Search results for: statistical estimation problem
9543 Analysis of the Degradation of the I-V Curve of the PV Module in a Harsh Environment: Estimation of the Site-Specific Factor (Installation Area)
Authors: Maibigue Nanglet, Arafat Ousman Béchir, Mahamat Hassan Béchir
Abstract:
The economy of Central African countries is growing very fast, and the demand for energy is increasing every day. As a result, insufficient power generation is one of the major problems slowing down development. This paper explores the factors of degradation of the I-V curve of the PV Generator (GPV) in harsh environments, taking the case of two locals: Mongo and Abeche. Its objective is to quantify the voltage leaks due to the different GPV installation areas; after using the Newton-Raphson numerical method of the solar cell, a survey of several experimental measurement points was made. The results of the simulation in MATLAB/Simulink show a relative power loss factor of 11.8765% on the GPVs installed in Mongo and 8.5463% on those installed in Abeche; these results allow us to say that the supports on which the modules are installed have an average impact of 10.2114% on their efficiency.Keywords: calculation, degradation, site, GPV, severe environment
Procedia PDF Downloads 449542 Formal Specification of Web Services Applications for Digital Reference Services of Library Information System
Authors: Magaji Zainab Musa, Nordin M. A. Rahman, Julaily Aida Jusoh
Abstract:
This paper discusses the formal specification of web services applications for digital reference services (WSDRS). Digital reference service involves a user requesting for help from a reference librarian and a reference librarian responding to the request of a user all by electronic means. In most cases users do not get satisfied while using digital reference service due to delay of response of the librarians. Another may be due to no response or due to librarian giving an irrelevant solution to the problem submitted by the user. WDSRS is an informal model that claims to reduce the problems of digital reference services in libraries. It uses web services technology to provide efficient way of satisfying users’ need in the reference section of libraries. But informal model is in natural language which is inconsistent and ambiguous that may cause difficulties to the developers of the system. In order to solve this problem we decided to convert the informal specifications into formal specifications. This is supposed to reduce the overall development time and cost. Formal specification can be used to provide an unambiguous and precise supplement to natural language descriptions. It can be rigorously validated and verified leading to the early detection of specification errors. We use Z language to develop the formal model and verify it with Z/EVES theorem prover tool.Keywords: formal, specifications, web services, digital reference services
Procedia PDF Downloads 3799541 The Macrophage Migration Inhibitory Factor and Stem Cell Factor Levels in Serum of Adolescent and Young Adults with Mood Disorders: A Two Year Follow-Up Study
Authors: Aleksandra Rajewska-Rager, Maria Skibinska, Monika Dmitrzak-Weglarz, Natalia Lepczynska, Pawel Kapelski, Joanna Pawlak, Joanna Hauser
Abstract:
Introduction: Inflammation and cytokines have emerged as a promising target in mood disorders research; however there are still very limited numbers of study regarding inflammatory alterations among adolescents and young adults with mood disorders. The Macrophage Migration Inhibitory Factor (MIF) and Stem Cell Factor (SCF) are the pleiotropic cytokines which may play an important role in mood disorders pathophysiology. The aim of this study was to investigate levels of these factors in serum of adolescent and young adults with mood disorders compared to healthy controls. Subjects: We involved 79 patients aged 12-24 years in 2-year follow-up study with a primary diagnosis of mood disorders: bipolar disorder (BP) and unipolar disorder with BP spectrum. Study group includes 23 males (mean age 19.08, SD 3.3) and 56 females (18.39, SD 3.28). Control group consisted 35 persons: 7 males (20.43, SD 4.23) and 28 females (21.25, SD 2.11). Clinical diagnoses according to DSM-IV-TR criteria were assessed using Kiddie-Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version (K-SADS-PL) and Structured Clinical Interview for the Diagnostic and Statistical Manual (SCID) in young adults respectively. Clinical assessment includes evaluation of clinical factors and symptoms severity (rated using the Hamilton Depression Rating Scale and Young Mania Rating Scale). Clinical and biological evaluations were made at control visits respectively at baseline (week 0), euthymia (at month 3 or 6) and after 12 and 24 months. Methods: Serum protein concentration was determined by Enzyme-Linked Immunosorbent Assays (ELISA) method. Human MIF and SCF DuoSet ELISA kits were used. In the analyses non-parametric tests were used: Mann-Whitney U test, Kruskal-Wallis ANOVA, Friedman’s ANOVA, Wilcoxon signed rank test, Spearman correlation. We defined statistical significance as p < 0.05. Results: Comparing MIF and SCF levels between acute episode of depression/hypo/mania at baseline and euthymia (at month 3 or 6) we did not find any statistical differences. At baseline patients with age above 18 years old had decreased MIF level compared to patients younger than 18 years. MIF level at baseline positively correlated with age (p=0.004). Positive correlations of SCF level at month 3 and 6 with depression or mania occurrence at month 24 (p=0.03 and p=0.04, respectively) was detected. Strong correlations between MIF and SCF levels at baseline (p=0.0005) and month 3 (p=0.03) were observed. Discussion: Our results did not show any differences in MIF and SCF levels between acute episode of depression/hypo/mania and euthymia in young patients. Further studies on larger groups are recommended. Grant was founded by National Science Center in Poland no 2011/03/D/NZ5/06146.Keywords: cytokines, MIF, mood disorders, SCF
