Search results for: breast density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4111

Search results for: breast density

1231 Fatigue Life Evaluation of Al6061/Al2O3 and Al6061/SiC Composites under Uniaxial and Multiaxial Loading Conditions

Authors: C. E. Sutton, A. Varvani-Farahani

Abstract:

Fatigue damage and life prediction of particle metal matrix composites (PMMCs) under uniaxial and multiaxial loading conditions were investigated. Three PMM composite materials of Al6061/Al2O3/20p-T6, Al6061/Al2O3/22p-T6 and Al6061/SiC/17w-T6 tested under tensile, torsion, and combined tension-torsion fatigue cycling were evaluated with various fatigue damage models. The fatigue damage models of Smith-Watson-Topper (S. W. T.), Ellyin, Brown-Miller, Fatemi-Socie, and Varvani were compared for their capability to assess the fatigue damage of materials undergoing various loading conditions. Fatigue life predication results were then evaluated by implementing material-dependent coefficients that factored in the effects of the particle reinforcement in the earlier developed Varvani model. The critical plane-energy approach incorporated the critical plane as the plane of crack initiation and early stage of crack growth. The strain energy density was calculated on the critical plane incorporating stress and strain components acting on the plane. This approach successfully evaluated fatigue damage values versus fatigue lives within a narrower band for both uniaxial and multiaxial loading conditions as compared with other damage approaches studied in this paper.

Keywords: fatigue damage, life prediction, critical plane approach, energy approach, PMM composites

Procedia PDF Downloads 403
1230 Development and Characterization of Polymorphic Genomic-SSR Markers in Asian Long-Horned Beetle (Anoplophora glabripennis)

Authors: Zhao Yang Liu, Jing Tao

Abstract:

The Asian long-horned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiinae), is a wood-borer and polyphagous xylophages native to Asia and killing healthy trees. As it causes serious danger to trees, the beetle has been paid close attention in the world. However, the genetic markers limited, especially microsatellite. In this study, 24 novel simple sequence repeat (SSR) molecular markers, a powerful tool for genetic diversity studies and linkage map construction, were developed and characterized from whole genome shotgun sequences. We developed SSR loci of 2 to 6 repeated and perfect units including 9895 points, the density of SSRs was found one SSR per 56.57 kb and the abundance of SSR was 0.02/kb, besides 140 types of repeats motifs were found. Half of the 48 pairs SSR primers (containing 4 di-, 7 tri-, 2 tetra- and 11 hexamers SSRs) we selected randomly from 1222 pairs of primers were polymorphism. The number of alleles for these markers in 48 individuals varied from 3 to 21 with an average of 7.71, the number of effective alleles ranged from 1.22 to 9.97 with an average of 3.54. Besides this, the polymorphic information content (PIC) ranged from 0.18 to 0.89 with a mean of 0.65, And Shannon's Information index (I) ranged from 0.46 to 2.62 with an average of 1.44. The results suggest that the method for screening of SSR in the whole genome is feasible and efficient. SSR markers developed in this study can be used for population genetic studies of A. glabripennis. Moreover, they may also be helpful for the development of microsatellites for other Coleoptera.

Keywords: SSR markers, Anoplophora glabripennis, genetic diversity, whole genome

Procedia PDF Downloads 389
1229 Study of Microstructure and Mechanical Properties Obtained by FSW of Similar and Dissimilar Non-Ferrous Alloys Used in Aerospace and Automobile Industry

Authors: Ajay Sidana, Kulbir Singh Sandhu, Balwinder Singh Sidhu

Abstract:

Joining of dissimilar non-ferrous alloys like aluminium and magnesium alloys becomes important in various automobile and aerospace applications due to their low density and good corrosion resistance. Friction Stir Welding (FSW), a solid state joining process, successfully welds difficult to weld similar and dissimilar aluminum and magnesium alloys. Two tool rotation speeds were selected by keeping the transverse speed constant to weld similar and dissimilar alloys. Similar(Al to Al) and Dissimilar(Al to Mg) weld joints were obtained by FSW. SEM scans revealed that higher tool rotation fragments the coarse grains of base material into fine grains in the weld zone. Also, there are less welding defects in weld joints obtained with higher tool rotation speed. The material of dissimilar alloys was mixed with each other forming recrystallised new intermetallics. There was decrease in hardness of similar weld joint however there is significant increase in hardness of weld zone in case of dissimilar weld joints due to stirring action of tool and formation of inter metallics. Tensile tests revealed that there was decrease in percentage elongation in both similar and dissimilar weld joints.

Keywords: aluminum alloys, magnesium alloys, friction stir welding, microstructure, mechanical properties

Procedia PDF Downloads 455
1228 Using Manipulating Urban Layouts to Enhance Ventilation and Thermal Comfort in Street Canyons

Authors: Su Ying-Ming

Abstract:

High density of high rise buildings in urban areas lead to a deteriorative Urban Heat Island Effect, gradually. This study focuses on discussing the relationship between urban layout and ventilation comfort in street canyons. This study takes Songjiang Nanjing Rd. area of Taipei, Taiwan as an example to evaluate the wind environment comfort index by field measurement and Computational Fluid Dynamics (CFD) to improve both the quality and quantity of the environment. In this study, different factors including street blocks size, the width of buildings, street width ratio and the direction of the wind were used to discuss the potential of ventilation. The environmental wind field was measured by the environmental testing equipment, Testo 480. Evaluation of blocks sizes, the width of buildings, street width ratio and the direction of the wind was made under the condition of constant floor area with the help of Stimulation CFD to adjust research methods for optimizing regional wind environment. The results of this study showed the width of buildings influences the efficiency of outdoor ventilation; improvement of the efficiency of ventilation with large street width was also shown. The study found that Block width and H/D value and PR value has a close relationship. Furthermore, this study showed a significant relationship between the alteration of street block geometry and outdoor comfortableness.

