Search results for: dimensional accuracy
2824 Optimizing the Performance of Thermoelectric for Cooling Computer Chips Using Different Types of Electrical Pulses
Authors: Saleh Alshehri
Abstract:
Thermoelectric technology is currently being used in many industrial applications for cooling, heating and generating electricity. This research mainly focuses on using thermoelectric to cool down high-speed computer chips at different operating conditions. A previously developed and validated three-dimensional model for optimizing and assessing the performance of cascaded thermoelectric and non-cascaded thermoelectric is used in this study to investigate the possibility of decreasing the hotspot temperature of computer chip. Additionally, a test assembly is built and tested at steady-state and transient conditions. The obtained optimum thermoelectric current at steady-state condition is used to conduct a number of pulsed tests (i.e. transient tests) with different shapes to cool the computer chips hotspots. The results of the steady-state tests showed that at hotspot heat rate of 15.58 W (5.97 W/cm2), using thermoelectric current of 4.5 A has resulted in decreasing the hotspot temperature at open circuit condition (89.3 °C) by 50.1 °C. Maximum and minimum hotspot temperatures have been affected by ON and OFF duration of the electrical current pulse. Maximum hotspot temperature was resulted by longer OFF pulse period. In addition, longer ON pulse period has generated the minimum hotspot temperature.Keywords: thermoelectric generator, TEG, thermoelectric cooler, TEC, chip hotspots, electronic cooling
Procedia PDF Downloads 1472823 A Model Based Metaheuristic for Hybrid Hierarchical Community Structure in Social Networks
Authors: Radhia Toujani, Jalel Akaichi
Abstract:
In recent years, the study of community detection in social networks has received great attention. The hierarchical structure of the network leads to the emergence of the convergence to a locally optimal community structure. In this paper, we aim to avoid this local optimum in the introduced hybrid hierarchical method. To achieve this purpose, we present an objective function where we incorporate the value of structural and semantic similarity based modularity and a metaheuristic namely bees colonies algorithm to optimize our objective function on both hierarchical level divisive and agglomerative. In order to assess the efficiency and the accuracy of the introduced hybrid bee colony model, we perform an extensive experimental evaluation on both synthetic and real networks.Keywords: social network, community detection, agglomerative hierarchical clustering, divisive hierarchical clustering, similarity, modularity, metaheuristic, bee colony
Procedia PDF Downloads 3852822 Theoretical and ML-Driven Identification of a Mispriced Credit Risk
Authors: Yuri Katz, Kun Liu, Arunram Atmacharan
Abstract:
Due to illiquidity, mispricing on Credit Markets is inevitable. This creates huge challenges to banks and investors as they seek to find new ways of risk valuation and portfolio management in a post-credit crisis world. Here, we analyze the difference in behavior of the spread-to-maturity in investment and high-yield categories of US corporate bonds between 2014 and 2023. Deviation from the theoretical dependency of this measure in the universe under study allows to identify multiple cases of mispriced credit risk. Remarkably, we observe mispriced bonds in both categories of credit ratings. This identification is supported by the application of the state-of-the-art machine learning model in more than 90% of cases. Noticeably, the ML-driven model-based forecasting of a category of bond’s credit ratings demonstrate an excellent out-of-sample accuracy (AUC = 98%). We believe that these results can augment conventional valuations of credit portfolios.Keywords: credit risk, credit ratings, bond pricing, spread-to-maturity, machine learning
Procedia PDF Downloads 852821 Seafloor and Sea Surface Modelling in the East Coast Region of North America
Authors: Magdalena Idzikowska, Katarzyna Pająk, Kamil Kowalczyk
Abstract:
Seafloor topography is a fundamental issue in geological, geophysical, and oceanographic studies. Single-beam or multibeam sonars attached to the hulls of ships are used to emit a hydroacoustic signal from transducers and reproduce the topography of the seabed. This solution provides relevant accuracy and spatial resolution. Bathymetric data from ships surveys provides National Centers for Environmental Information – National Oceanic and Atmospheric Administration. Unfortunately, most of the seabed is still unidentified, as there are still many gaps to be explored between ship survey tracks. Moreover, such measurements are very expensive and time-consuming. The solution is raster bathymetric models shared by The General Bathymetric Chart of the Oceans. The offered products are a compilation of different sets of data - raw or processed. Indirect data for the development of bathymetric models are also measurements of gravity anomalies. Some forms of seafloor relief (e.g. seamounts) increase the force of the Earth's pull, leading to changes in the sea surface. Based on satellite altimetry data, Sea Surface Height and marine gravity anomalies can be estimated, and based on