Search results for: eco-friendly materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6677

Search results for: eco-friendly materials

6677 Development of Ecofriendly Ionic Liquid Modified Reverse Phase Liquid Chromatography Method for Simultaneous Determination of Anti-Hyperlipidemic Drugs

Authors: Hassan M. Albishri, Fatimah Al-Shehri, Deia Abd El-Hady

Abstract:

Among the analytical techniques, reverse phase liquid chromatography (RPLC) is currently used in pharmaceutical industry. Ecofriendly analytical chemistry offers the advantages of decreasing the environmental impact with the advantage of increasing operator safety which constituted a topic of industrial interest. Recently, ionic liquids have been successfully used to reduce or eliminate the conventional organic toxic solvents. In the current work, a simple and ecofriendly ionic liquid modified RPLC (IL-RPLC) method has been firstly developed and compared with RPLC under acidic and neutral mobile phase conditions for simultaneous determination of atorvastatin-calcium, rosuvastatin and simvastatin. Several chromatographic effective parameters have been changed in a systematic way. Adequate results have been achieved by mixing ILs with ethanol as a mobile phase under neutral conditions at 1 mL/min flow rate on C18 column. The developed IL-RPLC method has been validated for the quantitative determination of drugs in pharmaceutical formulations. The method showed excellent linearity for analytes in a wide range of concentrations with acceptable precise and accurate data. The current IL-RPLC technique could have vast applications particularly under neutral conditions for simple and greener (bio)analytical applications of pharmaceuticals.

Keywords: ionic liquid, RPLC, anti-hyperlipidemic drugs, ecofriendly

Procedia PDF Downloads 222
6676 Simple Ecofriendly Cyclodextrine-Surfactant Modified UHPLC Method for Quantification of Multivitamins in Pharmaceutical and Food Samples

Authors: Hassan M. Albishri, Abdullah Almalawi, Deia Abd El-Hady

Abstract:

A simple and ecofriendly cyclodextrine-surfactant modified UHPLC (CDS-UPLC) method for rapid and sensitive simultaneous determination of multi water-soluble vitamins such as ascorbic acid, pyridoxine hydrochloride and thiamine hydrochloride in commercial pharmaceuticals and milk samples have been firstly developed. Several chromatographic effective parameters have been changed in a systematic way. Adequate results have been achieved by a mixture of β-cyclodextrine (β-CD) and cationic surfactant under acidic conditions as an eco-friendly isocratic mobile phase at 0.02 mL/min flow rate. The proposed CDS- UHPLC method has been validated for the quantitative determination of multivitamins within 8 min in food and pharmaceutical samples. The method showed excellent linearity for analytes in a wide range of 10-1000 ng/µL. The repeatability and reproducibility of data were about 2.14 and 4.69 RSD%, respectively. The limits of detection (LODs) of analytes ranged between 0.86 and 5.6 ng/µL with a range of 81.8 -115.8% recoveries in tablets and milk samples. The current first CDS- UHPLC method could have vast applications for the precise analysis of multivitamins in complicated matrices.

Keywords: ecofriendly, cyclodextrine-surfactant, multivitamins, UHPLC

Procedia PDF Downloads 234
6675 Green Technologies Developed by JSC “NIUIF”

Authors: Andrey Norov

Abstract:

In the recent years, Samoilov Research Institute for Mineral Fertilizers JSC “NIUIF”, the oldest (established in September 1919) industry-oriented institute in Russia, has developed a range of sustainable, environment-friendly, zero-waste technologies that ensure minimal consumption of materials and energy resources and fully consistent with the principles of Green Chemistry that include: - Ecofriendly energy and resource saving technology of sulfuric acid from sulfur according to DC-DA scheme (double conversion - double absorption); - Improved zero-waste technology of wet phosphoric acid (WPA) by dihydrate-hemihydrate process applicable to various types of phosphate raw materials; - Flexible, efficient, zero-waste, universal technology of NP / NPS / NPK / NPKS fertilizers with maximum heat recovery from chemical processes; - Novel, zero-waste, no-analogue technology of granular PK / PKS / NPKS fertilizers with controlled dissolution rate and nutrient supply into the soil, which allows to process a number of wastes and by-products; - Innovative resource-saving joint processing of wastes from the production of phosphogypsum and fluorosilicic acid (FSA) into ammonium sulfate with simultaneous neutralization of fluoride compounds with no lime used. - New fertilizer technology of increased environmental and agrochemical efficiency (currently under development). All listed green technologies are patented with Russian and Eurasian patents. The development of ecofriendly, safe, green technologies is ongoing in JSC “NIUIF”.

