estimates (FSE) database, which provides statistics on budgetary transfers to the fisheries sector. Since support has been moving from budgetary transfers to General Service Support Estimate the last years, subsidies in capture production may not present substantial effects. Nevertheless, they would still show the impact across countries and fish categories within the European Union.

Keywords: AGMEMOD, budgetary transfers, EU Member States, fish model, fisheries support estimate

Procedia PDF Downloads 244
699 Numerical Simulations of Acoustic Imaging in Hydrodynamic Tunnel with Model Adaptation and Boundary Layer Noise Reduction

Authors: Sylvain Amailland, Jean-Hugh Thomas, Charles Pézerat, Romuald Boucheron, Jean-Claude Pascal

Abstract:

The noise requirements for naval and research vessels have seen an increasing demand for quieter ships in order to fulfil current regulations and to reduce the effects on marine life. Hence, new methods dedicated to the characterization of propeller noise, which is the main source of noise in the far-field, are needed. The study of cavitating propellers in closed-section is interesting for analyzing hydrodynamic performance but could involve significant difficulties for hydroacoustic study, especially due to reverberation and boundary layer noise in the tunnel. The aim of this paper is to present a numerical methodology for the identification of hydroacoustic sources on marine propellers using hydrophone arrays in a large hydrodynamic tunnel. The main difficulties are linked to the reverberation of the tunnel and the boundary layer noise that strongly reduce the signal-to-noise ratio. In this paper it is proposed to estimate the reflection coefficients using an inverse method and some reference transfer functions measured in the tunnel. This approach allows to reduce the uncertainties of the propagation model used in the inverse problem. In order to reduce the boundary layer noise, a cleaning algorithm taking advantage of the low rank and sparse structure of the cross-spectrum matrices of the acoustic and the boundary layer noise is presented. This approach allows to recover the acoustic signal even well under the boundary layer noise. The improvement brought by this method is visible on acoustic maps resulting from beamforming and DAMAS algorithms.

Keywords: acoustic imaging, boundary layer noise denoising, inverse problems, model adaptation

Procedia PDF Downloads 332
698 Exploring the Potential of Phase Change Materials in Construction Environments

Authors: A. Ait Ahsene F., B. Boughrara S.

Abstract:

The buildings sector accounts for a significant portion of global energy consumption, with much of this energy used to heat and cool indoor spaces. In this context, the integration of innovative technologies such as phase change materials (PCM) holds promising potential to improve the energy efficiency and thermal comfort of buildings. This research topic explores the benefits and challenges associated with the use of PCMs in buildings, focusing on their ability to store and release thermal energy to regulate indoor temperature. We investigated the different types of PCM available, their thermal properties, and their potential applications in various climate zones and building types. To evaluate and compare the performance of PCMs, our methodology includes a series of laboratory and field experiments. In the laboratory, we measure the thermal storage capacity, melting and solidification temperatures, latent heat, and thermal conductivity of various PCMs. These measurements make it possible to quantify the capacity of each PCM to store and release thermal energy, as well as its capacity to transfer this energy through the construction materials. Additionally, field studies are conducted to evaluate the performance of PCMs in real-world environments. We install PCM systems in real buildings and monitor their operation over time, measuring energy savings, occupant thermal comfort, and material durability. These empirical data allow us to compare the effectiveness of different types of PCMs under real-world use conditions. By combining the results of laboratory and field experiments, we provide a comprehensive analysis of the advantages and limitations of PCMs in buildings, as well as recommendations for their effective application in practice.

Keywords: energy saving, phase change materials, material sustainability, buildings sector

Procedia PDF Downloads 40
697 Russia’s Role in Resolving the Nagorno-Karabakh Conflict 1990-2020

Authors: Friba Haidari

Abstract:

The aim of the study is to identify Russia's role in managing the Nagorno-Karabakh conflict betweenArmenia and Azerbaijan during the years 1990 to 2020. The Nagorno-Karabakh crisis can not be considered a mere territorial conflict but also a crossroads of interests of foreign actors. Geopolitical rivalries and the access to energy by regional and trans-regional actors have complicated the crisis and created a security challenge in the region, which is likely to escalate into a full-blown war between the parties involved. The geopolitical situation of Nagorno-Karabakh and its current situation have affected all peripheral states in some way. Russia, as one of the main actors in this scene, has been actively involved since the beginning of the crisis. The Russians have always sought to strengthen their influence and presence in the Nagorno-Karabakh crisis. Russia's efforts to weaken the role of the Minsk Group, The presence of Western actors, and the deployment of Russian forces in the disputed area can be assessed in this context. However, this study seeks to answer the question of what role did Russia play in managing the Nagorno-Karabakh conflict between Armenia and Azerbaijan between 1990 and 2020? The study hypothesizes that Russia has prevented the escalation of the Nagorno-Karabakh conflict through mediation and some coercion. This study is divided into four parts, including conflict management as a theoretical framework; Examining the competition and the role of actors in the Caucasus region, especially the role of the Minsk Group, and what approach or tools and methods Russia has used in its foreign policy in managing the conflict, and finally what are the relations between the countries involved and what will be Russia's role in the future? Was discussed. This study examines the analysis and transfer of ideas and information using authoritative international sources with an explanatory method and shares its results with everyone.

Keywords: Russia, conflict, nagorno-karabakh, management

Procedia PDF Downloads 90
696 Improvement of Microscopic Detection of Acid-Fast Bacilli for Tuberculosis by Artificial Intelligence-Assisted Microscopic Platform and Medical Image Recognition System

Authors: Hsiao-Chuan Huang, King-Lung Kuo, Mei-Hsin Lo, Hsiao-Yun Chou, Yusen Lin

Abstract:

The most robust and economical method for laboratory diagnosis of TB is to identify mycobacterial bacilli (AFB) under acid-fast staining despite its disadvantages of low sensitivity and labor-intensive. Though digital pathology becomes popular in medicine, an automated microscopic system for microbiology is still not available. A new AI-assisted automated microscopic system, consisting of a microscopic scanner and recognition program powered by big data and deep learning, may significantly increase the sensitivity of TB smear microscopy. Thus, the objective is to evaluate such an automatic system for the identification of AFB. A total of 5,930 smears was enrolled for this study. An intelligent microscope system (TB-Scan, Wellgen Medical, Taiwan) was used for microscopic image scanning and AFB detection. 272 AFB smears were used for transfer learning to increase the accuracy. Referee medical technicians were used as Gold Standard for result discrepancy. Results showed that, under a total of 1726 AFB smears, the automated system's accuracy, sensitivity and specificity were 95.6% (1,650/1,726), 87.7% (57/65), and 95.9% (1,593/1,661), respectively. Compared to culture, the sensitivity for human technicians was only 33.8% (38/142); however, the automated system can achieve 74.6% (106/142), which is significantly higher than human technicians, and this is the first of such an automated microscope system for TB smear testing in a controlled trial. This automated system could achieve higher TB smear sensitivity and laboratory efficiency and may complement molecular methods (eg. GeneXpert) to reduce the total cost for TB control. Furthermore, such an automated system is capable of remote access by the internet and can be deployed in the area with limited medical resources.

Keywords: TB smears, automated microscope, artificial intelligence, medical imaging

Procedia PDF Downloads 226
695 Influence of Salicylic Acid on Submergence Stress Recovery in Selected Rice Cultivars (Oryza sativa L.)

Authors: Ja’afar U., A. M. Gumi, Salisu N., Obadiah C. D.

Abstract:

Rice is susceptible to flooding due to its semi-aquatic characteristics, which enable it to thrive in wet or submerged environments. The development of aerenchyma allows for oxygen transfer, enabling faster lengthening of submerged shoot organs. Rice's germination and early seedling growth phases are highly intolerant of submersion, resulting in survival in low-oxygen environments. The research involved a study on rice plants treated with salicylic acid at different concentrations. Hypo was used for washing, while a reagent was used for submergence treatment. The plants were waterlogged for 11 days and submerged for 7 days, with control plants receiving distilled water. The study found a significant difference between Jirani Zawara's control and treated plants, with plants treated with 2 g/L of S.A. showing a 6.00 node increase per plant and Faro cultivars having more nodes. The study found significant differences between the control and treated plants, with the Jirani Zawara plant showing longer internode lengths and the Faro cultivar having longer internode lengths, while the B.G. cultivar had the longest. The research found that the Jirani Zawara cultivar treated with 3 g/L of S.A. produced tallest plants, with heights increasing from 14.43 cm to 15.50 cm in Faro cultivar S.A., and the highest height was 16.30 cm. The study reveals that salicylic acid significantly enhances the number of nodes, internode length, plant height, and root length in rice cultivars, thereby improving submerged stress recovery and promoting plant development.