Keywords: urban ventilation path, ventilation efficiency indices, CFD, building layout

Procedia PDF Downloads 385
1227 A Study on the Improvement of Mobile Device Call Buzz Noise Caused by Audio Frequency Ground Bounce

Authors: Jangje Park, So Young Kim

Abstract:

The market demand for audio quality in mobile devices continues to increase, and audible buzz noise generated in time division communication is a chronic problem that goes against the market demand. In the case of time division type communication, the RF Power Amplifier (RF PA) is driven at the audio frequency cycle, and it makes various influences on the audio signal. In this paper, we measured the ground bounce noise generated by the peak current flowing through the ground network in the RF PA with the audio frequency; it was confirmed that the noise is the cause of the audible buzz noise during a call. In addition, a grounding method of the microphone device that can improve the buzzing noise was proposed. Considering that the level of the audio signal generated by the microphone device is -38dBV based on 94dB Sound Pressure Level (SPL), even ground bounce noise of several hundred uV will fall within the range of audible noise if it is induced by the audio amplifier. Through the grounding method of the microphone device proposed in this paper, it was confirmed that the audible buzz noise power density at the RF PA driving frequency was improved by more than 5dB under the conditions of the Printed Circuit Board (PCB) used in the experiment. A fundamental improvement method was presented regarding the buzzing noise during a mobile phone call.

Keywords: audio frequency, buzz noise, ground bounce, microphone grounding

Procedia PDF Downloads 136
1226 Effect of Different Concentrations of Polluted Water on Growth and Physiological Parameters of Two Green Algae Scenedesmus obliquus and Cosmarium leave

Authors: Yahia Mosleh

Abstract:

Both Scenedesmus obliquus and Cosmarium leave were subjected to different concentrations (5, 10, 20, 50, and 80 %) of highly polluted water collected from Haddows drainage, which receives high amount of domestic sewage, and also the increasing agriculture run off and industrial effluent, then disbursed it in El-Salam fresh water canal. The water in that canal dramatically used as drinking water alongside using in irrigation. A total of 25 physicochemical parameters were determined within the drainage polluted water and also up-stream of El-Salam fresh water canal's water. The effect of five concentrations of the tested polluted water were determined on growth density, dry algal biomass, net photosynthetic oxygen production, catalase activity and ascorbic acid content on the two algae "Scenedesmus obliquus and Cosmarium leave". The result reveal that, low concentration support the growth and the physiological activities of both algae. However, the situation is different in the case of high concentrations, where it encourage the growth of Scenedesmus obliquus , meanwhile the same concentration were inhibited the growth and physiological activities of Cosmarium leave. Which indicated that, Scenedesmus obliquus tolerated high pollution better than Cosmarium leave. Finally it can be concluded that, different organisms, however, have different sensitivities to the same pollutants and the same organisms may be more or less damaged by different pollutant. Also, the inhibitory and stimulatory effects of different species varied with concentrations.

Keywords: catalase activity, ascorbic acid content, Scenedesmus, Cosmarium, pollution, biomass

Procedia PDF Downloads 290
1225 Development and Characterization of a Composite Material for Ceiling Board Construction Applications in Ethiopia

Authors: Minase Yitbarek Mengistu, Abrham Melkamu, Dawit Yisfaw, Bisrat Belihu, Abdulhakim Lalega

Abstract:

This research was aimed at reducing and recycling waste paper and sawdust from our environment, thereby reducing environmental pollution resulting from the management/disposal of these waste materials. In this research, some mechanical properties of composite ceiling board materials made from waste paper, sawdust, and pineapple leaf fibers were investigated to determine their suitability for use in low-cost construction work. The ceiling board was obtained from the waste of paper, sawdust chips, and pineapple leaf fibers by manual mechanical bonding techniques using dissolved polystyrene films as a binding agent. The results obtained showed that the water absorption values of between 6 % and 8.1 %; as well as density values of 500 kg/mm3 and 611.1 kg/mm3.From our result, the better one is a ratio of pineapple leaf fiber 25%, sawdust 40%, binder 25%, and waste paper 10%. The composite ceiling boards were successfully nailed with firm grips. These values obtained were compared with those of the conventional ceiling boards and it was observed that these composite materials can be used for internal low-cost construction work and Insulation (acoustic and thermal) performance. It is highly recommended that small and medium enterprises be encouraged to venture into waste recycling and the production of these composite ceiling materials to create jobs for skilled and unskilled labor that are locally available.