Keywords: NPKS fertilizers, FSA, sulfuric acid, WPA

Procedia PDF Downloads 54
6674 Influence of the Low Frequency Ultrasound on the Cadmium (II) Biosorption by an Ecofriendly Biocomposite (Extraction Solid Waste of Ammi visnaga / Calcium Alginate): Kinetic Modeling

Authors: L. Nouri Taiba, Y. Bouhamidi, F. Kaouah, Z. Bendjama, M. Trari

Abstract:

In the present study, an ecofriendly biocomposite namely calcium alginate immobilized Ammi Visnaga (Khella) extraction waste (SWAV/CA) was prepared by electrostatic extrusion method and used on the cadmium biosorption from aqueous phase with and without the assistance of ultrasound in batch conditions. The influence of low frequency ultrasound (37 and 80 KHz) on the cadmium biosorption kinetics was studied. The obtained results show that the ultrasonic irradiation significantly enhances and improves the efficiency of the cadmium removal. The Pseudo first order, Pseudo-second-order, Intraparticle diffusion, and Elovich models were evaluated using the non-linear curve fitting analysis method. Modeling of kinetic results shows that biosorption process is best described by the pseudo-second order and Elovich, in both the absence and presence of ultrasound.

Keywords: biocomposite, biosorption, cadmium, non-linear analysis, ultrasound

Procedia PDF Downloads 248
6673 Enhancement of Building Sustainability by Using Environment-Friendly Material

Authors: Rina Yadav, Meng-Ting Tsai

Abstract:

In the present scenario, sustainable buildings are in high demand. The essential decision for building sustainability is made during the design and preconstruction stages. Main objective of this study is reduction of unfavorable environmental impacts, which is a major cause of global warming. Based on this problem, to diminish the environmental hazards, present research study is applied to provide a guideline to designer that will be useful for material selection stage of designing. This can be achieved by using local available materials such as wood, mud, bamboos instead of cement, steel, concrete by reducing carbon dioxide emission. Energy simulation will be analyzed by software to get the comparable result. It will be encouraging and motivational for designer while using ecofriendly material to achieve points in Leadership in energy and environmental design (LEED) in green rating system.

Keywords: sustainability design, lead rating, LEED, building performance analyses

Procedia PDF Downloads 443
6672 Experimental Study on Strength and Durability Properties of Bio-Self-Cured Fly Ash Based Concrete under Aggressive Environments

Authors: R. Malathy

Abstract:

High performance concrete is not only characterized by its high strength, workability, and durability but also by its smartness in performance without human care since the first day. If the concrete can cure on its own without external curing without compromising its strength and durability, then it is said to be high performance self-curing concrete. In this paper, an attempt is made on the performance study of internally cured concrete using biomaterials, namely Spinacea pleracea and Calatropis gigantea as self-curing agents, and it is compared with the performance of concrete with existing self-cure chemical, namely polyethylene glycol. The present paper focuses on workability, strength, and durability study on M20, M30, and M40 grade concretes replacing 30% of fly ash for cement. The optimum dosage of Spinacea pleracea, Calatropis gigantea, and polyethylene glycol was taken as 0.6%, 0.24%, and 0.3% by weight of cement from the earlier research studies. From the slump tests performed, it was found that there is a minimum variation between conventional concrete and self-cured concrete. The strength activity index is determined by keeping compressive strength of conventionally cured concrete for 28 days as unity and observed that, for self-cured concrete, it is more than 1 after 28 days and more than 1.15 after 56 days because of secondary reaction of fly ash. The performance study of concretes in aggressive environment like acid attack, sea water attack, and chloride attack was made, and the results are positive and encouraging in bio-self-cured concretes which are ecofriendly, cost effective, and high performance materials.

Keywords: bio materials, Calatropis gigantea, self curing concrete, Spinacea oleracea

Procedia PDF Downloads 316
6671 HCIO4-SiO2 Nanoparticles as an Efficient Catalyst for Three-Component Synthesis of Triazolo[1,2-A]Indazole-Triones

Authors: Hossein Anaraki-Ardakani, Tayebe Heidari-Rakati

Abstract:

An environmentally benign protocol for the one-pot, three-component synthesis of Triazolo[1,2-a]indazole-1,3,8-trione derivatives by condensation of dimedone, urazole and aromatic aldehydes catalyzed by HClO4/SiO2 NPS as an ecofriendly catalyst with high catalytic activity and reusability at 100 ºC under solvent-free conditions is reported. The reaction proceeds to completion within 20-30 min in 77-86 % yield.