Procedia PDF Downloads 2039540 Identification of the Expression of Top Deregulated MiRNAs in Rheumatoid Arthritis and Osteoarthritis
Authors: Hala Raslan, Noha Eltaweel, Hanaa Rasmi, Solaf Kamel, May Magdy, Sherif Ismail, Khalda Amr
Abstract:
Introduction: Rheumatoid arthritis (RA) is an inflammatory, autoimmune disorder with progressive joint damage. Osteoarthritis (OA) is a degenerative disease of the articular cartilage that shows multiple clinical manifestations or symptoms resembling those of RA. Genetic predisposition is believed to be a principal etiological factor for RA and OA. In this study, we aimed to measure the expression of the top deregulated miRNAs that might be the cause of pathogenesis in both diseases, according to our latest NGS analysis. Six of the deregulated miRNAs were selected as they had multiple target genes in the RA pathway, so they are more likely to affect the RA pathogenesis.Methods: Eighty cases were recruited in this study; 45 rheumatoid arthiritis (RA), 30 osteoarthiritis (OA) patients, as well as 20 healthy controls. The selection of the miRNAs from our latest NGS study was done using miRwalk according to the number of their target genes that are members in the KEGG RA pathway. Total RNA was isolated from plasma of all recruited cases. The cDNA was generated by the miRcury RT Kit then used as a template for real-time PCR with miRcury Primer Assays and the miRcury SYBR Green PCR Kit. Fold changes were calculated from CT values using the ΔΔCT method of relative quantification. Results were compared RA vs Controls and OA vs Controls. Target gene prediction and functional annotation of the deregulated miRNAs was done using Mienturnet. Results: Six miRNAs were selected. They were miR-15b-3p, -128-3p, -194-3p, -328-3p, -542-3p and -3180-5p. In RA samples, three of the measured miRNAs were upregulated (miR-194, -542, and -3180; mean Rq= 2.6, 3.8 and 8.05; P-value= 0.07, 0.05 and 0.01; respectively) while the remaining 3 were downregulated (miR-15b, -128 and -328; mean Rq= 0.21, 0.39 and 0.6; P-value= <0.0001, <0.0001 and 0.02; respectively) all with high statistical significance except miR-194. While in OA samples, two of the measured miRNAs were upregulated (miR-194 and -3180; mean Rq= 2.6 and 7.7; P-value= 0.1 and 0.03; respectively) while the remaining 4 were downregulated (miR-15b, -128, -328 and -542; mean Rq= 0.5, 0.03, 0.08 and 0.5; P-value= 0.0008, 0.003, 0.006 and 0.4; respectively) with statistical significance compared to controls except miR-194 and miR-542. The functional enrichment of the selected top deregulated miRNAs revealed the highly enriched KEGG pathways and GO terms. Conclusion: Five of the studied miRNAs were greatly deregulated in RA and OA, they might be highly involved in the disease pathogenesis and so might be future therapeutic targets. Further functional studies are crucial to assess their roles and actual target genes.Keywords: MiRNAs, expression, rheumatoid arthritis, osteoarthritis
Procedia PDF Downloads 839539 Assessment of the Energy Balance Method in the Case of Masonry Domes
Authors: M. M. Sadeghi, S. Vahdani
Abstract:
Masonry dome structures had been widely used for covering large spans in the past. The seismic assessment of these historical structures is very complicated due to the nonlinear behavior of the material, their rigidness, and special stability configuration. The assessment method based on energy balance concept, as well as the standard pushover analysis, is used to evaluate the effectiveness of these methods in the case of masonry dome structures. The Soltanieh dome building is used as an example to which two methods are applied. The performance points are given from superimposing the capacity, and demand curves in Acceleration Displacement Response Spectra (ADRS) and energy coordination are compared with the nonlinear time history analysis as the exact result. The results show a good agreement between the dynamic analysis and the energy balance method, but standard pushover method does not provide an acceptable estimation.Keywords: energy balance method, pushover analysis, time history analysis, masonry dome
Procedia PDF Downloads 2839538 Solving One of the Variants of Necktie Paradox for Business Proposals
Authors: Natarajan Vijayarangan, Viswanath Kumar Ganesan, G. Kumudhavalli
Abstract:
This abstract figures out an uncertainty problem pertaining to evaluating business proposals or concept notes in an organisation. Let us consider business proposal evaluation process (BPEP) for execution of corporate research cum business projects in the organisation. Assume that two concept notes X and Y of BPEP are approved: one of them is a full-fledged type (100% financial approval given by the organisation) - X and other one is a conditional type (a partial financial approval given by the organisation) - Y. Then a penalty criteria has been introduced during the process. At the end of annual appraisal, if both of them complete as per the goals and objectives committed or figured out at the time of concept note submission, then both will get an incentive of $N from the organisation. If one of them doesn't fulfill the goals and objectives at the year-end appraisal, then d% reduction or cut will be levied on the project budget for the next year. If X fulfills the goals and objectives and Y doesn't , then X gets a gain of d% on Y's previous year budget and Y gets a loss of d% from the previous year budget for the next year. And vice-versa. Further, an incentive of $N will be given to those who gains. This process is a part of Necktie paradox and inherits an uncertainty principle on X or Y getting more than $N even if X or Y performs well.Solving the above problem and generalizing on finitely many concept notes will be a challenging task.Keywords: concept notes, necktie paradox, annual appraisal, project budget and gain or loss