Keywords: composite material, environment, textile, ceiling board

Procedia PDF Downloads 72
1224 The Issue of Affordability in Housing and Implications for the Regional Planning of Drainage Infrastructure: A Case of Affordability as Part of Inclusive Decision Making

Authors: Kwadwo Afari Gyan

Abstract:

Cities are growing at unprecedented levels. Meanwhile, governments in the Global South are already overwhelmed by this growth and are unable to provide infrastructure proactively as expected. As a result, urban residents resort to providing their own infrastructure, such as drainage systems, as part of self-built housing development. Their small-scale, incremental housing practices, which often represent the formation of dense and diverse housing types, styles, and ages, have been identified to affect the planning of drainage systems at the regional scale. Such developments reflect the varied, affordable responses as part of a collective effort to curb regional problems, specifically flooding in this case. However, while some are included in this collective action, others are excluded as they are unable to afford to be included. This phenomenon, in addition to the formation of new autonomous localities, has led to challenges in mitigating flooding and has affected resilience to climate change. Using a qualitative approach, this paper explores how the mismatch between housing development, which occurs at an individual scale, and drainage infrastructure, which is provided at a regional scale, affects a regional effort to mitigate flooding in Tema, Ghana. It seeks to explore and reveal a relationship between affordability and inclusiveness. It also explores how density and diversity influence public infrastructure provision and their connection with affordability.

Keywords: climate change, affordability, inclusivity, equity, contextualization, regionalism

Procedia PDF Downloads 95
1223 Numerical Investigation of the Bio-fouling Roughness Effect on Tidal Turbine

Authors: O. Afshar

Abstract:

Unlike other renewable energy sources, tidal current energy is an extremely reliable, predictable and continuous energy source as the current pattern and speed can be predicted throughout the year. A key concern associated with tidal turbines is their long-term reliability when operating in the hostile marine environment. Bio-fouling changes the physical shape and roughness of turbine components, hence altering the overall turbine performance. This paper seeks to employ Computational Fluid Dynamics (CFD) method to quantify the effects of this problem based on the obtained flow field information. The simulation is carried out on a NACA 63-618 aerofoil. The Reynolds Averaged Navier-Stokes (RANS) equations with Shear Stress Transport (SST) turbulent model are used to simulate the flow around the model. Different levels of fouling are studied on 2D aerofoil surface with quantified fouling height and density. In terms of lift and drag coefficient results, numerical results show good agreement with the experiment which was carried out in wind tunnel. Numerical results of research indicate that an increase in fouling thickness causes an increase in drag coefficient and a reduction in lift coefficient. Moreover, pressure gradient gradually becomes adverse as height of fouling increases. In addition, result by turbulent kinetic energy contour reveals it increases with fouling height and it extends into wake due to flow separation.

Keywords: tidal energy, lift coefficient, drag coefficient, roughness

Procedia PDF Downloads 382
1222 Effects of Commonly-Used Inorganic Salts on the Morphology and Electrochemical Performance of Carboxylated Cellulose Nanocrystals Doped Polypyrrole Supercapacitors

Authors: Zuxinsun, Samuel Eyley, Yongjian Guo, Reeta Salminen, Wim Thielemans

Abstract:

Polypyrrole(PPy), as one of the most promising pseudocapacitor electrode materials, has attracted large research interest due to its low cost, high electrical conductivity and easy fabrication, limited capacitance, and cycling stability of PPy films hinder their practical applications. In this study, through adding different amounts of KCl into the pyrrole and CNC-COO⁻ system, three-dimensional, porous, and reticular PPy films were electropolymerized at last without the assistance of any template or substrate. Replacing KCl with NaCl, KBr, and NaClO4, the porous PPy films were still obtained rather than relatively dense PPy films which were deposited with pyrrole and CNC-COO⁻ or pyrrole and KCl. The nucleation and growth mechanisms of PPy films were studied in the deposited electrolyte with or without salts to illustrate the evolution of morphology from relatively dense to porous structure. The capacitance of PPy/CNC-COO⁻-Cl-(ClO4-)_0.5 films increased from 160.6 to 183.4 F g⁻¹ at 0.2 A g⁻¹. More importantly, at a high current density of 2.0 A g⁻¹ (20 mA cm⁻²), the PPy/CNC-COO⁻-Cl-(ClO4-)_0.5 films exhibited an excellent capacitance of 125.0 F g⁻¹ (1.19 F cm⁻²), increasing about 203.7 % over PPy/CNC-COO- films. 103.3 % of its initial capacitance was retained after 5000 cycles at 2 A g⁻¹ (20 mA cm⁻²) for the PPy/CNC-COO⁻-Cl-(ClO4-)_0.5 supercapacitor. The analyses reveal that the porous and reticular PPy/CNC-COO⁻-salts films open up more active reaction areas to store charges. The stiff and ribbonlike CNC-COO⁻ as the permanent dopants improve strength and stability of PPy/CNC-COO⁻-salts films. Our demonstration provides a simple and practical way to deposit PPy-based supercapacitors with high capacitance and cycling ability.

Keywords: polypyrrole, supercapacitors, cellulose nanocrystals, porous and reticular structure, inorganic salts

Procedia PDF Downloads 67
1221 Analysis of Nonlinear Dynamic Systems Excited by Combined Colored and White Noise Excitations

Authors: Siu-Siu Guo, Qingxuan Shi

Abstract:

In this paper, single-degree-of-freedom (SDOF) systems to white noise and colored noise excitations are investigated. By expressing colored noise excitation as a second-order filtered white noise process and introducing colored noise as an additional state variable, the equation of motion for SDOF system under colored noise is then transferred artificially to multi-degree-of-freedom (MDOF) system under white noise excitations. As a consequence, corresponding Fokker-Planck-Kolmogorov (FPK) equation governing the joint probabilistic density function (PDF) of state variables increases to 4-dimension (4-D). Solution procedure and computer programme become much more sophisticated. The exponential-polynomial closure (EPC) method, widely applied for cases of SDOF systems under white noise excitations, is developed and improved for cases of systems under colored noise excitations and for solving the complex 4-D FPK equation. On the other hand, Monte Carlo simulation (MCS) method is performed to test the approximate EPC solutions. Two examples associated with Gaussian and non-Gaussian colored noise excitations are considered. Corresponding band-limited power spectral densities (PSDs) for colored noise excitations are separately given. Numerical studies show that the developed EPC method provides relatively accurate estimates of the stationary probabilistic solutions. Moreover, statistical parameter of mean-up crossing rate (MCR) is taken into account, which is important for reliability and failure analysis.