Keywords: one-pot reaction, dimedone, triazoloindazole, urazole

Procedia PDF Downloads 343
6670 Slow and Controlled Release Fertilizer Technology via Application of Plant-available Inorganic Coatings

Authors: Eugene Rybin

Abstract:

Reduction of nutrient losses when using mineral fertilizers is a very important and urgent challenge, which is of both economic and environmental significance. This paper shows the production of slow- and controlled release fertilizers through application of inorganic coatings, which make the released nutrients plant-available. The method of production of coated fertilizers with inorganic cover material is an alternative to other methods where polymer coatings are used. The method is based on spraying an aqueous slurry onto the surface of granules with simultaneous drying in drums under certain conditions and subsequent cooling of granules. This method of production of slow- and controlled-release fertilizers is more ecofriendly compared with others because inorganic materials are used to create a membrane. That is why the coating material is definitely biodegradable. There is also shown the effect of these coatings on the properties of fertilizers, as well as on the agrochemical efficiency and nutrient efficiency/ availability to the plants. The agrochemical tests have proved the increase of nutrient efficiency for every nutrient in compound fertilizers (NPK, NPS) for 3 consecutive years by 10-20 % and by 25-28% for urea, as well as an increase in crop yield, by 10-15% in general, and its quality. Moreover, the decrease in caking by almost 70% was proven as well as slowing down the release rate of nutrients from fertilizers. Control of the release rate was achieved by regulation of thickness and contents of coating materials. All of those characteristics were researched according to the standard-used methods. The performed research has developed the fertilizer technology of slow- and controlled release of nutrients through applying of plant-available inorganic coatings. It leads to a better synchronization of nutrient release rate and plants needs, as well as reduces the harmful effects on the environment from the fertilizers applied.

Keywords: controlled release, fertilizers, nutrients, plant-available coatings

Procedia PDF Downloads 56
6669 Prospects in Development of Ecofriendly Biopesticides in Management of Postharvest Fungal Deterioration of Cassava (Manihot esculenta Crantz)

Authors: Anderson Chidi Amadioha, Promise Chidi Kenkwo, A. A. Markson

Abstract:

Cassava (Manihot esculenta Crantz) is an important food and cash crop that provide cheap source of carbohydrate for food, feed and raw material for industries hence a commodity for feature economic development of developing countries. Despite the importance, its production potentials is undermined by disease agents that greatly reduce yield and render it unfit for human consumption and industrial use. Pathogenicity tests on fungal isolates from infected cassava revealed Aspergillus flavus, Rhizopus stolonifer, Aspergillus niger, and Trichodderma viride as rot-causing organisms. Water and ethanol extracts of Piper guineense, Ocimum graticimum, Cassia alata, and Tagetes erecta at 50% concentration significantly inhibited the radial growth of the pathogens in vitro and their development and spread in vivo. Low cassava rot incidence and severity was recorded when the extracts were applied before than after spray inoculating with spore suspension (1x105 spores/ml of distilled water) of the pathogenic organisms. The plant materials are readily available, and their extracts are biodegradable and cost effective. The fungitoxic potentials of extracts of these plant materials could be exploited as potent biopesticides in the management of postharvest fungal deterioration of cassava especially in developing countries where synthetic fungicides are not only scarce but also expensive for resource poor farmers who produce over 95% of the food consumed.

Keywords: cassava, biopesticides, in vitro, in vivo, pathogens, plant extracts

Procedia PDF Downloads 141
6668 Influence of Stacking Sequence on Properties of Sheep-Wool/Glass Reinforced Epoxy Hybrid Composites

Authors: G. B. Manjunatha

Abstract:

Natural fibers have been considerable demand in recent years due to their ecofriendly and renewable nature. The advantages of low density, acceptable specific properties, better thermal and insulate properties with low cost.In the present study, hybrid composite associating Sheep wool fiber and glass fiber reinforced with epoxy were developed and investigated the effect of stacking sequence on physical and chemical properties. The hybrid composite was designed for engineering applications as an alternative material to glass fiber composites. The hybrid composite laminates were fabricated by using hand lay-up technique at total fiber volume fraction of 60% (Sheep wool fiber 30% and Glass fiber 30%) and 40% reinforcement. The specimen preparation and testing were conducted as per American Society for Testing and Materials (ASTM) standards. Three different stacking are used. The result shows that tensile and bending tests of sequence of glass fiber between sheep wool fiber have high strength and maximum bending compared to other sequence of composites. At the same time better moisture and chemical absorption were observed.

Keywords: hybrid composites, mechanical properties, polymer composites, stacking sequence

Procedia PDF Downloads 123
6667 Graphene-Based Nanocomposites as Ecofriendly Antifouling Surfaces

Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Zhifeng Hao, Xiang Chen

Abstract:

After the prohibition of tin-based fouling-prevention coatings in 2003, the researchers were directed toward eco-friendly coatings. Because of their nonstick, environmental, and economic benefits, foul-release nanocoatings have received a lot of attention. They use physical anti-adhesion terminology to deter any fouling attachment.Natural bioinspired surfaces have micro/nano-roughness and low surface free energy features, which may inspire the design of dynamic antifouling coatings. Graphene-based nanocomposite surfaces were designed to combat marine-fouling adhesion with ecological as well as eco-friendly effects rather than biocidal solutions. Polymer–graphenenanofiller hybrids are a novel class of composite materials in fouling-prevention applications. The controlled preparation of nanoscale orientation, arrangement, and direction along the composite building blocks would result in superior fouling prohibition. This work representsfoul-release nanocomposite top coats for marine coating applications with superhydrophobicity, surface inertness against fouling adherence, cost-effectiveness, and increased lifetime.

