Search results for: artificial potential function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17304

Search results for: artificial potential function

14424 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm

Authors: Zachary Huffman, Joana Rocha

Abstract:

Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.

Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations

Procedia PDF Downloads 135
14423 Pistachio Supplementation Ameliorates the Motor and Cognitive Deficits in Rotenone-Induced Rat Model of Parkinson’s Disease

Authors: Saida Haider, Syeda Madiha

Abstract:

Parkinson’s disease (PD) is a common neurological disorder characterized by motor deficits and loss of dopaminergic neurons. Oxidative stress is said to play a pivotal role in the pathophysiology of the disease. In the present study, PD was induced by injection of rotenone (1.5 mg/kg/day, s.c.) for eight days. Pistachio (800 mg/kg/day, p.o.) was given for two weeks. At the end of treatment brains were dissected out and striatum was isolated for biochemical and neurochemical analysis. Morris water maze (MWM) test and novel object recognition (NOR) task was used to test the memory function while motor behavior was determined by open field test (OFT), Kondziela inverted screen test (KIST), pole test (PT), beam walking test (BWT), inclined plane test (IPT) and footprint (FP) test. Several dietary components have been evaluated as potential therapeutic compounds in many neurodegenerative diseases. Increasing evidence shows that nuts have protective effects against various diseases by improving the oxidative status and reducing lipid peroxidation. Pistachio is the only nut that contains anthocyanin, a potent antioxidant having neuroprotective properties. Results showed that pistachio supplementation significantly restored the rotenone-induced motor deficits and improved the memory performance. Moreover, rats treated with pistachio also exhibited enhanced oxidative status and increased dopamine (DA) and 5-hydroxytryptamine (5-HT) concentration in striatum. In conclusion, to our best knowledge, we have for the first time shown that pistachio nut possesses neuroprotective effects against rotenone-induced motor and cognitive deficits. These beneficial effects of pistachio may be attributed to its high content of natural antioxidant and phenolic compounds. Hence, consumption of pistachio regularly as part of a daily diet can be beneficial in the prevention and treatment of PD.

Keywords: rotenone, pistachio, oxidative stress, Parkinson’s disease

Procedia PDF Downloads 108
14422 Carbon-Based Electrodes for Parabens Detection

Authors: Aniela Pop, Ianina Birsan, Corina Orha, Rodica Pode, Florica Manea

Abstract:

Carbon nanofiber-epoxy composite electrode has been investigated through voltammetric and amperometric techniques in order to detect parabens from aqueous solutions. The occurrence into environment as emerging pollutants of these preservative compounds has been extensively studied in the last decades, and consequently, a rapid and reliable method for their quantitative quantification is required. In this study, methylparaben (MP) and propylparaben (PP) were chosen as representatives for paraben class. The individual electrochemical detection of each paraben has been successfully performed. Their electrochemical oxidation occurred at the same potential value. Their simultaneous quantification should be assessed electrochemically only as general index of paraben class as a cumulative signal corresponding to both MP and PP from solution. The influence of pH on the electrochemical signal was studied. pH ranged between 1.3 and 9.0 allowed shifting the detection potential value to smaller value, which is very desired for the electroanalysis. Also, the signal is better-defined and higher sensitivity is achieved. Differential-pulsed voltammetry and square-wave voltammetry were exploited under the optimum pH conditions to improve the electroanalytical performance for the paraben detection. Also, the operation conditions were selected, i.e., the step potential, modulation amplitude and the frequency. Chronomaprometry application as the easiest electrochemical detection method led to worse sensitivity, probably due to a possible fouling effect of the electrode surface. The best electroanalytical performance was achieved by pulsed voltammetric technique but the selection of the electrochemical technique is related to the concrete practical application. A good reproducibility of the voltammetric-based method using carbon nanofiber-epoxy composite electrode was determined and no interference effect was found for the cation and anion species that are common in the water matrix. Besides these characteristics, the long life-time of the electrode give to carbon nanofiber-epoxy composite electrode a great potential for practical applications.

Keywords: carbon nanofiber-epoxy composite electrode, electroanalysis, methylparaben, propylparaben

Procedia PDF Downloads 225
14421 Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction

Authors: Najmeh Mohsenifar, Narjes Mohsenifar, Abbas Kargar

Abstract:

In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %.