Keywords: rice, submergence, stress, salicylic acid

Procedia PDF Downloads 10
694 Fabrication of Nanoengineered Radiation Shielding Multifunctional Polymeric Sandwich Composites

Authors: Nasim Abuali Galehdari, Venkat Mani, Ajit D. Kelkar

Abstract:

Space Radiation has become one of the major factors in successful long duration space exploration. Exposure to space radiation not only can affect the health of astronauts but also can disrupt or damage materials and electronics. Hazards to materials include degradation of properties, such as, modulus, strength, or glass transition temperature. Electronics may experience single event effects, gate rupture, burnout of field effect transistors and noise. Presently aluminum is the major component in most of the space structures due to its lightweight and good structural properties. However, aluminum is ineffective at blocking space radiation. Therefore, most of the past research involved studying at polymers which contain large amounts of hydrogen. Again, these materials are not structural materials and would require large amounts of material to achieve the structural properties needed. One of the materials to alleviate this problem is polymeric composite materials, which has good structural properties and use polymers that contained large amounts of hydrogen. This paper presents steps involved in fabrication of multi-functional hybrid sandwich panels that can provide beneficial radiation shielding as well as structural strength. Multifunctional hybrid sandwich panels were manufactured using vacuum assisted resin transfer molding process and were subjected to radiation treatment. Study indicates that various nanoparticles including Boron Nano powder, Boron Carbide and Gadolinium nanoparticles can be successfully used to block the space radiation without sacrificing the structural integrity.

Keywords: multi-functional, polymer composites, radiation shielding, sandwich composites

Procedia PDF Downloads 281
693 Involvement of Stakeholders in the R&D and Innovation Process in Developing Country Context: An Analysis of the Nigeria Innovation System

Authors: B. O. Oyedoyin, M. O. Ilori, T. O. Oyebisi, B. A. Oluwale, O. O. Jegede

Abstract:

The study was designed to evaluate the business development and transfer of technologies to small manufacturing companies by research institutes in South Western Nigeria. The study covered all the industrial research institutions with headquarters in South Western Nigeria. The study showed that the involvement of scientists in innovation process was rated highest in the idea generation (4.14) and idea screening (4.29) phases; high in R&D (3.86) and fairly high in pilot plant development (2.71) and commercialization (2.43) phase. Their involvement was rated low in business analysis and development (2.14), and test marketing (2.29) phase. The involvement of engineers was rated highest in idea generation (3.28), fairly high in R&D (2.71), pilot plant development (2.57), and idea screening (2.40) phases. However, their involvement was rated low in business analysis and development (2.0), test marketing (2.0), and commercialization (1.28) phases. The involvement of technology marketers in innovation process was generally rated fairly high in R&D (2.7) and business analysis and development (2.6), and low in all the other phases of innovation. However, their involvement at IAR&T, FIIRO, and NIOMR in all the phases was rated very high (3.0-5.0). The involvement of entrepreneurs was generally rated from fairly high to low (2.7-2.3) in all the phases of innovation. The involvement of financial institutions in all the phases of innovation was generally rated low (1.28-1.71). In conclusion, the study showed that the involvement of stakeholders like entrepreneurs and financial institutions in technology packaging for commercialization is very low.