Keywords: filtered noise, narrow-banded noise, nonlinear dynamic, random vibration

Procedia PDF Downloads 225
1220 Gan Nanowire-Based Sensor Array for the Detection of Cross-Sensitive Gases Using Principal Component Analysis

Authors: Ashfaque Hossain Khan, Brian Thomson, Ratan Debnath, Abhishek Motayed, Mulpuri V. Rao

Abstract:

Though the efforts had been made, the problem of cross-sensitivity for a single metal oxide-based sensor can’t be fully eliminated. In this work, a sensor array has been designed and fabricated comprising of platinum (Pt), copper (Cu), and silver (Ag) decorated TiO2 and ZnO functionalized GaN nanowires using industry-standard top-down fabrication approach. The metal/metal-oxide combinations within the array have been determined from prior molecular simulation study using first principle calculations based on density functional theory (DFT). The gas responses were obtained for both single and mixture of NO2, SO2, ethanol, and H2 in the presence of H2O and O2 gases under UV light at room temperature. Each gas leaves a unique response footprint across the array sensors by which precise discrimination of cross-sensitive gases has been achieved. An unsupervised principal component analysis (PCA) technique has been implemented on the array response. Results indicate that each gas forms a distinct cluster in the score plot for all the target gases and their mixtures, indicating a clear separation among them. In addition, the developed array device consumes very low power because of ultra-violet (UV) assisted sensing as compared to commercially available metal-oxide sensors. The nanowire sensor array, in combination with PCA, is a potential approach for precise real-time gas monitoring applications.

Keywords: cross-sensitivity, gas sensor, principle component analysis (PCA), sensor array

Procedia PDF Downloads 107
1219 Study on Brick Aggregate Made Pervious Concrete at Zero Fine Level

Authors: Monjurul Hasan, Golam Kibria, Abdus Salam

Abstract:

Pervious concrete is a form of lightweight porous concrete, obtained by eliminating the fine aggregate from the normal concrete mix. The advantages of this type of concrete are lower density, lower cost due to lower cement content, lower thermal conductivity, relatively low drying shrinkage, no segregation and capillary movement of water. In this paper an investigation is made on the mechanical response of the pervious concrete at zero fine level (zero fine concrete) made with local brick aggregate. Effect of aggregate size variation on the strength, void ratio and permeability of the zero fine concrete is studied. Finally, a comparison is also presented between the stone aggregate made pervious concrete and brick aggregate made pervious concrete. In total 75 concrete cylinder were tested for compressive strength, 15 cylinder were tested for void ratio and 15 cylinder were tested for permeability test. Mix proportion (cement: Coarse aggregate) was kept fixed at 1:6 (by weights), where water cement ratio was valued 0.35 for preparing the sample specimens. The brick aggregate size varied among 25mm, 19mm, 12mm. It has been found that the compressive strength decreased with the increment of aggregate size but permeability increases and concrete made with 19mm maximum aggregate size yields the optimum value. No significant differences on the strength and permeability test are observed between the brick aggregate made zero fine concrete and stone aggregate made zero fine concrete.

Keywords: pervious concrete, brick aggregate concrete, zero fine concrete, permeability, porosity

Procedia PDF Downloads 555
1218 Flame Volume Prediction and Validation for Lean Blowout of Gas Turbine Combustor

Authors: Ejaz Ahmed, Huang Yong

Abstract:

The operation of aero engines has a critical importance in the vicinity of lean blowout (LBO) limits. Lefebvre’s model of LBO based on empirical correlation has been extended to flame volume concept by the authors. The flame volume takes into account the effects of geometric configuration, the complex spatial interaction of mixing, turbulence, heat transfer and combustion processes inside the gas turbine combustion chamber. For these reasons, flame volume based LBO predictions are more accurate. Although LBO prediction accuracy has improved, it poses a challenge associated with Vf estimation in real gas turbine combustors. This work extends the approach of flame volume prediction previously based on fuel iterative approximation with cold flow simulations to reactive flow simulations. Flame volume for 11 combustor configurations has been simulated and validated against experimental data. To make prediction methodology robust as required in the preliminary design stage, reactive flow simulations were carried out with the combination of probability density function (PDF) and discrete phase model (DPM) in FLUENT 15.0. The criterion for flame identification was defined. Two important parameters i.e. critical injection diameter (Dp,crit) and critical temperature (Tcrit) were identified, and their influence on reactive flow simulation was studied for Vf estimation. Obtained results exhibit ±15% error in Vf estimation with experimental data.

Keywords: CFD, combustion, gas turbine combustor, lean blowout

Procedia PDF Downloads 267
1217 Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator

Authors: Mamidi Ramakrishna Rao, Jagdish Mamidi

Abstract:

With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design.