Keywords: electrocardiogram, RBF artificial neural network, PSO algorithm, predict, accuracy

Procedia PDF Downloads 626
14420 The Use of Palm Kernel Shell and Ash for Concrete Production

Authors: J. E. Oti, J. M. Kinuthia, R. Robinson, P. Davies

Abstract:

This work reports the potential of using Palm Kernel (PK) ash and shell as a partial substitute for Portland Cement (PC) and coarse aggregate in the development of mortar and concrete. PK ash and shell are agro-waste materials from palm oil mills, the disposal of PK ash and shell is an environmental problem of concern. The PK ash has pozzolanic properties that enables it as a partial replacement for cement and also plays an important role in the strength and durability of concrete, its use in concrete will alleviate the increasing challenges of scarcity and high cost of cement. In order to investigate the PC replacement potential of PK ash, three types of PK ash were produced at varying temperature (350-750 degrees) and they were used to replace up to 50% PC. The PK shell was used to replace up to 100% coarse aggregate in order to study its aggregate replacement potential. The testing programme included material characterisation, the determination of compressive strength, tensile splitting strength and chemical durability in aggressive sulfate-bearing exposure conditions. The 90 day compressive results showed a significant strength gain (up to 26.2 N/mm2). The Portland cement and conventional coarse aggregate has significantly higher influence in the strength gain compared to the equivalent PK ash and PK shell. The chemical durability results demonstrated that after a prolonged period of exposure, significant strength losses in all the concretes were observed. This phenomenon is explained, due to lower change in concrete morphology and inhibition of reaction species and the final disruption of the aggregate cement paste matrix.

Keywords: sustainability, concrete, mortar, palm kernel shell, compressive strength, consistency

Procedia PDF Downloads 396
14419 Anaerobic Digestion Batch Study of Taxonomic Variations in Microbial Communities during Adaptation of Consortium to Different Lignocellulosic Substrates Using Targeted Sequencing

Authors: Priyanka Dargode, Suhas Gore, Manju Sharma, Arvind Lali

Abstract:

Anaerobic digestion has been widely used for production of methane from different biowastes. However, the complexity of microbial communities involved in the process is poorly understood. The performance of biogas production process concerning the process productivity is closely coupled to its microbial community structure and syntrophic interactions amongst the community members. The present study aims at understanding taxonomic variations occurring in any starter inoculum when acclimatised to different lignocellulosic biomass (LBM) feedstocks relating to time of digestion. The work underlines use of high throughput Next Generation Sequencing (NGS) for validating the changes in taxonomic patterns of microbial communities. Biomethane Potential (BMP) batches were set up with different pretreated and non-pretreated LBM residues using the same microbial consortium and samples were withdrawn for studying the changes in microbial community in terms of its structure and predominance with respect to changes in metabolic profile of the process. DNA of samples withdrawn at different time intervals with reference to performance changes of the digestion process, was extracted followed by its 16S rRNA amplicon sequencing analysis using Illumina Platform. Biomethane potential and substrate consumption was monitored using Gas Chromatography(GC) and reduction in COD (Chemical Oxygen Demand) respectively. Taxonomic analysis by QIIME server data revealed that microbial community structure changes with different substrates as well as at different time intervals. It was observed that biomethane potential of each substrate was relatively similar but, the time required for substrate utilization and its conversion to biomethane was different for different substrates. This could be attributed to the nature of substrate and consequently the discrepancy between the dominance of microbial communities with regards to different substrate and at different phases of anaerobic digestion process. Knowledge of microbial communities involved would allow a rational substrate specific consortium design which will help to reduce consortium adaptation period and enhance the substrate utilisation resulting in improved efficacy of biogas process.

Keywords: amplicon sequencing, biomethane potential, community predominance, taxonomic analysis

Procedia PDF Downloads 532
14418 Physicochemical Properties of Palm Stearin (PS) and Palm Kernel Olein (PKOO) Blends as Potential Edible Coating Materials

Authors: I. Ruzaina, A. B. Rashid, M. S. Halimahton Zahrah, C. S. Cheow, M. S. Adi

Abstract:

This study was conducted to determine the potential of palm stearin (PS) as edible coating materials for fruits. The palm stearin was blended with 20-80% palm kernel olein (PKOo) and the properties of the blends were evaluated in terms of the slip melting point (SMP), solid fat content (SFC), fatty acid and triacylglycerol compositions (TAG), and polymorphism. Blending of PS with PKOo reduced the SMP, SFC, altered the FAC and TAG composition and changed the crystal polymorphism from β to mixture of β and β′. The changes in the physicochemical properties of PS were due to the replacement of the high melting TAG in PS with medium chain TAG in PKOo. From the analysis, 1:1 and 3:2 were the better PSPKOo blend formulations in slowing down the weight loss, respiration gases and gave better appearance when compared to other PSPKOo blends formulations.