Procedia PDF Downloads 4719537 Case-Wise Investigation of Body-Wave Propagation in a Cross-Anisotropic Soil Exhibiting Inhomogeneity along Depth
Authors: Sumit Kumar Vishawakarma, Tapas Ranjan Panihari
Abstract:
The article investigates the propagation behavior of SV-wave, SH-wave, and P-wave in a continuously inhomogeneous cross-anisotropic material, where the material properties such as Young's moduli, shear modulus, and density vary as an arbitrary continuous function of depth. In the considered model, Hook's law, strain-displacement relations along with equilibrium equations have been used to derive the governing equation. The mathematical formulation of this physical problem gives rise to an eigenvalue problem with displacement components as fundamental variables. This leads to achieving the closed-form expressions for quasi-wave velocities of SV-wave, SH-wave, and P-wave in the considered framework. These characteristics of wave propagation along with the above-stated variation have been scrutinized based on their numerical results. This parametric study reveals that wave velocity remarkably fluctuates as the magnitude of inhomogeneity parameters increases and decreases. The prominent effect has been shown depicting the dependence of wave velocity on the degree of material anisotropy. The influence of phase angle and depth of the medium has been remarkably established. The present study may facilitate the theoretical foundation and practical application in the field of earthquake source mechanisms.Keywords: cross-anisotropic, inhomogeneity, P-wave, SH-wave, SV-wave, shear modulus, Young’s modulus
Procedia PDF Downloads 1259536 Tree-Based Inference for Regionalization: A Comparative Study of Global Topological Perturbation Methods
Authors: Orhun Aydin, Mark V. Janikas, Rodrigo Alves, Renato Assuncao
Abstract:
In this paper, a tree-based perturbation methodology for regionalization inference is presented. Regionalization is a constrained optimization problem that aims to create groups with similar attributes while satisfying spatial contiguity constraints. Similar to any constrained optimization problem, the spatial constraint may hinder convergence to some global minima, resulting in spatially contiguous members of a group with dissimilar attributes. This paper presents a general methodology for rigorously perturbing spatial constraints through the use of random spanning trees. The general framework presented can be used to quantify the effect of the spatial constraints in the overall regionalization result. We compare several types of stochastic spanning trees used in inference problems such as fuzzy regionalization and determining the number of regions. Performance of stochastic spanning trees is juxtaposed against the traditional permutation-based hypothesis testing frequently used in spatial statistics. Inference results for fuzzy regionalization and determining the number of regions is presented on the Local Area Personal Incomes for Texas Counties provided by the Bureau of Economic Analysis.Keywords: regionalization, constrained clustering, probabilistic inference, fuzzy clustering
Procedia PDF Downloads 2329535 A Project-Orientated Training Concept to Prepare Students for Systems Engineering Activities
Authors: Elke Mackensen
Abstract:
Systems Engineering plays a key role during industrial product development of complex technical systems. The need for systems engineers in industry is growing. However, there is a gap between the industrial need and the academic education. Normally the academic education is focused on the domain specific design, implementation and testing of technical systems. Necessary systems engineering expertise like knowledge about requirements analysis, product cost estimation, management or social skills are poorly taught. Thus, there is the need of new academic concepts for teaching systems engineering skills. This paper presents a project-orientated training concept to prepare students from different technical degree programs for systems engineering activities. The training concept has been initially implemented and applied in the industrial engineering master program of the University of Applied Sciences Offenburg.Keywords: educational systems engineering training, requirements analysis, system modelling, SysML
Procedia PDF Downloads 3509534 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving
Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian
Abstract:
In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning
Procedia PDF Downloads 1539533 The Correlation between Clostridium Difficile Infection and Bronchial Lung Cancer Occurrence
Authors: Molnar Catalina, Lexi Frankel, Amalia Ardeljan, Enoch Kim, Marissa Dallara, Omar Rashid
Abstract:
Introduction: Clostridium difficile (C. diff) is a toxin-producing bacteria that can cause diarrhea and colitis. U.S. Center for Disease Control and Prevention revealed that C. difficile infection (CDI) has increased from 31 cases per 100,000 persons per year in 1996 to 61 per 100,000 in 2003. Approximately 500,000 cases per year occur in the United States. After exposure, the bacteria colonize the colon, where it adheres to the intestinal epithelium where it produces two toxins: TcdA and TcdB. TcdA affects the intestinal epithelium, causing fluid secretion, inflammation, and tissue necrosis, while TcdB acts as a cytotoxin purpose of this study was to evaluate the association between C diff infection and bronchial lung cancer development. Methods: Using ICD- 9 and ICD-10 codes, the data was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to assess the patients infected with C diff as opposed to the non-infected patients. The Holy Cross Health, Fort Lauderdale, granted access to the database for the purpose of academic research. Patients were matched for age and Charlson Comorbidity Index (CCI). Standard statistical methods were used. Results: Bronchial lung cancer occurrence in the population not infected with C diff infection was 4741, as opposed to the population infected with C. diff, where 2039 cases of lung cancer were observed. The difference was statistically significant (p-value < 2.2x10^e-16), which reveals that C diff might be protective against bronchial lung cancer. The data was then matched by treatment to create to minimize the effect of treatment bias. Bronchial cancer incidence was 422 and 861 in infected vs. non-infected (p-value of < 2.2x10^e-16), which once more indicates that C diff infection could be beneficial in diminishing bronchial cancer development. Conclusion: This retrospective study conveys a statistical correlation between C diff infection and decreased incidence of lung bronchial cancer. Further studies are needed to comprehend the protective mechanisms of C. Diff infection on lung cancer.Keywords: C. diff, lung cancer, protective, microbiology
Procedia PDF Downloads 2389532 Effects of Twitter Interactions on Self-Esteem and Narcissistic Behaviour
Authors: Leena-Maria Alyedreessy
Abstract:
Self-esteem is thought to be determined by ones’ own feeling of being included, liked and accepted by others. This research explores whether this concept may also be applied in the virtual world and assesses whether there is any relationship between Twitter users' self-esteem and the amount of interactions they receive. 20 female Arab participants were given a survey asking them about their Twitter interactions and their feelings of having an imagined audience to fill out and a Rosenberg Self-Esteem Assessment to complete. After completion and statistical analysis, results showed a significant correlation between the feeling of being Twitter elite, the feeling of having a lot of people listening to your tweets and having a lot of interactions with high self-esteem. However, no correlations were detected for low-self-esteem and low interactions.Keywords: twitter, social media, self-esteem, narcissism, interactions
Procedia PDF Downloads 4229531 Distributive School Leadership in Croatian Primary Schools
Authors: Iva Buchberger, Vesna Kovač
Abstract:
Global education policy trends and recommendations underline the importance of (distributive) school leadership as a school effectiveness key factor. In this context, the broader aim of this research (supported by the Croatian Science Foundation) is to identify school leadership characteristics in Croatian schools and to examine the correlation between school leadership and school effectiveness. The aim of the proposed conference paper is to focus on the school leadership characteristics which are additionally explained with school leadership facilitators that contribute to (distributive) school leadership development. The aforementioned school leadership characteristics include the following dimensions: (a) participation in the process of making different types of decisions, (b) influence in the decision making process, (c) social interactions between different stakeholders in the decision making process in schools. Further, the school leadership facilitators are categorized as follows: (a) principal’s activities (such as providing support to different stakeholders and developing mutual trust among them), (b) stakeholders’ characteristics (such as developed stakeholders’ interest and competence to participate in decision-making process), (c) organizational and material resources (such as school material conditions, the necessary information and time as resources for making decisions). The data were collected by a constructed and validated questionnaire for examining the school leadership characteristics and facilitators from teachers’ perspective. The main population in this study consists of all primary schools in Croatia while the sample is comprised of 100 primary schools, selected by random sampling. Furthermore, the sample of teachers was selected by an additional procedure taking into consideration the independent variables of sex, work experience, etc. Data processing was performed by standard statistical methods of descriptive and inferential statistics. Statistical program IBM SPSS 20.0 was used for data processing. The results of this study show that there is a (positive) correlation between school leadership characteristics and school leadership facilitators. Specifically, it is noteworthy to mention that all the dimensions of school leadership characteristics are in positive correlation with the categories of school leadership facilitators. These results are indicative for the education policy creators who should ensure positive and supportive environment for the school leadership development including the development of school leadership characteristics and school leadership facilitators.Keywords: distributive school leadership, school effectiveness , school leadership characteristics, school leadership facilitators
Procedia PDF Downloads 2529530 Implementing Search-Based Activities in Mathematics Instruction, Grounded in Intuitive Reasoning
Authors: Zhanna Dedovets