Keywords: offshore wind generator, PMSM, PSO optimization, design optimization

Procedia PDF Downloads 155
1216 Structural and Optical Properties of RF-Sputtered ZnS and Zn(S,O) Thin Films

Authors: Ould Mohamed Cheikh, Mounir Chaik, Hind El Aakib, Mohamed Aggour, Abdelkader Outzourhit

Abstract:

Zinc sulfide [ZnS] and oxygenated zinc sulfide Zn(O,S) thin films were deposited on glass substrates, by reactive cathodic radio-frequency (RF) sputtering. The substrates power and percentage of oxygen were varied in the range of 100W to 250W and from 5% to 20% respectively. The structural, morphological and optical properties of these thin films were investigated. The optical properties (mainly the refractive index, absorption coefficient and optical band gap) were examined by optical transmission measurements in the ultraviolet-visible-near Infrared wavelength range. XRD analysis indicated that all sputtered ZnS films were a single phase with a preferential orientation along the (111) plane of zinc blend (ZB). The crystallite size was in the range of 19.5 nm to 48.5 nm, the crystallite size varied with RF power reaching a maximum at 200 W. The Zn(O,S) films, on the other hand, were amorphous. UV-Visible, measurements showed that the ZnS film had more than 80% transmittance in the visible wavelength region while that of Zn(O,S is 85%. Moreover, it was observed that the band gap energy of the ZnS films increases slightly from 3.4 to 3.52 eV as the RF power was increased. The optical band gap of Zn(O,S), on the other hand, decreased from 4.2 to 3.89 eV as the oxygen partial pressure is increased in the sputtering atmosphere at a fixed RF-power. Scanning electron microscopy observations revealed smooth surfaces for both type of films. The X-ray reflectometry measurements on the ZnS films showed that the density of the films (3.9 g/cm3) is close that of bulk ZnS.

Keywords: thin films Zn(O, S) properties, Zn(O, S) by Rf-sputtering, ZnS for solar cells, thin films for renewable energy

Procedia PDF Downloads 282
1215 Calibration of the Discrete Element Method Using a Large Shear Box

Authors: C. J. Coetzee, E. Horn

Abstract:

One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.

Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out

Procedia PDF Downloads 291
1214 Competitive Coordination Strategy Towards Reversible Hybrid Hetero-Homogeneous Oxygen-Evolving Catalyst

Authors: Peikun Zhang, Chunhua Cui

Abstract:

Photoelectrochemical (PEC) water splitting provides a promising pathway to convert solar energy into renewable fuels. However, the main and seemingly insurmountable obstacle is that the sluggish kinetics of oxygen evolution reaction (OER) severely jeopardizes the overall efficiency, thus exploring highly active, stable, and appreciable catalysts is urgently requested. Herein a competitive coordination strategy was demonstrated to form a reversible hybrid homo-heterogeneous catalyst for efficient OER in alkaline media. The dynamic process involves an in-situ anchoring of soluble nickel–bipyridine pre-catalyst to a conductive substrate under OER and a re-dissolution course under open circuit potential, induced by the competitive coordination between nickel–bipyridine and nickel-hydroxyls. This catalyst allows to elaborately self-modulate a charge-transfer layer thickness upon the catalytic on-off operation, which affords substantially increased active sites, yet remains light transparency, and sustains the stability of over 200 hours of continuous operation. The integration of this catalyst with exemplified state-of-the-art Ni-sputtered Si photoanode can facilitate a ~250 mV cathodic shift at a current density of 20 mA cm-2. This finding helps the understanding of catalyst from a “dynamic” perspective, which represents a viable alternative to address remaining hurdles toward solar-driven water oxidation.

Keywords: molecular catalyst, oxygen evolution reaction, solar energy, transition metal complex, water splitting

Procedia PDF Downloads 123
1213 Investigation of Effect of Mixture Ratio and Compaction Pressure of Reinforced with Miscanthus Fibre Brake Pad Samples

Authors: M. Unaldi, R. Kus

Abstract:

Brake pads are important parts of the braking system and they are made of different materials. Use of asbestos fibre can cause health risks. The goal of this study is to determine the effect of ecological brake pad samples which are produced under different compaction pressure values and mixture ratios by using miscanthus as reinforcement component on the density, hardness, wear rate and compression strength properties, and friction coefficients changes of ecological brake pad samples. Miscanthus powder, cashew powder, alumina powder, phenolic resin powder, and calcite powder mixtures were used to produce ecological brake pad samples. The physical properties of the brake pad samples produced under different mixture ratios and compaction pressures values were determined to assign their effects on them by using Taguchi experimental design. Mixture ratios and compaction pressures values were chosen as the factors with three-levels. Experiments are conducted to L₉(3⁴) Taguchi orthogonal array design. The results showed that hardness value is very much affected both compaction pressure values and mixture ratios than the other physical properties. When reinforcing component ratio within the mixture and compaction pressure value is increased, hardness and compression strength values of the all samples are also increased. All test results taking into account, the ideal compaction value for used components and mixture ratios were determined as 200 MPa.