Keywords: guava, palm stearin, palm kernel olein, physicochemical

Procedia PDF Downloads 584
14417 Investigation of the Catalytic Role of Surfactants on Carbon Dioxide Hydrate Formation in Sediments

Authors: Ehsan Heidaryan

Abstract:

Gas hydrate sediments are ice like permafrost in deep see and oceans. Methane production in sequestration process and reducing atmospheric carbon dioxide, a main source of greenhouse gas, has been accentuated recently. One focus is capture, separation, and sequestration of industrial carbon dioxide. As a hydrate former, carbon dioxide forms hydrates at moderate temperatures and pressures. This phenomenon could be utilized to capture and separate carbon dioxide from flue gases, and also has the potential to sequester carbon dioxide in the deep seabeds. This research investigated the effect of synthetic surfactants on carbon dioxide hydrate formation, catalysis and consequently, methane production from hydrate permafrosts in sediments. It investigated the sequestration potential of carbon dioxide hydrates in ocean sediments. Also, the catalytic effect of biosurfactants in these processes was investigated.

Keywords: carbon dioxide, hydrate, sequestration, surfactant

Procedia PDF Downloads 437
14416 Identification of Toxic Metal Deposition in Food Cycle and Its Associated Public Health Risk

Authors: Masbubul Ishtiaque Ahmed

Abstract:

Food chain contamination by heavy metals has become a critical issue in recent years because of their potential accumulation in bio systems through contaminated water, soil and irrigation water. Industrial discharge, fertilizers, contaminated irrigation water, fossil fuels, sewage sludge and municipality wastes are the major sources of heavy metal contamination in soils and subsequent uptake by crops. The main objectives of this project were to determine the levels of minerals, trace elements and heavy metals in major foods and beverages consumed by the poor and non-poor households of Dhaka city and assess the dietary risk exposure to heavy metal and trace metal contamination and potential health implications as well as recommendations for action. Heavy metals are naturally occurring elements that have a high atomic weight and a density of at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, and carcinogenicity.

Keywords: food chain, determine the levels of minerals, trace elements, heavy metals, production and use, human exposure, toxicity, carcinogenicity

Procedia PDF Downloads 285
14415 Systematic Discovery of Bacterial Toxins Against Plants Pathogens Fungi

Authors: Yaara Oppenheimer-Shaanan, Nimrod Nachmias, Marina Campos Rocha, Neta Schlezinger, Noam Dotan, Asaf Levy

Abstract:

Fusarium oxysporum, a fungus that attacks a broad range of plants and can cause infections in humans, operates across different kingdoms. This pathogen encounters varied conditions, such as temperature, pH, and nutrient availability, in plant and human hosts. The Fusarium oxysporum species complex, pervasive in soils globally, can affect numerous plants, including key crops like tomatoes and bananas. Controlling Fusarium infections can involve biocontrol agents that hinder the growth of harmful strains. Our research developed a computational method to identify toxin domains within a vast number of microbial genomes, leading to the discovery of nine distinct toxins capable of killing bacteria and fungi, including Fusarium. These toxins appear to function as enzymes, causing significant damage to cellular structures, membranes and DNA. We explored biological control using bacteria that produce polymorphic toxins, finding that certain bacteria, non-pathogenic to plants, offer a safe biological alternative for Fusarium management, as they did not harm macrophage cells or C. elegans. Additionally, we elucidated the 3D structures of two toxins with their protective immunity proteins, revealing their function as unique DNases. These potent toxins are likely instrumental in microbial competition within plant ecosystems and could serve as biocontrol agents to mitigate Fusarium wilt and related diseases.