the anomalies, it’s possible to infer the structure of the seabed. The main goal of the work is to create regional bathymetric models and models of the sea surface in the area of the east coast of North America – a region of seamounts and undulating seafloor. The research includes an analysis of the methods and techniques used, an evaluation of the interpolation algorithms used, model thickening, and the creation of grid models. Obtained data are raster bathymetric models in NetCDF format, survey data from multibeam soundings in MB-System format, and satellite altimetry data from Copernicus Marine Environment Monitoring Service. The methodology includes data extraction, processing, mapping, and spatial analysis. Visualization of the obtained results was carried out with Geographic Information System tools. The result is an extension of the state of the knowledge of the quality and usefulness of the data used for seabed and sea surface modeling and knowledge of the accuracy of the generated models. Sea level is averaged over time and space (excluding waves, tides, etc.). Its changes, along with knowledge of the topography of the ocean floor - inform us indirectly about the volume of the entire water ocean. The true shape of the ocean surface is further varied by such phenomena as tides, differences in atmospheric pressure, wind systems, thermal expansion of water, or phases of ocean circulation. Depending on the location of the point, the higher the depth, the lower the trend of sea level change. Studies show that combining data sets, from different sources, with different accuracies can affect the quality of sea surface and seafloor topography models.Keywords: seafloor, sea surface height, bathymetry, satellite altimetry
Procedia PDF Downloads 842820 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding
Authors: Emad A. Mohammed
Abstract:
Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.Keywords: MMP, gas flooding, artificial intelligence, correlation
Procedia PDF Downloads 1492819 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based On a Motion Polymorph-Primitives Algorithm
Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba
Abstract:
Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real-time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.Keywords: robotics, aerial robots, motion primitives, helicopter
Procedia PDF Downloads 6192818 A Boundary Fitted Nested Grid Model for Tsunami Computation along Penang Island in Peninsular Malaysia
Authors: Md. Fazlul Karim, Ahmad Izani Md. Ismail, Mohammed Ashaque Meah
Abstract:
This paper focuses on the development of a 2-D Boundary Fitted and Nested Grid (BFNG) model to compute the tsunami propagation of Indonesian tsunami 2004 along the coastal region of Penang in Peninsular Malaysia. In the presence of a curvilinear coastline, boundary fitted grids are suitable to represent the model boundaries accurately. On the other hand, when large gradient of velocity within a confined area is expected, the use of a nested grid system is appropriate to improve the numerical accuracy with the least grid numbers. This paper constructs a shallow water nested and orthogonal boundary fitted grid model and presents computational results of the tsunami impact on the Penang coast due to the Indonesian tsunami of 2004. The results of the numerical simulations are compared with available data.Keywords: boundary fitted nested model, tsunami, Penang Island, 2004 Indonesian Tsunami
Procedia PDF Downloads 3262817 Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method
Authors: Ž. Nikolić, H. Smoljanović, N. Živaljić
Abstract:
This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures.Keywords: dry stone masonry structures, dynamic load, finite-discrete element method, static load
Procedia PDF Downloads 4192816 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 1052815 The Role of Emotion in Attention Allocation
Authors: Michaela Porubanova
Abstract:
In this exploratory study to examine the effects of emotional significance on change detection using the flicker paradigm, three different categories of scenes were randomly presented (neutral, positive and negative) in three different blocks. We hypothesized that because of the different effects on attention, performance in change detection tasks differs for scenes with different effective values. We found the greatest accuracy of change detection was for changes occurring in positive and negative scenes (compared with neutral scenes). Secondly and most importantly, changes in negative scenes (and also positive scenes, though not with statistical significance) were detected faster than changes in neutral scenes. Interestingly, women were less accurate than men in detecting changes in emotionally significant scenes (both negative and positive), i.e., women detected fewer changes in emotional scenes in the time limit of 40s. But on the other hand, women were quicker to detect changes in positive and negative images than men. The study makes important contributions to the area of the role of emotions on information processing. The role of emotion in attention will be discussed.Keywords: attention, emotion, flicker task, IAPS
Procedia PDF Downloads 3572814 The Effects of Electron Trapping by Electron-Ecoustic Waves Excited with Electron Beam