Keywords: brake pad, eco-friendly materials, hardness, Miscanthus, Taguchi method

Procedia PDF Downloads 327
1212 The Influence of Environment Characteristics in the Distribution of Vegetation Communities in Rawdhat Salasil, Saudi Arabia

Authors: Suliman Mohammed Alghanem

Abstract:

Ecological and botanical surveys were conducted on Rawdhat Salasil, Al-Qassim region, Saudi Arabia. The survey also includes the study of the plant communities in the study area by sampling the associated species in each community using the List Count Quadrant method to study the density, frequency, and plant cover. The present study has shown an account of the under-mentioned five different communities: Haloxylonpersicum community is a dominant perennial shrub with an important value of 47.88%. This community is represented by 20 associated species. The chemical analysis of the soil of this habitat exhibits more alkalinity with low salinity. Tamarixnilotica communityis a perennial shrub with an important value of 60.48%. This community is represented by 14 associated species. The chemical analysis of the soil of this habitat demonstrates richness in alkalis with high salinity.Salsolaimbricata communityis a perennial herb with an important value of 60.18%. This community is represented by 17 associated species. The chemical analysis of the soil of this habitat exhibits richness in alkalis with low salinity.Panicumturgidum is a perennial herb with an important value of 65.1%. This community is represented by 11 associated species. The chemical analysis of the soil of this habitat exhibits richness in alkalis and the absence of salinity. Pulicariaundulata community is predominantly an annual shrub with an important value of 91.79%. This community is represented by 16 species. The chemical analysis of the soil of this habitat exhibits richness in alkalis, and the absence of salinity.

Keywords: rangelands, plant communities, Rawdhat Salasil, edaphic factors

Procedia PDF Downloads 294
1211 Bioflocculation Using the Purified Wild Strain of P. aeruginosa Culture in Wastewater Treatment

Authors: Mohammad Hajjartabar, Tahereh Kermani Ranjbar

Abstract:

P. aeruginosa EF2 was isolated and identified from human infection sources before in our previous study. The present study was performed to determine the characteristics and activity role of bioflocculant produced by the bacterium in flocculation of the wastewater active sludge treatment. The bacterium was inoculated and then was grown in an orbital shaker at 250 rpm for 5 days at 35 °C under TSB and peptone water media. After incubation period, culture broths of the bacterial strain was collected and washed. The concentration of the bacteria was adjusted. For the extraction of the bacterial bioflocculant, culture was centrifuged at 6000 rpm for 20 min at 4 °C to remove bacterial cells. Supernatant was decanted and pellet containing bioflocculant was dried at 105 °C to a constant weight according to APHA, 2005. The chemical composition of the extracted bioflocculant from the bacterial sample was then analyzed. Wastewater active sludge sample obtained from aeration tank from one of wastewater treatment plants in Tehran, was first mixed thoroughly. After addition of bioflocculant, improvements in floc density were observed with an increase in bioflocculant. The results of this study strongly suggested that the extracted bioflucculant played a significant role in flocculation of the wastewater sample. The use of wild bacteria and nutrient regulation techniques instead of genetic manipulation opens wide investigation area in the future to improve wastewater treatment processes. Also this may put a new path in front of us to attain and improve the more effective bioflocculant using the purified microbial culture in wastewater treatment.

Keywords: wastewater treatment, P. aeruginosa, sludge treatment

Procedia PDF Downloads 156
1210 Modelling and Investigation of Phase Change Phenomena of Multiple Water Droplets

Authors: K. R. Sultana, K. Pope, Y. S. Muzychka

Abstract:

In recent years, the research of heat transfer or phase change phenomena of liquid water droplets experiences a growing interest in aircraft icing, power transmission line icing, marine icing and wind turbine icing applications. This growing interest speeding up the research from single to multiple droplet phenomena. Impingements of multiple droplets and the resulting solidification phenomena after impact on a very cold surface is computationally studied in this paper. The model used in the current study solves the flow equation, composed of energy balance and the volume fraction equations. The main aim of the study is to investigate the effects of several thermo-physical properties (density, thermal conductivity and specific heat) on droplets freezing. The outcome is examined by various important factors, for instance, liquid fraction, total freezing time, droplet temperature and total heat transfer rate in the interface region. The liquid fraction helps to understand the complete phase change phenomena during solidification. Temperature distribution and heat transfer rate help to demonstrate the overall thermal exchange behaviors between the droplets and substrate surface. Findings of this research provide an important technical achievement for ice modeling and prediction studies.

Keywords: droplets, CFD, thermos-physical properties, solidification

Procedia PDF Downloads 243
1209 Energy Efficient Plant Design Approaches: Case Study of the Sample Building of the Energy Efficiency Training Facilities

Authors: Idil Kanter Otcu

Abstract:

Nowadays, due to the growing problems of energy supply and the drastic reduction of natural non-renewable resources, the development of new applications in the energy sector and steps towards greater efficiency in energy consumption are required. Since buildings account for a large share of energy consumption, increasing the structural density of buildings causes an increase in energy consumption. This increase in energy consumption means that energy efficiency approaches to building design and the integration of new systems using emerging technologies become necessary in order to curb this consumption. As new systems for productive usage of generated energy are developed, buildings that require less energy to operate, with rational use of resources, need to be developed. One solution for reducing the energy requirements of buildings is through landscape planning, design and application. Requirements such as heating, cooling and lighting can be met with lower energy consumption through planting design, which can help to achieve more efficient and rational use of resources. Within this context, rather than a planting design which considers only the ecological and aesthetic features of plants, these considerations should also extend to spatial organization whereby the relationship between the site and open spaces in the context of climatic elements and planting designs are taken into account. In this way, the planting design can serve an additional purpose. In this study, a landscape design which takes into consideration location, local climate morphology and solar angle will be illustrated on a sample building project.