Keywords: microbial toxins, antifungal, Fusarium oxysporum, bacterial-fungal intreactions

Procedia PDF Downloads 56
14414 Simulation of Utility Accrual Scheduling and Recovery Algorithm in Multiprocessor Environment

Authors: A. Idawaty, O. Mohamed, A. Z. Zuriati

Abstract:

This paper presents the development of an event based Discrete Event Simulation (DES) for a recovery algorithm known Backward Recovery Global Preemptive Utility Accrual Scheduling (BR_GPUAS). This algorithm implements the Backward Recovery (BR) mechanism as a fault recovery solution under the existing Time/Utility Function/ Utility Accrual (TUF/UA) scheduling domain for multiprocessor environment. The BR mechanism attempts to take the faulty tasks back to its initial safe state and then proceeds to re-execute the affected section of the faulty tasks to enable recovery. Considering that faults may occur in the components of any system; a fault tolerance system that can nullify the erroneous effect is necessary to be developed. Current TUF/UA scheduling algorithm uses the abortion recovery mechanism and it simply aborts the erroneous task as their fault recovery solution. None of the existing algorithm in TUF/UA scheduling domain in multiprocessor scheduling environment have considered the transient fault and implement the BR mechanism as a fault recovery mechanism to nullify the erroneous effect and solve the recovery problem in this domain. The developed BR_GPUAS simulator has derived the set of parameter, events and performance metrics according to a detailed analysis of the base model. Simulation results revealed that BR_GPUAS algorithm can saved almost 20-30% of the accumulated utilities making it reliable and efficient for the real-time application in the multiprocessor scheduling environment.

Keywords: real-time system (RTS), time utility function/ utility accrual (TUF/UA) scheduling, backward recovery mechanism, multiprocessor, discrete event simulation (DES)

Procedia PDF Downloads 306
14413 Biomimetic Adhesive Pads for Precision Manufacturing Robots

Authors: Hoon Yi, Minho Sung, Hangil Ko, Moon Kyu Kwak, Hoon Eui Jeong

Abstract:

Inspired by the remarkable adhesion properties of gecko lizards, bio-inspired dry adhesives with smart adhesion properties have been developed in the last decade. Compared to earlier dry adhesives, the recently developed ones exhibit excellent adhesion strength, smart directional adhesion, and structural robustness. With these unique adhesion properties, bio-inspired dry adhesive pads have strong potential for use in precision industries such as semiconductor or display manufacturing. In this communication, we present a new manufacturing technology based on advanced dry adhesive systems that enable precise manipulation of large-area substrates over repeating cycles without any requirement for external force application. This new manufacturing technique is also highly accurate and environment-friendly, and thus has strong potential as a next-generation clean manufacturing technology.

Keywords: gecko, manufacturing robot, precision manufacturing

Procedia PDF Downloads 505
14412 Approximation of a Wanted Flow via Topological Sensitivity Analysis

Authors: Mohamed Abdelwahed

Abstract:

We propose an optimization algorithm for the geometric control of fluid flow. The used approach is based on the topological sensitivity analysis method. It consists in studying the variation of a cost function with respect to the insertion of a small obstacle in the domain. Some theoretical and numerical results are presented in 2D and 3D.

Keywords: sensitivity analysis, topological gradient, shape optimization, stokes equations

Procedia PDF Downloads 537
14411 Assessment of the Photovoltaic and Solar Thermal Potential Installation Area on Residential Buildings: Case Study of Amman, Jordan

Authors: Jenan Abu Qadourah

Abstract:

The suitable surface areas for the ST and PV installation are determined based on incident solar irradiation on different surfaces, shading analysis and suitable architectural area for integration considering limitations due to the constructions, available surfaces area and use of the available surfaces for other purposes. The incident solar radiation on the building surfaces and the building solar exposure analysis of the location of Amman, Jordan, is performed with Autodesk Ecotect analysis 2011 simulation software. The building model geometry within the typical urban context is created in “SketchUp,” which is then imported into Ecotect. The hourly climatic data of Amman, Jordan selected are the same ones used for the building simulation in IDA ICE and Polysun simulation software.

Keywords: photovoltaic, solar thermal, solar incident, simulation, building façade, solar potential

Procedia PDF Downloads 140
14410 Hsa-miR-192-5p, and Hsa-miR-129-5p Prominent Biomarkers in Regulation Glioblastoma Cancer Stem Cells Genes Microenvironment

Authors: Rasha Ahmadi

Abstract:

Glioblastoma is one of the most frequent brain malignancies, having a high mortality rate and limited survival in individuals with this malignancy. Despite different treatments and surgery, recurrence of glioblastoma cancer stem cells may arise as a subsequent tumor. For this reason, it is crucial to research the markers associated with glioblastoma stem cells and specifically their microenvironment. In this study, using bioinformatics analysis, we analyzed and nominated genes in the microenvironment pathways of glioblastoma stem cells. In this study, an appropriate database was selected for analysis by referring to the GEO database. This dataset comprised gene expression patterns in stem cells derived from glioblastoma patients. Gene clusters were divided as high and low expression. Enrichment databases such as Enrichr, STRING, and GEPIA were utilized to analyze the data appropriately. Finally, we extracted the potential genes 2700 high-expression and 1100 low-expression genes are implicated in the metabolic pathways of glioblastoma cancer progression. Cellular senescence, MAPK, TNF, hypoxia, zimosterol biosynthesis, and phosphatidylinositol metabolism pathways were substantially expressed and the metabolic pathways were downregulated. After assessing the association between protein networks, MSMP, SOX2, FGD4 ,and CNTNAP3 genes with high expression and DMKN and SBSN genes with low were selected. All of these genes were observed in the survival curve, with a survival of fewer than 10 percent over around 15 months. hsa-mir-192-5p, hsa-mir-129-5p, hsa-mir-215-5p, hsa-mir-335-5p, and hsa-mir-340-5p played key function in glioblastoma cancer stem cells microenviroments. We introduced critical genes through integrated and regular bioinformatics studies by assessing the amount of gene expression profile data that can play an important role in targeting genes involved in the energy and microenvironment of glioblastoma cancer stem cells. Have. This study indicated that hsa-mir-192-5p, and hsa-mir-129-5p are appropriate candidates for this.

Keywords: Glioblastoma, Cancer Stem Cells, Biomarker Discovery, Gene Expression Profiles, Bioinformatics Analysis, Tumor Microenvironment

Procedia PDF Downloads 145
14409 Acidic Dye Removal From Aqueous Solution Using Heat Treated and Polymer Modified Waste Containing Boron Impurity

Authors: Asim Olgun, Ali Kara, Vural Butun, Pelin Sevinc, Merve Gungor, Orhan Ornek

Abstract:

In this study, we investigated the possibility of using waste containing boron impurity (BW) as an adsorbent for the removal of Orange 16 from aqueous solution. Surface properties of the BW, heat treated BW, and diblock copolymer coated BW were examined by using Zeta Meter and scanning electron microscopy (SEM). The polymer modified sample having the highest positive zeta potential was used as an adsorbent. Batch adsorption studies were carried out. The operating variables studied were the initial dye concentration, contact time, solution pH, and adsorbent dosage. It was found that the dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 3. The adsorption followed pseudo-second-order kinetics and the isotherm fit well to the Langmuir model.

Keywords: zeta potential, adsorption, Orange 16, isotherms

Procedia PDF Downloads 196
14408 Unveiling the Potential of PANI@MnO2@rGO Ternary Nanocomposite in Energy Storage and Gas Sensing

Authors: Ahmad Umar, Sheikh Akbar, Ahmed A. Ibrahim, Mohsen A. Alhamami

Abstract:

The development of advanced materials for energy storage and gas sensing applications has gained significant attention in recent years. In this study, we synthesized and characterized PANI@MnO2@rGO ternary nanocomposites (NCs) to explore their potential in supercapacitors and gas sensing devices. The ternary NCs were synthesized through a multi-step process involving the hydrothermal synthesis of MnO2 nanoparticles, preparation of PANI@rGO composites and the assembly to the ternary PANI@MnO2@rGO ternary NCs. The structural, morphological, and compositional characteristics of the materials were thoroughly analyzed using techniques such as XRD, FESEM, TEM, FTIR, and Raman spectroscopy. In the realm of gas sensing, the ternary NCs exhibited excellent performance as NH3 gas sensors. The optimized operating temperature of 100 °C yielded a peak response of 15.56 towards 50 ppm NH3. The nanocomposites demonstrated fast response and recovery times of 6 s and 10 s, respectively, and displayed remarkable selectivity for NH3 gas over other tested gases. For supercapacitor applications, the electrochemical performance of the ternary NCs was evaluated using cyclic voltammetry and galvanostatic charge-discharge techniques. The composites exhibited pseudocapacitive behavior, with the capacitance reaching up to 185 F/g at 1 A/g and excellent capacitance retention of approximately 88.54% over 4000 charge-discharge cycles. The unique combination of rGO, PANI, and MnO2 nanoparticles in these ternary NCs offer synergistic advantages, showcasing their potential to address challenges in energy storage and gas sensing technologies.