Keywords: foul-release nanocoatings, graphene-based nanocomposite, polymer, nanofillers

Procedia PDF Downloads 103
6666 Evaluation of Eco Cement as a Stabilizer of Clayey Sand

Authors: Jeeja Menon, M. S. Ravikumar

Abstract:

With the advent of green technology and the concept of zero energy buildings, there is an emerging trend in the utilization of indigenous materials like soil as a construction material. However, fine soils like clays and sand have undesirable properties and stabilization of these soils is essential before it is used to develop a building unit. Eco cement or Ground Granulated Blast Furnace Slag (GGBS), a waste byproduct formed during the manufacture of iron has cementitious properties and has the potential of replacing cement which is the most common stabilizer used for improving the geotechnical properties of soil. This paper highlights the salient observations obtained by the investigations into the effect of GGBS as a stabilizer for clayey sand. The index and engineering properties of the soil on the addition of different percentages (0%, 2%, 4%, 5% & 6% of the dry weight of the soil) of GGBS are tested to arrive at the optimum binder content. The criteria chosen for evaluation are the unconfined compressive strength values of different soil- binder composition. The test results indicate that there are significant strength improvements by the addition of GGBS in the soil, and the optimum GGBS content was determined as 5%. Moreover, utilizing waste binders for developing an ecofriendly, less energy induced building units as well as for stabilizing soil will also contribute to the solid waste management, which is the current environmental crisis of the world.

Keywords: eco cement, GGBS, index properties, stabilization, unconfined compressive strength

Procedia PDF Downloads 104
6665 Bioremediation of Sewage Sludge Contaminated with Fluorene Using a Lipopeptide Biosurfactant

Authors: X. Vecino, J. M. Cruz, A. Moldes

Abstract:

The disposal and the treatment of sewage sludge is an expensive and environmentally complex problem. In this work, a lipopeptide biosurfactant extracted from corn steep liquor was used as ecofriendly and cost-competitive alternative for the mobilization and bioremediation of fluorene in sewage sludge. Results have demonstrated that this biosurfactant has the capability to mobilize fluorene to the aqueous phase, reducing the amount of fluorene in the sewage sludge from 484.4 mg/Kg up to 413.7 mg/Kg and 196.0 mg/Kg after 1 and 27 days respectively. Furthemore, once the fluorene was extracted the lipopeptide biosurfactant contained in the aqueous phase allowed the bio-degradation, up to 40.5 % of the initial concentration of this polycyclic aromatic hydrocarbon.

Keywords: fluorene, lipopeptide biosurfactant, mobilization, sewage sludge

Procedia PDF Downloads 255
6664 Ecolabelling : Normative Power or Corporate Strategy? : A Study Case of Textile Company in Indonesia

Authors: Suci Lestari Yuana, Shofi Fatihatun Sholihah, Derarika Ensta Jesse

Abstract:

Textile is one of buyer-driven industry which rely on label trust from the consumers. Most of textile manufacturers produce textile and textile products based on consumer demands. The company’s policy is highly depend on the dynamic evolution of consumers behavior. Recently, ecofriendly has become one of the most important factor of western consumers to purchase the textile and textile product (TPT) from the company. In that sense, companies from developing countries are encouraged to follow western consumers values. Some examples of ecolabel certificate are ISO (International Standard Organisation), Lembaga Ekolabel Indonesia (Indonesian Ecolabel Instution) and Global Ecolabel Network (GEN). The submission of national company to international standard raised a critical question whether this is a reflection towards the legitimation of global norms into national policy or it is actually a practical strategy of the company to gain global consumer. By observing one of the prominent textile company in Indonesia, this research is aimed to discuss what kind of impetus factors that cause a company to use ecolabel and what is the meaning behind it. Whether it comes from normative power or the strategy of the company. This is a qualitative research that choose a company in Sukoharjo, Central Java, Indonesia as a case study in explaining the pratice of ecolabelling by textitle company. Some deep interview is conducted with the company in order to get to know the ecolabelling process. In addition, this research also collected some document which related to company’s ecolabelling process and its impact to company’s value. The finding of the project reflected issues that concerned several issues: (1) role of media as consumer information (2) role of government and non-government actors as normative agency (3) role of company in social responsibility (4) the ecofriendly consciousness as a value of the company. As we know that environmental norms that has been admitted internationally has changed the global industrial process. This environmental norms also pushed the companies around the world, especially the company in Sukoharjo, Central Java, Indonesia to follow the norm. The neglection toward the global norms will remained the company in isolated and unsustained market that will harm the continuity of the company. So, in buyer-driven industry, the characteristic of company-consumer relations has brought a fast dynamic evolution of norms and values. The creation of global norms and values is circulated by passing national territories or identities.