Authors: Abid Ali Abid
Abstract:
One-dimensional (1-D) particle-in-cell (PIC) electrostatic simulations are carried out to investigate the electrostatic waves, whose constituents are hot, cold and beam electrons in the background of motionless positive ions. In fact, the electrostatic modes excited are electron acoustic waves, beam driven waves as well as Langmuir waves. It is assessed that the relevant plasma parameters, for example, hot electron temperature, beam electron drift speed, and the electron beam density significantly modify the electrostatics wave's profiles. In the nonlinear stage, the wave-particle interaction becomes more evident and the waves have obtained its saturation level. Consequently, electrons become trapped in the waves and trapping vortices are clearly formed. Because of this trapping vortices and mixing of the electrons in phase space, finally, lead to electrons thermalization. It is observed that for the high-density value of the beam-electron, the solitary waves having a bipolar form of the electric field. These solitons are the nonlinear Brenstein-Greene and Kruskal wave mode that attributes the trapping of electrons potential well of phase-space hole. These examinations revealed that electrostatic waves have been exited in beam-plasma model and producing waves having broad-frequency ranges, which may clarify the broadband electrostatic noise (BEN) spectrum studied in the auroral zone.Keywords: electron acoustic waves, trapping of cold electron, Langmuir waves, particle-in cell simulation
Procedia PDF Downloads 2102813 A Review Paper on Data Security in Precision Agriculture Using Internet of Things
Authors: Tonderai Muchenje, Xolani Mkhwanazi
Abstract:
Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions.Keywords: precision agriculture, security, IoT, EIDE
Procedia PDF Downloads 932812 Ensemble-Based SVM Classification Approach for miRNA Prediction
Authors: Sondos M. Hammad, Sherin M. ElGokhy, Mahmoud M. Fahmy, Elsayed A. Sallam
Abstract:
In this paper, an ensemble-based Support Vector Machine (SVM) classification approach is proposed. It is used for miRNA prediction. Three problems, commonly associated with previous approaches, are alleviated. These problems arise due to impose assumptions on the secondary structural of premiRNA, imbalance between the numbers of the laboratory checked miRNAs and the pseudo-hairpins, and finally using a training data set that does not consider all the varieties of samples in different species. We aggregate the predicted outputs of three well-known SVM classifiers; namely, Triplet-SVM, Virgo and Mirident, weighted by their variant features without any structural assumptions. An additional SVM layer is used in aggregating the final output. The proposed approach is trained and then tested with balanced data sets. The results of the proposed approach outperform the three base classifiers. Improved values for the metrics of 88.88% f-score, 92.73% accuracy, 90.64% precision, 96.64% specificity, 87.2% sensitivity, and the area under the ROC curve is 0.91 are achieved.Keywords: MiRNAs, SVM classification, ensemble algorithm, assumption problem, imbalance data
Procedia PDF Downloads 3532811 Thermodynamic Performance Tests for 3D Printed Steel Slag Powder Concrete Walls
Authors: Li Guoyou, Zhang Tao, Ji Wenzhan, Huo Liang, Lin Xiqiang, Zhang Nan
Abstract:
The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is possible to print engineering structures. 3D printing buildings use wastes from constructions, industries and mine tailings as “ink”, and mix it with property improved materials, such as cement, fiber etc. This paper presents a study of the Thermodynamic performance of 3D printed walls using cement and steel slag powder. Analyses the thermal simulation regarding 3D printed walls and solid brick wall by the way of the hot-box methods and the infrared technology, and the results were contrasted with theoretical calculation. The results show that the excellent thermodynamic performance of 3D printed concrete wall made it suitable as the partial materials for self-thermal insulation walls in residential buildings. The thermodynamic performance of 3D printed concrete walls depended on the density of materials, distribution of holes, and the filling materials. Decreasing the density of materials, increasing the number of holes or replacing the filling materials with foamed concrete could improve its thermodynamic performance significantly. The average of heat transfer coefficient and thermal inertia index of 3D printed steel slag powder concrete wall all better than the traditional solid brick wall with a thickness of 240mm.Keywords: concrete, 3D printed walls, thermodynamic performance, steel slag powder
Procedia PDF Downloads 1872810 Numerical Analysis of Shear Crack Propagation in a Concrete Beam without Transverse Reinforcement
Authors: G. A. Rombach, A. Faron
Abstract:
Crack formation and growth in reinforced concrete members are, in many cases, the cause of the collapse of technical structures. Such serious failures impair structural behavior and can also damage property and persons. An intensive investigation of the crack propagation is indispensable. Numerical methods are being developed to analyze crack growth in an element and to detect fracture failure at an early stage. For reinforced concrete components, however, further research and action are required in the analysis of shear cracks. This paper presents numerical simulations and continuum mechanical modeling of bending shear crack propagation in a three-dimensional reinforced concrete beam without transverse reinforcement. The analysis will provide a further understanding of crack growth and redistribution of inner forces in concrete members. As a numerical method to map discrete cracks, the extended finite element method (XFEM) is applied. The crack propagation is compared with the smeared crack approach using concrete damage plasticity. For validation, the crack patterns of real experiments are compared with the results of the different finite element models. The evaluation is based on single span beams under bending. With the analysis, it is possible to predict the fracture behavior of concrete members.Keywords: concrete damage plasticity, crack propagation, extended finite element method, fracture mechanics
Procedia PDF Downloads 1232809 Uplifting Citizens Participation: A Gov 2.0 Framework
Authors: Mohammed Aladalah
Abstract:
The emergence of digital citizens is no longer mere speculation; therefore, governments’ use of Web 2.0 tools (hereafter Gov 2.0) should be a part of all current and future e-government plans. The potential of Gov 2.0 to facilitate greater communication, participation, and collaboration with citizens has been highlighted and discussed extensively in recent literature. However, the current levels of citizens’ participation in Gov 2.0 have not lived up to the hype. Therefore, governments need to rethink the way in which they implement Gov 2.0, and take advantage of the digitally-engaged population. We propose a two-dimensional framework to tackle this issue: first, on the supply side, governments tend to use Gov 2.0 mainly for the dissemination of information and for self-promotion without the desire to encourage any interaction with citizens; this is due to many reasons, including the lack of time and the possibility of loss of control. The second dimension of the framework is the demand side; citizens are unwilling to participate in Gov 2.0 activities because they do not perceive its value or trust the government. We attempt to consider the elements of both supply and demand in order to provide a comprehensive solution whereby the potential of Gov 2.0 can be fully utilized. Our framework is based on the theoretical foundation of service science and value co-creation theory. This paper makes two significant contributions: (a) it provides an initial framework intended to increase citizens’ participation in Gov 2.0; and (b) it enhances the understanding of the government’s Gov 2.0 applications, particularly in terms of factors that ensure their attractiveness for citizens. This work is the first step in a comprehensive research undertaking, the purpose of which is to study public’s engagement with the Gov 2.0 concept. It contributes to providing a better understanding of e-government and its future.Keywords: e-government, Gov 2.0, citizens participation, digital citizen
Procedia PDF Downloads 3392808 Study of the Use of Artificial Neural Networks in Islamic Finance
Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi
Abstract:
The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning
Procedia PDF Downloads 2472807 Reading Comprehension in Profound Deaf Readers
Authors: S. Raghibdoust, E. Kamari
Abstract:
Research show that reduced functional hearing has a detrimental influence on the ability of an individual to establish proper phonological representations of words, since the phonological representations are claimed to mediate the conceptual processing of written words. Word processing efficiency is expected to decrease with a decrease in functional hearing. In other words, it is predicted that hearing individuals would be more capable of word processing than individuals with hearing loss, as their functional hearing works normally. Studies also demonstrate that the quality of the functional hearing affects reading comprehension via its effect on their word processing skills. In other words, better hearing facilitates the development of phonological knowledge, and can promote enhanced strategies for the recognition of written words, which in turn positively affect higher-order processes underlying reading comprehension. The aims of this study were to investigate and compare the effect of deafness on the participants’ abilities to process written words at the lexical and sentence levels through using two online and one offline reading comprehension tests. The performance of a group of 8 deaf male students (ages 8-12) was compared with that of a control group of normal hearing male students. All the participants had normal IQ and visual status, and came from an average socioeconomic background. None were diagnosed with a particular learning or motor disability. The language spoken in the homes of all participants was Persian. Two tests of word processing were developed and presented to the participants using OpenSesame software, in order to measure the speed and accuracy of their performance at the two perceptual and conceptual levels. In the third offline