Keywords: paniI@mnO2@rGO ternary NCs, synergistic effects, supercapacitors, gas sensing, energy storage

Procedia PDF Downloads 73
14407 Prototype Development of Knitted Buoyant Swimming Vest for Children

Authors: Nga-Wun Li, Chu-Po Ho, Kit-Lun Yick, Jin-Yun Zhou

Abstract:

The use of buoyant vests incorporated with swimsuits can develop children’s confidence in the water, particularly for novice swimmers. Consequently, parents intend to purchase buoyant swimming vests for the children to reduce their anxiety to water. Although the conventional buoyant swimming vests can provide the buoyant function to the wearer, their bulkiness and hardness make children feel uncomfortable and not willing to wear. This study aimed to apply inlay knitting technology to design new functional buoyant swimming vests for children. This prototype involved a shell and a buoyant knitted layer, which is the main media to provide buoyancy. Polypropylene yarn and 6.4 mm of Expandable Polyethylene (EPE) foam were fabricated in Full needle stitch with inlay knitting technology and were then linked by sewing to form the buoyant layer. The shell of the knitted buoyant vest was made of Polypropylene circular knitted fabric. The structure of knitted fabrics of the buoyant swimsuit makes them inherently stretchable, and the arrangement of the inlaid material was designed based on the body movement that can improve the ease with which the swimmer moves. Further, the shoulder seam is designed at the back to minimize the irritation of the wearer. Apart from maintaining the buoyant function to them, this prototype shows its contribution in reducing bulkiness and improving softness to the conventional buoyant swimming vest by taking the advantages of a knitted garment. The results in this study are significant to the development of the buoyant swimming vest for both the textile and the fast-growing sportswear industry.

Keywords: knitting technology, buoyancy, inlay, swimming vest, functional garment

Procedia PDF Downloads 112
14406 Magnetic Nanoparticles for Cancer Therapy

Authors: Sachinkumar Patil, Sonali Patil, Shitalkumar Patil

Abstract:

Nanoparticles played important role in the biomedicine. New advanced methods having great potential apllication in the diagnosis and therapy of cancer. Now a day’s magnetic nanoparticles used in cancer therapy. Cancer is the major disease causes death. Magnetic nanoparticles show response to the magnetic field on the basis of this property they are used in cancer therapy. Cancer treated with hyperthermia by using magnetic nanoparticles it is unconventional but more safe and effective method. Magnetic nanoparticles prepared by using different innovative techniques that makes particles in uniform size and desired effect. Magnetic nanoparticles already used as contrast media in magnetic resonance imaging. A magnetic nanoparticle has been great potential application in cancer diagnosis and treatment as well as in gene therapy. In this review we will discuss the progress in cancer therapy based on magnetic nanoparticles, mainly including magnetic hyperthermia, synthesis and characterization of magnetic nanoparticles, mechanism of magnetic nanoparticles and application of magnetic nanoparticles.

Keywords: magnetic nanoparticles, synthesis, characterization, cancer therapy, hyperthermia, application

Procedia PDF Downloads 640
14405 Peak Frequencies in the Collective Membrane Potential of a Hindmarsh-Rose Small-World Neural Network

Authors: Sun Zhe, Ruggero Micheletto

Abstract:

As discussed extensively in many studies, noise in neural networks have an important role in the functioning and time evolution of the system. The mechanism by which noise induce stochastic resonance enhancing and influencing certain operations is not clarified nor is the mechanism of information storage and coding. With the present research we want to study the role of noise, especially focusing on the frequency peaks in a three variable Hindmarsh−Rose Small−World network. We investigated the behaviour of the network to external noises. We demonstrate that a variation of signal to noise ratio of about 10 dB induces an increase in membrane potential signal of about 15%, averaged over the whole network. We also considered the integral of the whole membrane potential as a paradigm of internal noise, the one generated by the brain network. We showed that this internal noise is attenuated with the size of the network or with the number of random connections. By means of Fourier analysis we found that it has distinct peaks of frequencies, moreover, we showed that increasing the size of the network introducing more neurons, reduced the maximum frequencies generated by the network, whereas the increase in the number of random connections (determined by the small-world probability p) led to a trend toward higher frequencies. This study may give clues on how networks utilize noise to alter the collective behaviour of the system in their operations.