Abstract:
Fostering a mathematical style of thinking is crucial for cultivating intellectual personalities capable of thriving in modern society. Intuitive thinking stands as a cornerstone among the components of mathematical cognition, playing a pivotal role in grasping mathematical truths across various disciplines. This article delves into the exploration of leveraging search activities rooted in students' intuitive thinking, particularly when tackling geometric problems. Emphasizing both student engagement with the task and their active involvement in the search process, the study underscores the importance of heuristic procedures and the freedom for students to chart their own problem-solving paths. Spanning several years (2019-2023) at the Physics and Mathematics Lyceum of Dushanbe, the research engaged 17 teachers and 78 high school students. After assessing the initial levels of intuitive thinking in both control and experimental groups, the experimental group underwent training following the authors' methodology. Subsequent analysis revealed a significant advancement in thinking levels among the experimental group students. The methodological approaches and teaching materials developed through this process offer valuable resources for mathematics educators seeking to enhance their students' learning experiences effectively.Keywords: teaching of mathematics, intuitive thinking, heuristic procedures, geometric problem, students.
Procedia PDF Downloads 549529 The Nexus between Socio-Economic Inequalities and the Talibanization in Pakistan’s Federally Administrated Tribal Areas
Authors: Sajjad Ahmed
Abstract:
Since September 2001, the Federally Administered Tribal Areas (FATA) have become a hotbed of Talibanization. The eruption of Talibanization has caused a catastrophic human and socio-economic cost on Pakistan ever since. The vast majority of extant studies have tended to focus on assessing the current disparaging and destructive condition of FATA as a product of the notorious 'Global War on Terrorism' and its consequences in the form of the Afghan war and the rising socio-political unrest in the region. This, however, is not the case. This study argues that the Talibanization has not happened overnight, the magma of current militant volcanic outburst has been stockpiled since the inception of Pakistan in 1947. The study claims that the Talibanization is the expression of the conflict between the privileged and the underprivileged. The prevailing situation in FATA warrants an in-depth analysis of the problem. By using a qualitative and quantitative research principle, this paper attempts to critically examine 'How is Talibanization in Pakistan connected with the political, social, and economic conditions in FATA?' The critical analyses of this study would assist to policymakers in order to formulate all-encompassing anti-radicalization policies to effectively root out Talibanization in FATA. This research intends to explore the undiscovered root causes of the problem and to suggest remedial measures.Keywords: exclusion, FATA (Federally Administrated Tribal Areas), inequalities, marginalization, Pakistan, socio-economic, talibanization
Procedia PDF Downloads 1429528 Observer-based Robust Diagnosis for Wind Turbine System
Authors: Sarah Odofin, Zhiwei Gao
Abstract:
Operations and maintenance of wind turbine have received much attention by researcher due to rapid expansion of wind farms. This paper explores a novel fault diagnosis that is designed and optimized to be very sensitive to faults and robust to disturbances. The faults considered are the sensor faults of which the augmented observer is considered to enlarge faults and to be robust to disturbance. A qualitative model based analysis is proposed for early fault diagnosis to minimize downtime mostly caused by components breakdown and exploit productivity. Simulation results are computed validating the models provided which demonstrates system performance using practical application of fault type examples. The results demonstrate the effectiveness of the developed techniques investigated in a Matlab/Simulink environment.Keywords: wind turbine, condition monitoring, genetic algorithm, fault diagnosis, augmented observer, disturbance robustness, fault estimation, sensor monitoring
Procedia PDF Downloads 4989527 Clinician's Perspective of Common Factors of Change in Family Therapy: A Cross-National Exploration
Authors: Hassan Karimi, Fred Piercy, Ruoxi Chen, Ana L. Jaramillo-Sierra, Wei-Ning Chang, Manjushree Palit, Catherine Martosudarmo, Angelito Antonio
Abstract:
Background: The two psychotherapy camps, the randomized clinical trials (RCTs) and the common factors model, have competitively claimed specific explanations for therapy effectiveness. Recently, scholars called for empirical evidence to show the role of common factors in therapeutic outcome in marriage and family therapy. Purpose: This cross-national study aims to explore how clinicians, across different nations and theoretical orientations, attribute the contribution of common factors to therapy outcome. Method: A brief common factors questionnaire (CFQ-with a Cronbach’s Alpha, 0.77) was developed and administered in seven nations. A series of statistical analyses (paired-samples t-test, independent sample t-test, ANOVA) were conducted: to compare clinicians perceived contribution of total common factors versus model-specific factors, to compare each pair of common factors’ categories, and to compare clinicians from collectivistic nations versus clinicians from individualistic nation. Results: Clinicians across seven nations attributed 86% to common factors versus 14% to model-specific factors. Clinicians attributed 34% of