Keywords: ecolabeling, waste management, CSR, normative power

Procedia PDF Downloads 267
6663 Experimental Approach and Numerical Modeling of Thermal Properties of Porous Materials: Application to Construction Materials

Authors: Nassima Sotehi

Abstract:

This article presents experimental and numerical results concerning the thermal properties of the porous materials used as heat insulator in the buildings sector. Initially, the thermal conductivity of three types of studied walls (classic concrete, concrete with cork aggregate and polystyrene concrete) was measured in experiments by the method of the boxes. Then a numerical modeling of the heat and mass transfers which occur within porous materials was applied to these walls. This work shows the influence of the presence of water in building materials on their thermophysical properties, as well as influence of the nature of materials and dosage of fibers introduced within these materials on the thermal and mass transfers.

Keywords: modeling, porous media, thermal materials, thermal properties

Procedia PDF Downloads 428
6662 Studies on the Feasibility of Cow Dung as a Non-Conventional Energy Source

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-batteries represent an entirely new long-term, reasonable, reachable and ecofriendly approach to produce sustainable energy. In the present experimental work, we have studied the effect of generation of power by bio-battery using different electrode pairs. The tests show that it is possible to generate electricity using cow dung as an electrolyte. C-Mg electrode pair shows maximum voltage and SCC (Short Circuit Current) while C-Zn electrode pair shows less OCV (Open Circuit Voltage) and SCC. We have chosen C-Zn electrodes because Mg electrodes are not economical. By the studies of different electrodes and cow dung, it is found that C-Zn electrode battery is more suitable. This result shows that the bio-batteries have the potency to full fill the need of electricity demand for lower energy equipment.

Keywords: bio-batteries, electricity, cow-dung, electrodes, non-conventional

Procedia PDF Downloads 167
6661 Customized Cow’s Urine Battery Using MnO2 Depolarizer

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-battery represents an entirely new long term, reasonable, reachable and ecofriendly approach to production of sustainable energy. Types of batteries have been developed using MnO2 in various ways. MnO2 is suitable with physical, chemical, electrochemical, and catalytic properties, serving as an effective cathodic depolarizer and may be considered as being the life blood of the battery systems. In the present experimental work, we have studied the effect of generation of power by bio-battery using different concentrations of MnO2. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. After ascertaining the optimum concentration of MnO2, various battery parameters and performance indicates that cow urine solely produces power of 695 mW, while a combination with MnO2 (40%) enhances power of bio-battery, i.e. 1377 mW. On adding more and more MnO2 to the electrolyte, the power suppressed because inflation of internal resistance. The analysis of the data produced from experiment shows that MnO2 is quite suitable to energize the bio-battery.

Keywords: bio-batteries, cow’s urine, manganese dioxide, non-conventional

Procedia PDF Downloads 224
6660 Producing Fertilizers of Increased Environmental and Agrochemical Efficiency via Application of Plant-available Inorganic Coatings

Authors: Andrey Norov

Abstract:

Reduction of inefficient losses of nutrients when using mineral fertilizers is a very important and urgent challenge, which is of both economic and environmental significance. The loss of nutrients to the environment leads to the release of greenhouse gases, eutrophication of water bodies, soil salinization and degradation, and other undesirable phenomena. This report focuses on slow and controlled release fertilizers produced through the application of inorganic coatings, which make the released nutrients plant-available. There are shown the advantages of these fertilizers their improved physical and chemical properties, as well as the effect of the coatings on yield growth and on the degree of nutrient efficiency. This type of fertilizers is an alternative to other polymer-coated fertilizers and is more ecofriendly. The production method is protected by the Russian patent.

Keywords: coatings, controlled release, fertilizer, nutrients, nutrient efficiency, yield increase

Procedia PDF Downloads 56
6659 Leaf Image Processing: Review

Authors: T. Vijayashree, A. Gopal

Abstract:

The aim of the work is to classify and authenticate medicinal plant materials and herbs widely used for Indian herbal medicinal preparation. The quality and authenticity of these raw materials are to be ensured for the preparation of herbal medicines. These raw materials are to be carefully screened, analyzed and documented due to mistaken of look-alike materials which do not have medicinal characteristics.