test of reading comprehension which comprised of semantically plausible and semantically implausible subject relative clauses, the participants had to select the correct answer out of two choices. The data derived from the statistical analysis using SPSS software indicated that hearing and deaf participants had a similar word processing performance both in terms of speed and accuracy of their responses. The results also showed that there was no significant difference between the performance of the deaf and hearing participants in comprehending semantically plausible sentences (p > 0/05). However, a significant difference between the performances of the two groups was observed with respect to their comprehension of semantically implausible sentences (p < 0/05). In sum, the findings revealed that the seriously impoverished sentence reading ability characterizing the profound deaf subjects of the present research, exhibited their reliance on reading strategies that are based on insufficient or deviant structural knowledge, in particular in processing semantically implausible sentences, rather than a failure to efficiently process written words at the lexical level. This conclusion, of course, does not mean to say that deaf individuals may never experience deficits at the word processing level, deficits that impede their understanding of written texts. However, as stated in previous researches, it sounds reasonable to assume that the more deaf individuals get familiar with written words, the better they can recognize them, despite having a profound phonological weakness.Keywords: deafness, reading comprehension, reading strategy, word processing, subject and object relative sentences
Procedia PDF Downloads 3432806 The Relations between Seismic Results and Groundwater near the Gokpinar Damp Area, Denizli, Turkey
Authors: Mahmud Gungor, Ali Aydin, Erdal Akyol, Suat Tasdelen
Abstract:
The understanding of geotechnical characteristics of near-surface material and the effects of the groundwater is very important problem in such as site studies. For showing the relations between seismic data and groundwater we selected about 25 km2 as the study area. It has been presented which is a detailed work of seismic data and groundwater depths of Gokpinar Damp area. Seismic waves velocity (Vp and Vs) are very important parameters showing the soil properties. The seismic records were used the method of the multichannel analysis of surface waves near area of Gokpinar Damp area. Sixty sites in this area have been investigated with survey lines about 60 m in length. MASW (Multichannel analysis of surface wave) method has been used to generate one-dimensional shear wave velocity profile at locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 45 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Gokpinar Damp area, Denizli and the application and use of these results should be required and enforced by municipal authorities.Keywords: seismic data, Gokpinar Damp, urban planning, Denizli
Procedia PDF Downloads 2912805 Sentiment Analysis on the East Timor Accession Process to the ASEAN
Authors: Marcelino Caetano Noronha, Vosco Pereira, Jose Soares Pinto, Ferdinando Da C. Saores
Abstract:
One particularly popular social media platform is Youtube. It’s a video-sharing platform where users can submit videos, and other users can like, dislike or comment on the videos. In this study, we conduct a binary classification task on YouTube’s video comments and review from the users regarding the accession process of Timor Leste to become the eleventh member of the Association of South East Asian Nations (ASEAN). We scrape the data directly from the public YouTube video and apply several pre-processing and weighting techniques. Before conducting the classification, we categorized the data into two classes, namely positive and negative. In the classification part, we apply Support Vector Machine (SVM) algorithm. By comparing with Naïve Bayes Algorithm, the experiment showed SVM achieved 84.1% of Accuracy, 94.5% of Precision, and Recall 73.8% simultaneously.Keywords: classification, YouTube, sentiment analysis, support sector machine
Procedia PDF Downloads 1132804 Gene Names Identity Recognition Using Siamese Network for Biomedical Publications
Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu
Abstract:
As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Annotating pathway diagrams manually is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.Keywords: biological pathway, gene identification, object detection, Siamese network
Procedia PDF Downloads 2982803 Utilizing Grid Computing to Enhance Power Systems Performance
Authors: Rafid A. Al-Khannak, Fawzi M. Al-Naima
Abstract:
Power load is one of the most important controlling keys which decide power demands and illustrate power usage to shape power market. Hence, power load forecasting is the parameter which facilitates understanding and analyzing all these aspects. In this paper, power load forecasting is solved under MATLAB environment by constructing a neural network for the power load to find an accurate simulated solution with the minimum error. A developed algorithm to achieve load forecasting application with faster technique is the aim for this paper. The algorithm is used to enable MATLAB power application to be implemented by multi machines in the Grid computing system, and to accomplish it within much less time, cost and with high accuracy and quality. Grid Computing, the modern computational distributing technology, has been used to enhance the performance of power applications by utilizing idle and desired Grid contributor(s) by sharing computational power resources.Keywords: DeskGrid, Grid Server, idle contributor(s), grid computing, load forecasting