Keywords: energy efficiency, landscape design, plant design, xeriscape landscape

Procedia PDF Downloads 260
1208 Carbon Supported Silver Nanostructures for Electrochemical Carbon Dioxide Reduction

Authors: Sonali Panigrahy, Manjunatha K., Sudip Barman

Abstract:

Electrocatalytic reduction methods hold significant promise in addressing the urgent need to mitigate excessive greenhouse gas emissions, particularly carbon dioxide (CO₂). A highly effective catalyst is essential for achieving the conversion of CO₂ into valuable products due to the complex, multi-electron, and multi-product nature of the CO₂ reduction process. The electrochemical reduction of CO₂, driven by renewable energy sources, presents a valuable opportunity for simultaneously reducing CO₂ emissions while generating valuable chemicals and fuels, with syngas being a noteworthy product. Silver-based electrodes have been the focus of extensive research due to their low overpotential and remarkable selectivity in promoting the generation of carbon monoxide (CO) in the electrocatalytic carbon dioxide reduction reaction (CO₂RR). In this study, we delve into the synthesis of carbon-supported silver nanoparticles (Ag/C), which serve as efficient electrocatalysts for the reduction of CO₂. The as-prepared catalyst, Ag/C, is not only cost-effective but also highly proficient in facilitating the conversion of CO₂ and H₂O into syngas, which is a customizable mixture of hydrogen (H₂) and carbon monoxide (CO). The highest faradic efficiency for the production of CO on Ag/C was calculated to be 56.4% at -1.4 V vs Ag/AgCl. The maximum partial current density for the generation of CO was determined to be -9.4 mA cm-2 at a potential of -1.6 V vs Ag/AgCl. This research demonstrates the potential of Ag/C as an electrocatalyst to enable the sustainable production of syngas, contributing to the reduction of CO₂ emissions and the synthesis of valuable chemical precursors and fuels.

Keywords: CO₂, carbon monooxide, electrochemical, silver

Procedia PDF Downloads 70
1207 Electro-Fenton Degradation of Erythrosine B Using Carbon Felt as a Cathode: Doehlert Design as an Optimization Technique

Authors: Sourour Chaabane, Davide Clematis, Marco Panizza

Abstract:

This study investigates the oxidation of Erythrosine B (EB) food dye by a homogeneous electro-Fenton process using iron (II) sulfate heptahydrate as a catalyst, carbon felt as cathode, and Ti/RuO2. The treated synthetic wastewater contains 100 mg L⁻¹ of EB and has a pH = 3. The effects of three independent variables have been considered for process optimization, such as applied current intensity (0.1 – 0.5 A), iron concentration (1 – 10 mM), and stirring rate (100 – 1000 rpm). Their interactions were investigated considering response surface methodology (RSM) based on Doehlert design as optimization method. EB removal efficiency and energy consumption were considered model responses after 30 minutes of electrolysis. Analysis of variance (ANOVA) revealed that the quadratic model was adequately fitted to the experimental data with R² (0.9819), adj-R² (0.9276) and low Fisher probability (< 0.0181) for EB removal model, and R² (0.9968), adj-R² (0.9872) and low Fisher probability (< 0.0014) relative to the energy consumption model reflected a robust statistical significance. The energy consumption model significantly depends on current density, as expected. The foregoing results obtained by RSM led to the following optimal conditions for EB degradation: current intensity of 0.2 A, iron concentration of 9.397 mM, and stirring rate of 500 rpm, which gave a maximum decolorization rate of 98.15 % with a minimum energy consumption of 0.74 kWh m⁻³ at 30 min of electrolysis.

Keywords: electrofenton, erythrosineb, dye, response serface methdology, carbon felt

Procedia PDF Downloads 72
1206 Role of Physical Properties of Maize Grains Towards Resistance to Sitotroga Cerealella (OLIV.) (Gelechiidae: Lepidoptera) in No Choice

Authors: Sohail Ahmed, Ahmad Raza

Abstract:

Physical properties of maize grains were correlated with levels of the life history of Sitotroga cerealella (Oliv.) (Gelechiidae: Lepidoptera) in no choice test to find out relative resistance in different varieties. Eight maize varieties /lines (EV-6089, Sahiwal-2002, Golden, 34N43, EV-1098, Sultan, China-1, EV-20) including seven yellow and one white were obtained from Maize and Millet Research Institute, Yousaf Wala, Sahiwal, Punjab, Pakistan. Freshly laid eggs (one day old) of S. cerealella were obtained and cultured on a susceptible maize variety for two generations for later on shifting to test varieties. Results showed that maximum moth emergence (10.33), fecundity (35.66), hatching (87.66%), moth weight (5.05 mg), development time (36.0 days) damage (93.35%) and grain weight loss (38.84%) was found in varieties, 34N43 and Golden, Sultan, Sahiwal 2002, 34N43, EV-6089, 34N43 and EV-1089, respectively. Varieties had significant difference with other varieties in these parameters (P<0.05). The varieties had positive as well as negative correlation between hardness index, grain weight and bulk density with the biological parameters of S. cerealella, percent grain damage and weight loss. Possible involvement of these grain properties in the resistance of maize grains towards S. cerealella is discussed.