therapeutic change to client’s factors, 26% to therapist’s factors, 26% to relationship factors, and 14% to model-specific techniques. The ANOVA test indicated each of the three categories of common factors (client 34%, therapist 26%, relationship 26%) showed higher contribution in therapeutic outcome than the category of model specific factors (techniques 14%). Clinicians with psychology degree attributed more contribution to model-specific factors than clinicians with MFT and counseling degrees who attributed more contribution to client factors. Clinicians from collectivistic nations attributed larger contributions to therapist’s factors (M=28.96, SD=12.75) than the US clinicians (M=23.22, SD=7.73). The US clinicians attributed a larger contribution to client’s factors (M=39.02, SD=1504) than clinicians from the collectivistic nations (M=28.71, SD=15.74). Conclusion: The findings indicate clinicians across the globe attributed more than two thirds of therapeutic change to CFs, which emphasize the training of the common factors model in the field. CFs, like model-specific factors, vary in their contribution to therapy outcome in relation to specific client, therapist, problem, treatment model, and sociocultural context. Sociocultural expectations and norms should be considered as a context in which both CFs and model-specific factors function toward therapeutic goals. Clinicians need to foster a cultural competency specifically regarding the divergent ways that CFs can be activated due to specific sociocultural values.Keywords: common factors, model-specific factors, cross-national survey, therapist cultural competency, enhancing therapist efficacy
Procedia PDF Downloads 2919526 Retina Registration for Biometrics Based on Characterization of Retinal Feature Points
Authors: Nougrara Zineb
Abstract:
The unique structure of the blood vessels in the retina has been used for biometric identification. The retina blood vessel pattern is a unique pattern in each individual and it is almost impossible to forge that pattern in a false individual. The retina biometrics’ advantages include high distinctiveness, universality, and stability overtime of the blood vessel pattern. Once the creases have been extracted from the images, a registration stage is necessary, since the position of the retinal vessel structure could change between acquisitions due to the movements of the eye. Image registration consists of following steps: Feature detection, feature matching, transform model estimation and image resembling and transformation. In this paper, we present an algorithm of registration; it is based on the characterization of retinal feature points. For experiments, retinal images from the DRIVE database have been tested. The proposed methodology achieves good results for registration in general.Keywords: fovea, optic disc, registration, retinal images
Procedia PDF Downloads 2699525 An Agile, Intelligent and Scalable Framework for Global Software Development
Authors: Raja Asad Zaheer, Aisha Tanveer, Hafza Mehreen Fatima
Abstract:
Global Software Development (GSD) is becoming a common norm in software industry, despite of the fact that global distribution of the teams presents special issues for effective communication and coordination of the teams. Now trends are changing and project management for distributed teams is no longer in a limbo. GSD can be effectively established using agile and project managers can use different agile techniques/tools for solving the problems associated with distributed teams. Agile methodologies like scrum and XP have been successfully used with distributed teams. We have employed exploratory research method to analyze different recent studies related to challenges of GSD and their proposed solutions. In our study, we had deep insight in six commonly faced challenges: communication and coordination, temporal differences, cultural differences, knowledge sharing/group awareness, speed and communication tools. We have established that each of these challenges cannot be neglected for distributed teams of any kind. They are interlinked and as an aggregated whole can cause the failure of projects. In this paper we have focused on creating a scalable framework for detecting and overcoming these commonly faced challenges. In the proposed solution, our objective is to suggest agile techniques/tools relevant to a particular problem faced by the organizations related to the management of distributed teams. We focused mainly on scrum and XP techniques/tools because they are widely accepted and used in the industry. Our solution identifies the problem and suggests an appropriate technique/tool to help solve the problem based on globally shared knowledgebase. We can establish a cause and effect relationship using a fishbone diagram based on the inputs provided for issues commonly faced by organizations. Based on the identified cause, suitable tool is suggested, our framework suggests a suitable tool. Hence, a scalable, extensible, self-learning, intelligent framework proposed will help implement and assess GSD to achieve maximum out of it. Globally shared knowledgebase will help new organizations to easily adapt best practices set forth by the practicing organizations.Keywords: agile project management, agile tools/techniques, distributed teams, global software development
Procedia PDF Downloads 3249524 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models
Authors: Haya Salah, Srinivas Sharan
Abstract:
Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time
Procedia PDF Downloads 1259523 A Study on Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation and Artificial Neural Network