Keywords: neural networks, stochastic processes, small-world networks, discrete Fourier analysis

Procedia PDF Downloads 291
14404 Green Production of Chitosan Nanoparticles and their Potential as Antimicrobial Agents

Authors: L. P. Gomes, G. F. Araújo, Y. M. L. Cordeiro, C. T. Andrade, E. M. Del Aguila, V. M. F. Paschoalin

Abstract:

The application of nanoscale materials and nanostructures is an emerging area, these since materials may provide solutions to technological and environmental challenges in order to preserve the environment and natural resources. To reach this goal, the increasing demand must be accompanied by 'green' synthesis methods. Chitosan is a natural, nontoxic, biopolymer derived by the deacetylation of chitin and has great potential for a wide range of applications in the biological and biomedical areas, due to its biodegradability, biocompatibility, non-toxicity and versatile chemical and physical properties. Chitosan also presents high antimicrobial activities against a wide variety of pathogenic and spoilage microorganisms. Ultrasonication is a common tool for the preparation and processing of polymer nanoparticles. It is particularly effective in breaking up aggregates and in reducing the size and polydispersity of nanoparticles. High-intensity ultrasonication has the potential to modify chitosan molecular weight and, thus, alter or improve chitosan functional properties. The aim of this study was to evaluate the influence of sonication intensity and time on the changes of commercial chitosan characteristics, such as molecular weight and its potential antibacterial activity against Gram-negative bacteria. The nanoparticles (NPs) were produced from two commercial chitosans, of medium molecular weight (CS-MMW) and low molecular weight (CS-LMW) from Sigma-Aldrich®. These samples (2%) were solubilized in 100 mM sodium acetate pH 4.0, placed on ice and irradiated with an ultrasound SONIC ultrasonic probe (model 750 W), equipped with a 1/2" microtip during 30 min at 4°C. It was used on constant duty cycle and 40% amplitude with 1/1s intervals. The ultrasonic degradation of CS-MMW and CS-LMW were followed up by means of ζ-potential (Brookhaven Instruments, model 90Plus) and dynamic light scattering (DLS) measurements. After sonication, the concentrated samples were diluted 100 times and placed in fluorescence quartz cuvettes (Hellma 111-QS, 10 mm light path). The distributions of the colloidal particles were calculated from the DLS and ζ-potential are measurements taken for the CS-MMW and CS-LMW solutions before and after (CS-MMW30 and CS-LMW30) sonication for 30 min. Regarding the results for the chitosan sample, the major bands can be distinguished centered at Radius hydrodynamic (Rh), showed different distributions for CS-MMW (Rh=690.0 nm, ζ=26.52±2.4), CS-LMW (Rh=607.4 and 2805.4 nm, ζ=24.51±1.29), CS-MMW30 (Rh=201.5 and 1064.1 nm, ζ=24.78±2.4) and CS-LMW30 (Rh=492.5, ζ=26.12±0.85). The minimal inhibitory concentration (MIC) was determined using different chitosan samples concentrations. MIC values were determined against to E. coli (106 cells) harvested from an LB medium (Luria-Bertani BD™) after 18h growth at 37 ºC. Subsequently, the cell suspension was serially diluted in saline solution (0.8% NaCl) and plated on solid LB at 37°C for 18 h. Colony-forming units were counted. The samples showed different MICs against E. coli for CS-LMW (1.5mg), CS-MMW30 (1.5 mg/mL) and CS-LMW30 (1.0 mg/mL). The results demonstrate that the production of nanoparticles by modification of their molecular weight by ultrasonication is simple to be performed and dispense acid solvent addition. Molecular weight modifications are enough to provoke changes in the antimicrobial potential of the nanoparticles produced in this way.

Keywords: antimicrobial agent, chitosan, green production, nanoparticles

Procedia PDF Downloads 326
14403 Biogas Production from Pistachio (Pistacia vera L.) Processing Waste

Authors: İ. Çelik, Goksel Demirer

Abstract:

Turkey is the third largest producer of pistachio (Pistacia vera L.) after Iran and United States. Harvested pistachio nuts are covered with organic hull which is removed by de-hulling process. Most of the pistachio by-products which are produced during de-hulling process are considered as agricultural waste and often mixed with soil, to a lesser extent are used as feedstuff by local livestock farmers and a small portion is used as herbal medicine. Due to its high organic and phenolic content as well as high solids concentration, pistachio processing wastes create significant waste management problems unless they are properly managed. However, there is not a well-established waste management method compensating the waste generated during the processing of pistachios. This study investigated the anaerobic treatability and biogas generation potential of pistachio hull waste. The effect of pre-treatment on biogas generation potential was investigated. For this purpose, Biochemical Methane Potential (BMP) Assays were conducted for two Chemical Oxygen Demand (COD) concentrations of 22 and 33 g tCOD l-1 at the absence and presence of chemical and thermal pre-treatment methods. The results revealed anaerobic digestion of the pistachio de-hulling wastes and subsequent biogas production as a renewable energy source are possible. The observed percent COD removal and methane yield values of the pre-treated pistachio de-hulling waste samples were significantly higher than the raw pistachio de-hulling waste. The highest methane yield was observed as 213.4 ml CH4/g COD.