Keywords: authenticity, standardization, principal component analysis, imaging processing, signal processing

Procedia PDF Downloads 212
6658 A Comparative Laboratory Evaluation of Efficacy of Two Fungi: Beauveria bassiana and Acremonium perscinum, on Dichomeris eridantis Meyrick (Lepidoptera: Gelechiidae) Larvae, an Important Pest of Dalbergia sissoo

Authors: Gunjan Srivastava, Shamila Kalia

Abstract:

Dalbergia sissoo Roxb., (Family- Leguminosae; Subfamily- Papilionoideae), is an economically and ecologically important tree species having medicinal value. Of the rich complex of insect fauna, ten have been recognized as potential pests of nurseries and plantations. Present study was conducted to explore an effective ecofriendly control of Dichomeris eridantis Meyrick, an important defoliator pest of D. sissoo. Health and environmental concerns demanded devising a bio-intensive pest management strategy and employing ecofriendly measures. In the present laboratory bioassay two entomopathogenic fungi Acremonium perscinum and Beauveria bassiana were tested and compared for evaluating the efficacy of their seven different concentrations (besides control) against the 3rd, 4th and 5th instar larvae of D. eridantis, on the basis of mean percent mortality data recorded and tabulated for seven days after treatment application. Analysis showed that both treatments vary significantly among themselves. Also, variations amongst instars and duration with respect to their mortality were highly significant (p < .001). All their interactions were found to vary significantly. B. bassiana at 0.25x107 spores / ml spore concentration caused maximum mean percent mortality (62.38%) followed by mean percent mortality at its 0.25x106 spores / ml concentration (56.67%). Mean percent mortality at maximum spore concentration (0.054x107 spores / ml) and next highest spore concentration (0.054 x106 spores / ml) due to A. perscinum treatment were far less effective (mean percent mortality of 45.40% and 31.29%, respectively). At 168 hours mean percent mortality of larval instars due to both fungal treatment applications reached its maximum (52.99%) whereas, at 24 hours mean percent mortality remained least (5.70%). In both cases, treatments were most effective against 3rd instar larvae and least effective against 5th instar larvae. A comparative acccount of efficacy of B. bassiana and A. perscinum on the 3rd, 4th and 5th instar larvae of D. eridantis on 5th, 6th and 7th post treatment observation days after their application, on the basis of their median lethal concentrations (LC50) proved B. bassiana to be more potential microbial pathogen of the two fungal microbes, for all the three instars (3rd, 4th and 5th) of D. eridantis, on all the three days (5th, 6th and 7th post observation days after application of both treatments). Percent mortality of D. eridantis increased in a dose dependent manner. Koch’s Postulates tested positive, thus confirming the pathogenicity of B. bassiana against the larval instars of D. eridantis. LC90 values of 0.280x1011 spores/ml, 0.301x108 spores/ml and 0.262x108 spores/ml concentrations of B. bassiana were standardized which can effectively cause mortality of all the larval instars of D. eridantis in the field after 5th, 6th and 7th day of their application, respectively. Therefore, these concentrations can be safely used in nurseries as well as plantations of D. sissoo for effective control of D. eridantis larvae.

Keywords: Acremonium perscinum, Beauveria bassiana, Dalbergia sissoo, Dichomeris eridantis

Procedia PDF Downloads 197
6657 Material Analysis for Temple Painting Conservation in Taiwan

Authors: Chen-Fu Wang, Lin-Ya Kung

Abstract:

For traditional painting materials, the artisan used to combine the pigments with different binders to create colors. As time goes by, the materials used for painting evolved from natural to chemical materials. The vast variety of ingredients used in chemical materials has complicated restoration work; it makes conservation work more difficult. Conservation work also becomes harder when the materials cannot be easily identified; therefore, it is essential that we take a more scientific approach to assist in conservation work. Paintings materials are high molecular weight polymer, and their analysis is very complicated as well other contamination such as smoke and dirt can also interfere with the analysis of the material. The current methods of composition analysis of painting materials include Fourier transform infrared spectroscopy (FT-IR), mass spectrometer, Raman spectroscopy, X-ray diffraction spectroscopy (XRD), each of which has its own limitation. In this study, FT-IR was used to analyze the components of the paint coating. We have taken the most commonly seen materials as samples and deteriorated it. The aged information was then used for the database to exam the temple painting materials. By observing the FT-IR changes over time, we can tell all of the painting materials will be deteriorated by the UV light, but only the speed of its degradation had some difference. From the deterioration experiment, the acrylic resin resists better than the others. After collecting the painting materials aging information on FT-IR, we performed some test on the paintings on the temples. It was found that most of the artisan used tune-oil for painting materials, and some other paintings used chemical materials. This method is now working successfully on identifying the painting materials. However, the method is destructive and high cost. In the future, we will work on the how to know the painting materials more efficiently.