Authors: Min-Woo Kim, Ok-Kyun Na, Jun-Ho Byun, Jong-Hwan Park, Seung-Hwa Yang, Joon-Hong Park, Young-Chul Park
Abstract:
This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the Anti-Splash Device located under the P/V Valve and new concept design models using the CFD analysis and Artificial Neural Network. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-Splash Device is fitted to improve and prevent this problem in the shipbuilding industry. But the oil outflow accidents are still reported by ship owners. Thus, four types of new design model are presented by study. Then, comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the Anti-Splash Device. Therefore, the flow and velocity are grasped by transient analysis. And then it decided optimum model and design parameters to develop model. Later, it needs to develop an Anti-Splash Device by Flow Test to get certification and verification using experiment equipment.Keywords: anti-splash device, P/V valve, sloshing, artificial neural network
Procedia PDF Downloads 5949522 Remote Radiation Mapping Based on UAV Formation
Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov
Abstract:
High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation
Procedia PDF Downloads 1069521 A Comparative Analysis of Heuristics Applied to Collecting Used Lubricant Oils Generated in the City of Pereira, Colombia
Authors: Diana Fajardo, Sebastián Ortiz, Oscar Herrera, Angélica Santis
Abstract:
Currently, in Colombia is arising a problem related to collecting used lubricant oils which are generated by the increment of the vehicle fleet. This situation does not allow a proper disposal of this type of waste, which in turn results in a negative impact on the environment. Therefore, through the comparative analysis of various heuristics, the best solution to the VRP (Vehicle Routing Problem) was selected by comparing costs and times for the collection of used lubricant oils in the city of Pereira, Colombia; since there is no presence of management companies engaged in the direct administration of the collection of this pollutant. To achieve this aim, six proposals of through methods of solution of two phases were discussed. First, the assignment of the group of generator points of the residue was made (previously identified). Proposals one and four of through methods are based on the closeness of points. The proposals two and five are using the scanning method and the proposals three and six are considering the restriction of the capacity of collection vehicle. Subsequently, the routes were developed - in the first three proposals by the Clarke and Wright's savings algorithm and in the following proposals by the Traveling Salesman optimization mathematical model. After applying techniques, a comparative analysis of the results was performed and it was determined which of the proposals presented the most optimal values in terms of the distance, cost and travel time.Keywords: Heuristics, optimization Model, savings algorithm, used vehicular oil, V.R.P.
Procedia PDF Downloads 4179520 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods
Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow
Abstract:
A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.Keywords: forecasting model, steel demand uncertainty, hierarchical Bayesian framework, exponential smoothing method
Procedia PDF Downloads 3529519 Application of Applied Behavior Analysis Treatment to Children with Down Syndrome
Authors: Olha Yarova
Abstract:
This study is a collaborative project between the American University of Central Asia and parent association of children with Down syndrome ‘Sunterra’ that took place in Bishkek, Kyrgyzstan. The purpose of the study was to explore whether principles and techniques of applied behavior analysis (ABA) could be used to teach children with Down syndrome socially significant behaviors. ABA is considered to be one of the most effective treatment for children with autism, but little research is done on the particularity of using ABA to children with Down syndrome. The data for the study was received during clinical observations; work with children with Down syndrome and interviews with their mothers. The results show that many ABA principles make the work with children with Down syndrome more effective. Although such children very rarely demonstrate aggressive behavior, they show a lot of escape-driven and attention seeking behaviors that are reinforced by their parents and educators. Thus functional assessment can be done to assess the function of problem behavior and to determine appropriate treatment. Prompting and prompting fading should be used to develop receptive and expressive language skills, and enhance motor development. Even though many children with Down syndrome work for praise, it is still relevant to use tangible reinforcement and to know how to remove them. Based on the results of the study, the training for parents of children with Down syndrome will be developed in Kyrgyzstan, country, where children with Down syndrome are not accepted to regular kindergartens and where doctors in maternity hospitals tell parents that their child will never talk, walk and recognize themKeywords: down syndrome, applied behavior analysis, functional assessment, problem behavior, reinforcement
Procedia PDF Downloads 2799518 The Active Role of Teacher's in Managing Effective Classroom Environment for High School Students from the Viewpoint of the Teachers
Authors: Majda Ibrahim Aljaroudi, Jwaher Alburake
Abstract:
The study aimed to identify the active role of the teacher in the management of the effective classroom environment for high school students from the viewpoint of the teachers, and to identify whether there were statistically significant differences between the averages of the respondents regarding the active role of the high school teachers in managing effective classroom environment in Riyadh, and also the total score depending on the variables of the study (qualifications, years of experience, training and development programs). This study used the descriptive survey approach where a questionnaire has been built and consisted of (35) items about five areas as a tool to measure the teacher's role in the management of effective classroom environment for high school students. The study population consisted of (1313) high school teachers in the government schools in south of Riyadh. It consisted of (70) teachers who were selected randomly. It used the appropriate statistical methods to analyze data by using statistical packages (SPSS). The study found the following results: • Most of the study sample members agreed on their role in the effective classroom environment management for high school students in government schools in Riyadh with an average (3.91 out of 5), which falls in the fifth category of Quintet scale (from 3.41 to 4.20) that refers to the option "often". • There are statistically significant differences between the mean responses of the study sample about the active role of the teacher in the effective classroom environment management for high school students regarding the concept of order in the classroom depending on the variable of years of experience for the benefit of teachers who have over 10 years of experience. There are statistically significant differences between the mean responses of the study sample about the teacher's active role in the effective classroom environment management for high school students regarding the educational process for maintaining the order in the classroom depending on the variable of training and development programs for the benefit of the teachers who have more than (5) courses. Due to the results of the study the researcher recommended a number of recommendations to improve the teacher's role in the effective classroom environment management for high school students.Keywords: effective management, active learning, educational sciences, pedagogical sciences
Procedia PDF Downloads 4479517 Conception of a Regulated, Dynamic and Intelligent Sewerage in Ostrevent
Authors: Rabaa Tlili Yaakoubi, Hind Nakouri, Olivier Blanpain
Abstract:
The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of the CARDIO project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 40 to 100%. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 60% of total volume rejected to the natural environment and of 80 % in the number of discharges.Keywords: RTC, paradigm, optimization, automation
Procedia PDF Downloads 2909516 Statistical Models and Time Series Forecasting on Crime Data in Nepal
Authors: Dila Ram Bhandari
Abstract:
Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.Keywords: time series analysis, forecasting, ARIMA, machine learning
Procedia PDF Downloads 1699515 Numerical Simulation of Fluid-Structure Interaction on Wedge Slamming Impact by Using Particle Method
Authors: Sung-Chul Hwang, Di Ren, Sang-Moon Yoon, Jong-Chun Park, Abbas Khayyer, Hitoshi Gotoh
Abstract:
The slamming impact problem has a very important engineering background. For seaplane landing, recycling for the satellite re-entry capsule, and the impact load of the bow in the adverse sea conditions, the slamming problem always plays the important role. Due to its strong nonlinear effect, however, it seems to be not easy to obtain the accurate simulation results. Combined with the strong interaction between the fluid field and the elastic structure, the difficulty for the simulation leads to a new level for challenging. This paper presents a fully Lagrangian coupled solver for simulations of fluid-structure interactions, which is based on the Moving Particle Semi-implicit (MPS) method to solve the governing equations corresponding to incompressible flows as well as elastic structures. The developed solver is verified by reproducing the high velocity impact loads of deformable thin wedges with two different materials such as aluminum and steel on water entry. The present simulation results are compared with analytical solution derived using the hydrodynamic Wagner model and linear theory by Wan.Keywords: fluid-structure interaction, moving particle semi-implicit (MPS) method, elastic structure, incompressible flow, wedge slamming impact
Procedia PDF Downloads 6109514 Effect of Leadership Style on Organizational Performance
Authors: Khadija Mushtaq, Mian Saqib Mehmood
Abstract:
This paper attempts to determine the impact of leadership style and learning orientation on organizational performance in Pakistan. A sample of 158 middle managers selected from sports and surgical factories from Sialkot. The empirical estimation is based on a multiple linear regression analysis of the relationship between leadership style, learning orientation and organizational performance. Leadership style is measure through transformational leadership and transactional leadership. The transformational leadership has insignificant impact on organizational performance. The transactional leadership has positive and significant relation with organizational performance. Learning orientation also has positive and significant relation with organizational performance. Linear regression used to estimate the relation between dependent and independent variables. This study suggests top manger should prefer continuous process for improvement for any change in system rather radical change.Keywords: transformational leadership, transactional leadership, learning orientation, organizational performance, Pakistan
Procedia PDF Downloads 411