Procedia PDF Downloads 4792802 Possibilities, Challenges and the State of the Art of Automatic Speech Recognition in Air Traffic Control
Authors: Van Nhan Nguyen, Harald Holone
Abstract:
Over the past few years, a lot of research has been conducted to bring Automatic Speech Recognition (ASR) into various areas of Air Traffic Control (ATC), such as air traffic control simulation and training, monitoring live operators for with the aim of safety improvements, air traffic controller workload measurement and conducting analysis on large quantities controller-pilot speech. Due to the high accuracy requirements of the ATC context and its unique challenges, automatic speech recognition has not been widely adopted in this field. With the aim of providing a good starting point for researchers who are interested bringing automatic speech recognition into ATC, this paper gives an overview of possibilities and challenges of applying automatic speech recognition in air traffic control. To provide this overview, we present an updated literature review of speech recognition technologies in general, as well as specific approaches relevant to the ATC context. Based on this literature review, criteria for selecting speech recognition approaches for the ATC domain are presented, and remaining challenges and possible solutions are discussed.Keywords: automatic speech recognition, asr, air traffic control, atc
Procedia PDF Downloads 4032801 Challenge Response-Based Authentication for a Mobile Voting System
Authors: Tohari Ahmad, Hudan Studiawan, Iwang Aryadinata, Royyana M. Ijtihadie, Waskitho Wibisono
Abstract:
A manual voting system has been implemented worldwide. It has some weaknesses which may decrease the legitimacy of the voting result. An electronic voting system is introduced to minimize this weakness. It has been able to provide a better result, in terms of the total time taken in the voting process and accuracy. Nevertheless, people may be reluctant to go to the polling location because of some reasons, such as distance and time. In order to solve this problem, mobile voting is implemented by utilizing mobile devices. There are many mobile voting architectures available. Overall, authenticity of the users is the common problem of all voting systems. There must be a mechanism which can verify the users’ authenticity such that only verified users can give their vote once; others cannot vote. In this paper, a challenge response-based authentication is proposed by utilizing properties of the users, for example, something they have and know. In terms of speed, the proposed system provides good result, in addition to other capabilities offered by the system.Keywords: authentication, data protection, mobile voting, security
Procedia PDF Downloads 4242800 X-Corner Detection for Camera Calibration Using Saddle Points
Authors: Abdulrahman S. Alturki, John S. Loomis
Abstract:
This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations.Keywords: camera calibration, corner detector, edge detector, saddle points
Procedia PDF Downloads 4142799 Assessment of Pier Foundations for Onshore Wind Turbines in Non-cohesive Soil
Authors: Mauricio Terceros, Jann-Eike Saathoff, Martin Achmus
Abstract:
In non-cohesive soil, onshore wind turbines are often found on shallow foundations with a circular or octagonal shape. For the current generation of wind turbines, shallow foundations with very large breadths are required. The foundation support costs thus represent a considerable portion of the total construction costs. Therefore, an economic optimization of the type of foundation is highly desirable. A conceivable alternative foundation type would be a pier foundation, which combines the load transfer over the foundation area at the pier base with the transfer of horizontal loads over the shaft surface of the pier. The present study aims to evaluate the load-bearing behavior of a pier foundation based on comprehensive parametric studies. Thereby, three-dimensional numerical simulations of both pier and shallow foundations are developed. The evaluation of the results focuses on the rotational stiffnesses of the proposed soil-foundation systems. In the design, the initial rotational stiffness is decisive for consideration of natural frequencies, whereas the rotational secant stiffness for a maximum load is decisive for serviceability considerations. A systematic analysis of the results at different load levels shows that the application of the typical pier foundation is presumably limited to relatively small onshore wind turbines.Keywords: onshore wind foundation, pier foundation, rotational stiffness of soil-foundation system, shallow foundation
Procedia PDF Downloads 1572798 Modeling of Enthalpy and Heat Capacity of Phase-Change Materials
Authors: Igor Medved, Anton Trnik, Libor Vozar