Keywords: temple painting, painting material, conservation, FT-IR

Procedia PDF Downloads 155
6656 Polymer Industrial Floors: The Possibility of Using Secondary Raw Materials from Solar Panels

Authors: J. Kosikova, B. Vacenovska, M. Vyhnankova

Abstract:

The paper reports on the subject of recycling and further use of secondary raw materials obtained from solar panels, which is becoming a very up to date topic in recent years. Recycling these panels is very difficult and complex, and the use of resulting secondary raw materials is still not fully resolved. Within the research carried out at the Brno University of Technology, new polymer materials used for industrial floors are being developed. Secondary raw materials are incorporated into these polymers as fillers. One of the tested filler materials was glass obtained from solar panels. The following text describes procedures and results of the tests that were performed on these materials, confirming the possibility of the use of solar panel glass in industrial polymer flooring systems.

Keywords: fillers, industrial floors, recycling, secondary raw material, solar panel

Procedia PDF Downloads 252
6655 Study of Hydrothermal Behavior of Thermal Insulating Materials Based on Natural Fibers

Authors: J. Zach, J. Hroudova, J. Brozovsky

Abstract:

Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.

Keywords: thermal insulating materials, hemp fibers, sheep wool fibers, thermal conductivity, moisture

Procedia PDF Downloads 351
6654 The Impact of Using Authentic Materials on Students' Motivation in Learning Indonesian Language as a Foreign Language

Authors: Ratna Elizabeth

Abstract:

Motivation is a very important factor since it contributes a lot to the students’ success in learning a language. Using authentic materials is believed as a mean of increasing the motivation. The materials define as authentic if they are not specifically written for the purpose of language teaching. They are genuine spoken or written language data which are drawn from many different sources. The intention of this study is to investigate the impact of using of authentic materials on students’ motivation. A single case study is conducted to the grade 9 students who learn Indonesian Language as a Foreign Language (ILFL) at an international school in Jakarta, Indonesia. Questionnaires are also distributed to the students to know their perceptions on the using of authentic materials. The results show that the using of authentic materials has increased the students’ motivation in learning the language.

Keywords: authentic materials, ILFL, language learning, motivation

Procedia PDF Downloads 345
6653 Language Teachers as Materials Developers in China: A Multimethod Approach

Authors: Jiao Li

Abstract:

Language teachers have been expected to play diversified new roles in times of educational changes. Considering the critical role that materials play in teaching and learning, language teachers have been increasingly involved in developing materials. Using identity as an analytic lens, this study aims to explore language teachers’ experiences as materials developers in China, focusing on the challenges they face and responses to them. It will adopt a multimethod approach. At the first stage, about 12 language teachers who have developed or are developing materials will be interviewed to have a broad view of their experiences. At the second stage, three language teachers who are developing materials will be studied by collecting interview data, policy documents, and data obtained from online observation of their group meetings so as to gain a deeper understanding of their experiences in materials development. It is expected that this study would have implications for teacher development, materials development, and curriculum development as well.

Keywords: educational changes, teacher development, teacher identity, teacher learning, materials development

Procedia PDF Downloads 95
6652 Characterization of Biocomposites Based on Mussel Shell Wastes

Authors: Suheyla Kocaman, Gulnare Ahmetli, Alaaddin Cerit, Alize Yucel, Merve Gozukucuk

Abstract:

Shell wastes represent a considerable quantity of byproducts in the shellfish aquaculture. From the viewpoint of ecofriendly and economical disposal, it is highly desirable to convert these residues into high value-added products for industrial applications. So far, the utilization of shell wastes was confined at relatively lower levels, e.g. wastewater decontaminant, soil conditioner, fertilizer constituent, feed additive and liming agent. Shell wastes consist of calcium carbonate and organic matrices, with the former accounting for 95-99% by weight. Being the richest source of biogenic CaCO3, shell wastes are suitable to prepare high purity CaCO3 powders, which have been extensively applied in various industrial products, such as paper, rubber, paints and pharmaceuticals. Furthermore, the shell waste could be further processed to be the filler of polymer composites. This paper presents a study on the potential use of mussel shell waste as biofiller to produce the composite materials with different epoxy matrices, such as bisphenol-A type, CTBN modified and polyurethane modified epoxy resins. Morphology and mechanical properties of shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material. The effects of shell particle content on the mechanical properties of the composites were investigated. It was shown that in all composites, the tensile strength and Young’s modulus values increase with the increase of mussel shell particles content from 10 wt% to 50 wt%, while the elongation at break decreased, compared to pure epoxy resin. The highest Young’s modulus values were determined for bisphenol-A type epoxy composites.