Keywords: research institutes, national innovation system, Nigeria, entrepreneurs, financial institution

Procedia PDF Downloads 422
692 A Dual Spark Ignition Timing Influence for the High Power Aircraft Radial Engine Using a CFD Transient Modeling

Authors: Tytus Tulwin, Ksenia Siadkowska, Rafał Sochaczewski

Abstract:

A high power radial reciprocating engine is characterized by a large displacement volume of a combustion chamber. Choosing the right moment for ignition is important for a high performance or high reliability and ignition certainty. This work shows methods of simulating ignition process and its impact on engine parameters. For given conditions a flame speed is limited when a deflagration combustion takes place. Therefore, a larger length scale of the combustion chamber compared to a standard size automotive engine makes combustion take longer time to propagate. In order to speed up the mixture burn-up time the second spark is introduced. The transient Computational Fluid Dynamics model capable of simulating multicycle engine processes was developed. The CFD model consists of ECFM-3Z combustion and species transport models. A relative ignition timing difference for the both spark sources is constant. The temperature distribution on engine walls was calculated in the separate conjugate heat transfer simulation. The in-cylinder pressure validation was performed for take-off power flight conditions. The influence of ignition timing on parameters like in-cylinder temperature or rate of heat release was analyzed. The most advantageous spark timing for the highest power output was chosen. The conditions around the spark plug locations for the pre-ignition period were analyzed. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: CFD, combustion, ignition, simulation, timing

Procedia PDF Downloads 294
691 The Impact of a Cognitive Acceleration Program on Prospective Teachers' Reasoning Skills

Authors: Bernardita Tornero

Abstract:

Cognitive Acceleration in Mathematics Education (CAME) programmes have been used successfully for promoting the development of thinking skills in school students for the last 30 years. Given that the approach has had a tremendous impact on the thinking capabilities of participating students, this study explored the experience of using the programme with prospective primary teachers in Chile. Therefore, this study not only looked at the experience of prospective primary teachers during the CAME course as learners, but also examined how they perceived the approach from their perspective as future teachers, as well as how they could transfer the teaching strategies they observed to their future classrooms. Given the complexity of the phenomenon under study, this research used a mixed methods approach. For this reason, the impact that the CAME course had on prospective teachers’ thinking skills was not only approached by using a test that assessed the participants’ improvements in these skills, but their learning and teaching experiences were also recorded through qualitative research tools (learning journals, interviews and field notes). The main findings indicate that, at the end of the CAME course, prospective teachers not only demonstrated higher thinking levels, but also showed positive attitudinal changes towards teaching and learning in general, and towards mathematics in particular. The participants also had increased confidence in their ability to teach mathematics and to promote thinking skills in their students. In terms of the CAME methodology, prospective teachers not only found it novel and motivating, but also commented that dealing with the thinking skills topic during a university course was both unusual and very important for their professional development. This study also showed that, at the end of the CAME course, prospective teachers felt they had developed strategies that could be used in their classrooms in the future. In this context, the relevance of the study is not only that it described the impact and the positive results of the first experience of using a CAME approach with prospective teachers, but also that some of the conclusions have significant implications for the teaching of thinking skills and the training of primary school teachers.

Keywords: cognitive acceleration, formal reasoning, prospective teachers, initial teacher training

Procedia PDF Downloads 401
690 Investigation the Photocatalytic Properties of Fe3O4-TiO2 Nanocomposites Prepared by Sonochemical Method

Authors: Zh. Saffari, A. Naeimi, M. S. Ekrami-Kakhki, F. Hamidi

Abstract:

Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 has received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials Fe3O4–TiO2 nanostructures were synthesized by simple, effective and new co-precipitation method assisted by ultrasonic reaction at room temperatures with organic surfactant. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite, 1 g of TiO2 nanostructures were dispersed in 100 mL of ethanol. 0.25 g of Fe(NO3)2 and 2 mL of octanoic acid was added to the solution as a surfactant. Then, NaOH solution (1.5 M) was slowly added into the solution until the pH of the mixture was 7–8. After complete precipitation, the solution placed under the ultrasonic irradiation for 30 min. The product was centrifuged, washed with distilled water and dried in an oven at 100 °C for 3 h. The resulting red powder was calcinated at 800 °C for 3 h to remove any organic residue. The photocatalytic behaviour of Fe3O4–TiO2 nanoparticles was evaluated using the degradation of a Methyl Violet (MV) aqueous solution under ultraviolet light irradiation. As time increased, more and more MV was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The MV concentration decreased rapidly with increasing UV-irradiation time