Abstract:
Phase-change materials (PCMs) are of great interest in the applications where a temperature level needs to be maintained and/or where there is demand for thermal energy storage. Examples are storage of solar energy, cold, and space heating/cooling of buildings. During a phase change, the enthalpy vs. temperature plot of PCMs shows a jump and there is a distinct peak in the heat capacity plot. We present a theoretical description from which these jumps and peaks can be obtained. We apply our theoretical results to fit experimental data with very good accuracy for selected materials and changes between two phases. The development is based on the observation that PCMs are polycrystalline; i.e., composed of many single-crystalline grains. The enthalpy and heat capacity are thus interpreted as averages of the contributions from the individual grains. We also show how to determine the baseline and excess part of the heat capacity and thus the latent heat corresponding to the phase change.Keywords: averaging, enthalpy jump, heat capacity peak, phase change
Procedia PDF Downloads 4632797 The Underestimate of the Annual Maximum Rainfall Depths Due to Coarse Time Resolution Data
Authors: Renato Morbidelli, Carla Saltalippi, Alessia Flammini, Tommaso Picciafuoco, Corrado Corradini
Abstract:
A considerable part of rainfall data to be used in the hydrological practice is available in aggregated form within constant time intervals. This can produce undesirable effects, like the underestimate of the annual maximum rainfall depth, Hd, associated with a given duration, d, that is the basic quantity in the development of rainfall depth-duration-frequency relationships and in determining if climate change is producing effects on extreme event intensities and frequencies. The errors in the evaluation of Hd from data characterized by a coarse temporal aggregation, ta, and a procedure to reduce the non-homogeneity of the Hd series are here investigated. Our results indicate that: 1) in the worst conditions, for d=ta, the estimation of a single Hd value can be affected by an underestimation error up to 50%, while the average underestimation error for a series with at least 15-20 Hd values, is less than or equal to 16.7%; 2) the underestimation error values follow an exponential probability density function; 3) each very long time series of Hd contains many underestimated values; 4) relationships between the non-dimensional ratio ta/d and the average underestimate of Hd, derived from continuous rainfall data observed in many stations of Central Italy, may overcome this issue; 5) these equations should allow to improve the Hd estimates and the associated depth-duration-frequency curves at least in areas with similar climatic conditions.Keywords: central Italy, extreme events, rainfall data, underestimation errors
Procedia PDF Downloads 1942796 A TiO₂-Based Memristor Reliable for Neuromorphic Computing
Authors: X. S. Wu, H. Jia, P. H. Qian, Z. Zhang, H. L. Cai, F. M. Zhang
Abstract:
A bipolar resistance switching behaviour is detected for a Ti/TiO2-x/Au memristor device, which is fabricated by a masked designed magnetic sputtering. The current dependence of voltage indicates the curve changes slowly and continuously. When voltage pulses are applied to the device, the set and reset processes maintains linearity, which is used to simulate the synapses. We argue that the conduction mechanism of the device is from the oxygen vacancy channel model, and the resistance of the device change slowly due to the reaction between the titanium electrode and the intermediate layer and the existence of a large number of oxygen vacancies in the intermediate layer. Then, Hopfield neural network is constructed to simulate the behaviour of neural network in image processing, and the accuracy rate is more than 98%. This shows that titanium dioxide memristor has a broad application prospect in high performance neural network simulation.Keywords: memristor fabrication, neuromorphic computing, bionic synaptic application, TiO₂-based
Procedia PDF Downloads 942795 Implementation and Design of Fuzzy Controller for High Performance Dc-Dc Boost Converters
Authors: A. Mansouri, F. Krim
Abstract:
This paper discusses the implementation and design of both linear PI and fuzzy controllers for DC-DC boost converters. Design of PI controllers is based on temporal response of closed-loop converters, while fuzzy controllers design is based on heuristic knowledge of boost converters. Linear controller implementation is quite straightforward relying on mathematical models, while fuzzy controller implementation employs one or more artificial intelligences techniques. Comparison between these boost controllers is made in design aspect. Experimental results show that the proposed fuzzy controller system is robust against input voltage and load resistance changing and in respect of start-up transient. Results indicate that fuzzy controller can achieve best control performance concerning faster transient response, steady-state response good stability and accuracy under different operating conditions. Fuzzy controller is more suitable to control boost converters.Keywords: boost DC-DC converter, fuzzy, PI controllers, power electronics and control system
Procedia PDF Downloads 479