Keywords: biocomposite, epoxy resin, mussel shell, mechanical properties

Procedia PDF Downloads 286
6651 A Review: Recycled Materials Used in Construction

Authors: Oghenerukome Akponovo, Lynda I. Onyebuchukwu

Abstract:

Construction waste, along with that of many other industries, contributes significantly to the world's annual solid waste totals. Most of these materials, such as ash from rice hulls, slags, cement kiln dust, tire ash, plastic waste (PW), and silica fumes, end up in landfills or waterways. Some of them might even end up polluting the air from high in the atmosphere. It's sustainable, cheap, and environmentally friendly to recycle these items into new building supplies. When constructing a "Green" structure, the materials employed have the potential to either exacerbate environmental imbalance or maintain a stable ecosystem. The purpose of this research is to take stock of what is already known about recycling's potential in the construction industry and to identify its deficiencies. Therefore, this study systematically reviews the wide range of recycled materials that go into building construction. Recognizing that the construction industry's use of recycled materials has an influence on the environment and that investigating these materials may have a substantial economic impact if they were discovered

Keywords: building, construction, recycled materials, waste management

Procedia PDF Downloads 69
6650 The Use of Authentic Materials in the Chinese Language Classroom

Authors: Yiwen Jin, Jing Xiao, Pinfang Su

Abstract:

The idea of adapting authentic materials in language teaching is from the communicative method in the 1970s. Different from the language in language textbooks, authentic materials is not deliberately written, it is from the native speaker’s real life and contains real information, which can meet social needs. It could improve learners ' interest, create authentic context and improve learners ' communicative competence. Authentic materials play an important role in CFL(Chinese as a foreign language) classroom. Different types of authentic materials can be used in different ways during learning and teaching. Because of the COVID-19 pandemic,a lot of Chinese learners are learning Chinese without the real language environment. Although there are some well-written textbooks, there is a certain distance between textbook language materials and daily life. Learners cannot automatically fill this gap. That is why it is necessary to apply authentic materials as a supplement to the language textbook to create the real context. Chinese teachers around the world are working together, trying to integrate the resources and apply authentic materials through different approach. They apply authentic materials in the form of new textbooks, manuals, apps and short videos they collect and create to help Chinese learning and teaching. A review of previous research on authentic materials and the Chinese teachers’ attempt to adapt it in the classroom are offered in this manuscript.

Keywords: authentic materials, Chinese as a second language, developmental use of digital resources, materials development for language teaching

Procedia PDF Downloads 142
6649 Ecofriendly Multi-Layer Polymer Treatment for Hydrophobic and Water Repellent Porous Cotton Fabrics

Authors: Muhammad Zahid, Ilker S. Bayer, Athanassia Athanassiou

Abstract:

Fluorinated polymers having C8 chemistry (chemicals with 8 fluorinated carbon atoms) are well renowned for their excellent low surface tension and water repelling properties. However, these polymers degrade into highly toxic heavy perfluoro acids in the environment. When the C8 chemistry is reduced to C6 chemistry, this environmental concern is eliminated at the expense of reduced liquid repellent performance. In order to circumvent this, in this study, we demonstrate pre-treatment of woven cotton fabrics with a fluorinated acrylic copolymer with C6 chemistry and subsequently with a silicone polymer to render them hydrophobic. A commercial fluorinated acrylic copolymer was blended with silica nanoparticles to form hydrophobic nano-roughness on cotton fibers and a second coating layer of polydimethylsiloxane (PDMS) was applied on the fabric. A static water contact angle (for 5µl) and rolling angle (for 12.5µl) of 147°±2° and 31° were observed, respectively. Hydrostatic head measurements were also performed to better understand the performance with 26±1 cm and 2.56kPa column height and static pressure respectively. Fabrication methods (with rod coater etc.) were kept simple, reproducible, and scalable and cost efficient. Moreover, the robustness of applied coatings was also evaluated by sonication cleaning and abrasion methods. Water contact angle (WCA), water shedding angle (WSA), hydrostatic head, droplet bouncing-rolling off and prolonged staining tests were used to characterize hydrophobicity of materials. For chemical and morphological analysis, various characterization methods were used such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM).

Keywords: fluorinated polymer, hydrophobic, polydimethylsiloxane, water contact angle

Procedia PDF Downloads 288
6648 Microtomographic Analysis of Friction Materials Used in the Brakes of Railway Vehicles

Authors: Mikołaj Szyca

Abstract:

Friction elements of rail vehicle brakes are more and more often made of composite materials that displace cast iron. Materials are tested primarily in terms of their dynamic abilities, but the material structure of brake pads and linings changes during operation. In connection with the above, the changes taking place in the tested rubbing materials were analyzed using X-ray computed tomography in order to obtain data on changes in the structure of the material immediately after production and after a certain number of operating cycles. The implementation of microtomography research for experimental work on new friction materials may result in increasing the potential for the production of new composites by eliminating unfavorable material factors and, consequently, improving the dynamic parameters.

Keywords: composite materials, friction pair, X-ray computed microtomography, railway

Procedia PDF Downloads 35