Keywords: sitotroga cerealella, hardness index, grain damage, maize, varieties

Procedia PDF Downloads 387
1205 Physical and Chemical Properties during Home Composting of Municipal Organic Solid Waste in Jordan and Production of Organic Fertilizer

Authors: Munir Rusan

Abstract:

Municipal waste management (MWM) represents a cornerstone in the effort to preserve the environment, which guarantees a healthy living environment for communities. MWM is directly affected by population growth and population density, urbanization, and tourism. In Jordan, MWM is currently managed by transferring and dumping waste into landfills. Landfills are mostly saturated and cannot receive any more waste. Besides, the organic waste, which accounts for 50% of municipal waste, will be naturally fermented in the landfills creating an unpleasant odor and emits greenhouse gases as well as generate organic leachates that are harmful to the environment. Organic waste can be aerobically composted and generate organic fertilizer called compost. Compost is very beneficial to soil and plant growth and, in general, to the ecosystem. Home composting is very common in most developed countries, but unfortunately, in developing countries such as Jordan, such an approach is not practiced and is not even socially well acceptable. The objective of this study was to evaluate the physical and chemical properties of home composting materials and to produce compost for further use as a soil amendment. The effect of compost soil application on the soil-plant system was evaluated. The soil application of the compost resulted in enhancing soil organic matter and soil N, P, and K content. The plant growth was also improved quantitatively and qualitatively. It was concluded that composting of municipal organic solid waste and soil application of the compost has a significant positive impact on the environment and soil-plant productivity.

Keywords: composting, organic solid waste, soil, plant

Procedia PDF Downloads 82
1204 Simulation Studies of High-Intensity, Nanosecond Pulsed Electric Fields Induced Dynamic Membrane Electroporation

Authors: Jiahui Song

Abstract:

The application of an electric field can cause poration at cell membranes. This includes the outer plasma membrane, as well as the membranes of intracellular organelles. In order to analyze and predict such electroporation effects, it becomes necessary to first evaluate the electric fields and the transmembrane voltages. This information can then be used to assess changes in the pore formation energy that finally yields the pore distributions and their radii based on the Smolchowski equation. The dynamic pore model can be achieved by including a dynamic aspect and a dependence on the pore population density into the pore formation energy equation. These changes make the pore formation energy E(r) self-adjusting in response to pore formation without causing uncontrolled growth and expansion. By using dynamic membrane tension, membrane electroporation in response to a 180kV/cm trapezoidal pulse with a 10 ns on time and 1.5 ns rise- and fall-times is discussed. Poration is predicted to occur at times beyond the peak at around 9.2 ns. Modeling also yields time-dependent distributions of the membrane pore population after multiple pulses. It shows that the pore distribution shifts to larger values of the radius with multiple pulsing. Molecular dynamics (MD) simulations are also carried out for a fixed field of 0.5 V/nm to demonstrate nanopore formation from a microscopic point of view. The result shows that the pore is predicted to be about 0.9 nm in diameter and somewhat narrower at the central point.

Keywords: high-intensity, nanosecond, dynamics, electroporation

Procedia PDF Downloads 159
1203 An Investigation of the Quantitative Correlation between Urban Spatial Morphology Indicators and Block Wind Environment

Authors: Di Wei, Xing Hu, Yangjun Chen, Baofeng Li, Hong Chen

Abstract:

To achieve the research purpose of guiding the spatial morphology design of blocks through the indicators to obtain a good wind environment, it is necessary to find the most suitable type and value range of each urban spatial morphology indicator. At present, most of the relevant researches is based on the numerical simulation of the ideal block shape and rarely proposes the results based on the complex actual block types. Therefore, this paper firstly attempted to make theoretical speculation on the main factors influencing indicators' effectiveness by analyzing the physical significance and formulating the principle of each indicator. Then it was verified by the field wind environment measurement and statistical analysis, indicating that Porosity(P₀) can be used as an important indicator to guide the design of block wind environment in the case of deep street canyons, while Frontal Area Density (λF) can be used as a supplement in the case of shallow street canyons with no height difference. Finally, computational fluid dynamics (CFD) was used to quantify the impact of block height difference and street canyons depth on λF and P₀, finding the suitable type and value range of λF and P₀. This paper would provide a feasible wind environment index system for urban designers.

Keywords: urban spatial morphology indicator, urban microclimate, computational fluid dynamics, block ventilation, correlation analysis

Procedia PDF Downloads 137
1202 Statistical Mechanical Approach in Modeling of Hybrid Solar Cells for Photovoltaic Applications

Authors: A. E. Kobryn

Abstract:

We present both descriptive and predictive modeling of structural properties of blends of PCBM or organic-inorganic hybrid perovskites of the type CH3NH3PbX3 (X=Cl, Br, I) with P3HT, P3BT or squaraine SQ2 dye sensitizer, including adsorption on TiO2 clusters having rutile (110) surface. In our study, we use a methodology that allows computing the microscopic structure of blends on the nanometer scale and getting insight on miscibility of its components at various thermodynamic conditions. The methodology is based on the integral equation theory of molecular liquids in the reference interaction site representation/model (RISM) and uses the universal force field. Input parameters for RISM, such as optimized molecular geometries and charge distribution of interaction sites, are derived with the use of the density functional theory methods. To compare the diffusivity of the PCBM in binary blends with P3HT and P3BT, respectively, the study is complemented with MD simulation. A very good agreement with experiment and the reports of alternative modeling or simulation is observed for PCBM in P3HT system. The performance of P3BT with perovskites, however, seems as expected. The calculated nanoscale morphologies of blends of P3HT, P3BT or SQ2 with perovskites, including adsorption on TiO2, are all new and serve as an instrument in rational design of organic/hybrid photovoltaics. They are used in collaboration with experts who actually make prototypes or devices for practical applications.

Keywords: multiscale theory and modeling, nanoscale morphology, organic-inorganic halide perovskites, three dimensional distribution

Procedia PDF Downloads 155