Keywords: magnetic, methyl violet, nanocomposite, photocatalytic

Procedia PDF Downloads 254
689 Carbon Aerogels with Tailored Porosity as Cathode in Li-Ion Capacitors

Authors: María Canal-Rodríguez, María Arnaiz, Natalia Rey-Raap, Ana Arenillas, Jon Ajuria

Abstract:

The constant demand of electrical energy, as well as the increase in environmental concern, lead to the necessity of investing in clean and eco-friendly energy sources that implies the development of enhanced energy storage devices. Li-ion batteries (LIBs) and Electrical double layer capacitors (EDLCs) are the most widespread energy systems. Batteries are able to storage high energy densities contrary to capacitors, which main strength is the high-power density supply and the long cycle life. The combination of both technologies gave rise to Li-ion capacitors (LICs), which offers all these advantages in a single device. This is achieved combining a capacitive, supercapacitor-like positive electrode with a faradaic, battery-like negative electrode. Due to the abundance and affordability, dual carbon-based LICs are nowadays the common technology. Normally, an Active Carbon (AC) is used as the EDLC like electrode, while graphite is the material commonly employed as anode. LICs are potential systems to be used in applications in which high energy and power densities are required, such us kinetic energy recovery systems. Although these devices are already in the market, some drawbacks like the limited power delivered by graphite or the energy limiting nature of AC must be solved to trigger their used. Focusing on the anode, one possibility could be to replace graphite with Hard Carbon (HC). The better rate capability of the latter increases the power performance of the device. Moreover, the disordered carbonaceous structure of HCs enables storage twice the theoretical capacity of graphite. With respect to the cathode, the ACs are characterized for their high volume of micropores, in which the charge is storage. Nevertheless, they normally do not show mesoporous, which are really important mainly at high C-rates as they act as transport channels for the ions to reach the micropores. Usually, the porosity of ACs cannot be tailored, as it strongly depends on the precursor employed to get the final carbon. Moreover, they are not characterized for having a high electrical conductivity, which is an important characteristic to get a good performance in energy storage applications. A possible candidate to substitute ACs are carbon aerogels (CAs). CAs are materials that combine a high porosity with great electrical conductivity, opposite characteristics in carbon materials. Furthermore, its porous properties can be tailored quite accurately according to with the requirements of the application. In the present study, CAs with controlled porosity were obtained from polymerization of resorcinol and formaldehyde by microwave heating. Varying the synthesis conditions, mainly the amount of precursors and pH of the precursor solution, carbons with different textural properties were obtained. The way the porous characteristics affect the performance of the cathode was studied by means of a half-cell configuration. The material with the best performance was evaluated as cathode in a LIC versus a hard carbon as anode. An analogous full LIC made by a high microporous commercial cathode was also assembled for comparison purposes.

Keywords: li-ion capacitors, energy storage, tailored porosity, carbon aerogels

Procedia PDF Downloads 165
688 Designing a Thermal Management System for Lithium Ion Battery Packs in Electric Vehicles

Authors: Ekin Esen, Mohammad Alipour, Riza Kizilel

Abstract:

Rechargeable lithium-ion batteries have been replacing lead-acid batteries for the last decade due to their outstanding properties such as high energy density, long shelf life, and almost no memory effect. Besides these, being very light compared to lead acid batteries has gained them their dominant place in the portable electronics market, and they are now the leading candidate for electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, their performance strongly depends on temperature, and this causes some inconveniences for their utilization in extreme temperatures. Since weather conditions vary across the globe, this situation limits their utilization for EVs and HEVs and makes a thermal management system obligatory for the battery units. The objective of this study is to understand thermal characteristics of Li-ion battery modules for various operation conditions and design a thermal management system to enhance battery performance in EVs and HEVs. In the first part of our study, we investigated thermal behavior of commercially available pouch type 20Ah LiFePO₄ (LFP) cells under various conditions. Main parameters were chosen as ambient temperature and discharge current rate. Each cell was charged and discharged at temperatures of 0°C, 10°C, 20°C, 30°C, 40°C, and 50°C. The current rate of charging process was 1C while it was 1C, 2C, 3C, 4C, and 5C for discharge process. Temperatures of 7 different points on the cells were measured throughout charging and discharging with N-type thermocouples, and a detailed temperature profile was obtained. In the second part of our study, we connected 4 cells in series by clinching and prepared 4S1P battery modules similar to ones in EVs and HEVs. Three reference points were determined according to the findings of the first part of the study, and a thermocouple is placed on each reference point on the cells composing the 4S1P battery modules. In the end, temperatures of 6 points in the module and 3 points on the top surface were measured and changes in the surface temperatures were recorded for different discharge rates (0.2C, 0.5C, 0.7C, and 1C) at various ambient temperatures (0°C – 50°C). Afterwards, aluminum plates with channels were placed between the cells in the 4S1P battery modules, and temperatures were controlled with airflow. Airflow was provided with a regular compressor, and the effect of flow rate on cell temperature was analyzed. Diameters of the channels were in mm range, and shapes of the channels were determined in order to make the cell temperatures uniform. Results showed that the designed thermal management system could help keeping the cell temperatures in the modules uniform throughout charge and discharge processes. Other than temperature uniformity, the system was also beneficial to keep cell temperature close to the optimum working temperature of Li-ion batteries. It is known that keeping the temperature at an optimum degree and maintaining uniform temperature throughout utilization can help obtaining maximum power from the cells in battery modules for a longer time. Furthermore, it will increase safety by decreasing the risk of thermal runaways. Therefore, the current study is believed to be beneficial for wider use of Li batteries for battery modules of EVs and HEVs globally.

Keywords: lithium ion batteries, thermal management system, electric vehicles, hybrid electric vehicles

Procedia PDF Downloads 162
687 Social-Cognitive Aspects of Interpretation: Didactic Approaches in Language Processing and English as a Second Language Difficulties in Dyslexia

Authors: Schnell Zsuzsanna

Abstract:

Background: The interpretation of written texts, language processing in the visual domain, in other words, atypical reading abilities, also known as dyslexia, is an ever-growing phenomenon in today’s societies and educational communities. The much-researched problem affects cognitive abilities and, coupled with normal intelligence normally manifests difficulties in the differentiation of sounds and orthography and in the holistic processing of written words. The factors of susceptibility are varied: social, cognitive psychological, and linguistic factors interact with each other. Methods: The research will explain the psycholinguistics of dyslexia on the basis of several empirical experiments and demonstrate how domain-general abilities of inhibition, retrieval from the mental lexicon, priming, phonological processing, and visual modality transfer affect successful language processing and interpretation. Interpretation of visual stimuli is hindered, and the problem seems to be embedded in a sociocultural, psycholinguistic, and cognitive background. This makes the picture even more complex, suggesting that the understanding and resolving of the issues of dyslexia has to be interdisciplinary, aided by several disciplines in the field of humanities and social sciences, and should be researched from an empirical approach, where the practical, educational corollaries can be analyzed on an applied basis. Aim and applicability: The lecture sheds light on the applied, cognitive aspects of interpretation, social cognitive traits of language processing, the mental underpinnings of cognitive interpretation strategies in different languages (namely, Hungarian and English), offering solutions with a few applied techniques for success in foreign language learning that can be useful advice for the developers of testing methodologies and measures across ESL teaching and testing platforms.

Keywords: dyslexia, social cognition, transparency, modalities

Procedia PDF Downloads 83
686 Removal of Heavy Metals by Ultrafiltration Assisted with Chitosan or Carboxy-Methyl Cellulose

Authors: Boukary Lam, Sebastien Deon, Patrick Fievet, Nadia Crini, Gregorio Crini

Abstract:

Treatment of heavy metal-contaminated industrial wastewater has become a major challenge over the last decades. Conventional processes for the treatment of metal-containing effluents do not always simultaneously satisfy both legislative and economic criteria. In this context, coupling of processes can then be a promising alternative to the conventional approaches used by industry. The polymer-assisted ultrafiltration (PAUF) process is one of these coupling processes. Its principle is based on a sequence of steps with reaction (e.g., complexation) between metal ions and a polymer and a step involving the rejection of the formed species by means of a UF membrane. Unlike free ions, which can cross the UF membrane due to their small size, the polymer/ion species, the size of which is larger than pore size, are rejected. The PAUF process was deeply investigated herein in the case of removal of nickel ions by adding chitosan and carboxymethyl cellulose (CMC). Experiments were conducted with synthetic solutions containing 1 to 100 ppm of nickel ions with or without the presence of NaCl (0.05 to 0.2 M), and an industrial discharge water (containing several metal ions) with and without polymer. Chitosan with a molecular weight of 1.8×105 g mol⁻¹ and a degree of acetylation close to 15% was used. CMC with a degree of substitution of 0.7 and a molecular weight of 9×105 g mol⁻¹ was employed. Filtration experiments were performed under cross-flow conditions with a filtration cell equipped with a polyamide thin film composite flat-sheet membrane (3.5 kDa). Without the step of polymer addition, it was found that nickel rejection decreases from 80 to 0% with increasing metal ion concentration and salt concentration. This behavior agrees qualitatively with the Donnan exclusion principle: the increase in the electrolyte concentration screens the electrostatic interaction between ions and the membrane fixed the charge, which decreases their rejection. It was shown that addition of a sufficient amount of polymer (greater than 10⁻² M of monomer unit) can offset this decrease and allow good metal removal. However, the permeation flux was found to be somewhat reduced due to the increase in osmotic pressure and viscosity. It was also highlighted that the increase in pH (from 3 to 9) has a strong influence on removal performances: the higher pH value, the better removal performance. The two polymers have shown similar performance enhancement at natural pH. However, chitosan has proved more efficient in slightly basic conditions (above its pKa) whereas CMC has demonstrated very weak rejection performances when pH is below its pKa. In terms of metal rejection, chitosan is thus probably the better option for basic or strongly acid (pH < 4) conditions. Nevertheless, CMC should probably be preferred to chitosan in natural conditions (5 < pH < 8) since its impact on the permeation flux is less significant. Finally, ultrafiltration of an industrial discharge water has shown that the increase in metal ion rejection induced by the polymer addition is very low due to the competing phenomenon between the various ions present in the complex mixture.

Keywords: carboxymethyl cellulose, chitosan, heavy metals, nickel ion, polymer-assisted ultrafiltration

Procedia PDF Downloads 161
685 Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium

Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari

Abstract:

Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.

Keywords: emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi method

Procedia PDF Downloads 287
684 Efficiency of a Molecularly Imprinted Polymer for Selective Removal of Chlorpyrifos from Water Samples

Authors: Oya A. Urucu, Aslı B. Çiğil, Hatice Birtane, Ece K. Yetimoğlu, Memet Vezir Kahraman

Abstract:

Chlorpyrifos is an organophosphorus pesticide which can be found in environmental water samples. The efficiency and reuse of a molecularly imprinted polymer (chlorpyrifos - MIP) were investigated for the selective removal of chlorpyrifos residues. MIP was prepared with UV curing thiol-ene polymerization technology by using multifunctional thiol and ene monomers. The thiol-ene curing reaction is a radical induced process, however unlike other photoinitiated polymerization processes, this polymerization process is a free-radical reaction that proceeds by a step-growth mechanism, involving two main steps; a free-radical addition followed by a chain transfer reaction. It assures a very rapidly formation of a uniform crosslinked network with low shrinkage, reduced oxygen inhibition during curing and excellent adhesion. In this study, thiol-ene based UV-curable polymeric materials were prepared by mixing pentaerythritol tetrakis(3-mercaptopropionate), glyoxal bis diallyl acetal, polyethylene glycol diacrylate (PEGDA) and photoinitiator. Chlorpyrifos was added at a definite ratio to the prepared formulation. Chemical structure and thermal properties were characterized by FTIR and thermogravimetric analysis (TGA), respectively. The pesticide analysis was performed by gas chromatography-mass spectrometry (GC-MS). The influences of some analytical parameters such as pH, sample volume, amounts of analyte concentration were studied for the quantitative recoveries of the analyte. The proposed MIP method was applied to the determination of chlorpyrifos in river and tap water samples. The use of the MIP provided a selective and easy solution for removing chlorpyrifos from the water.

Keywords: molecularly imprinted polymers, selective removal, thilol-ene, uv-curable polymer

Procedia PDF Downloads 298