Keywords: pistachio de-hulling waste, biogas, renewable energy, pre-treatment

Procedia PDF Downloads 215
14402 Study on the Effect Cabbage (Brassica oleracea) and Ginger (Zingiber officinale) Extracts on Rat Liver Injuries Induced by Carbon tetrachloride (CCl4)

Authors: Asmaa F. Hamouda, Randa M Shrourou

Abstract:

Cabbage (Brassica oleracea) and Ginger (Zingiber officinale) constitute apportion of regular human diet. The effect of Cabbage(CE) and Ginger extracts(GE) separately on liver nitric oxide (NO), malondialdehyde (MDA), as well as serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin, total cholesterol(TC), triglyceride(T.G), high density lipoprotein(HDL cholesterol), low density lipoprotein (LDL cholesterol), thyroid-stimulating hormone (TSH), Triiodothyronine (T3), Thyroxine (T4) in rats treated and untreated with carbon tetrachloride (CCl4) was studied. The levels of NO, MDA, as well as serum AST, ALT, total bilirubin, TC, T.G, LDLand TSH showed an elevation and decline in HDL, T3, and T4 in rats treated with CCl4 as compared to control. Treatment of rats with GE pre, during, and post CCl4 administration improved NO, MDA, as well as serum AST, ALT, total bilirubin, TC, T.G, HDL, LDL, TSH, T3, T4 as compared to CCl4, indicates that GE improve thyroid function and reduced oxidative stress as well as injuries induced by CCl4. Treatment of rats with CE pre, during, and post CCl4 administration did not improved in the thyroid hormones and lipid profile levels as compared to CCl4. These findings suggest that ginger treatment exerts a protective effect on metabolic disorders by decreasing oxidative stress.

Keywords: liver injuries, carbon tetrachloride (CCl4), cabbage (Brassica oleracea), ginger (Zingiber officinale), thyroid function

Procedia PDF Downloads 265
14401 The Potential of Potato and Maize Based Snacks as Fire Accelerants

Authors: E. Duffin, L. Brownlow

Abstract:

Arson is a crime which can provide exceptional problems to forensic specialists. Its destructive nature makes evidence much harder to find, especially when used to cover up another crime. There is a consistent potential threat of arsonists seeking new and easier ways to set fires. Existing research in this field primarily focuses on the use of accelerants such as petrol, with less attention to other more accessible and harder to detect materials. This includes the growing speculation of potato and maize-based snacks being used as fire accelerants. It was hypothesized that all ‘crisp-type’ snacks in foil packaging had the potential to act as accelerants and would burn readily in the various experiments. To test this hypothesis, a series of small lab-based experiments were undertaken, igniting samples of the snacks. Factors such as ingredients, shape, packaging and calorific value were all taken into consideration. The time (in seconds) spent on fire by the individual snacks was recorded. It was found that all of the snacks tested burnt for statistically similar amounts of time with a p-value of 0.0157. This was followed with a large mock real-life scenario using packets of crisps on fire and car seats to investigate as to the possibility of these snacks being verifiable tools to the arsonist. Here, three full packets of crisps were selected based on variations in burning during the lab experiments. They were each lit with a lighter to initiate burning, then placed onto a car seat to be timed and observed with video cameras. In all three cases, the fire was significant and sustained by the 200-second mark. On the basis of this data, it was concluded that potato and maize-based snacks were viable accelerants of fire. They remain an effective method of starting fires whilst being cheap, accessible, non-suspicious and non-detectable. The results produced supported the hypothesis that all ‘crisp-type’ snacks in foil packaging (that had been tested) had the potential to act as accelerants and would burn readily in the various experiments. This study serves to raise awareness and provide a basis for research and prevention of arson regarding maize and potato-based snacks as fire accelerants.

Keywords: arson, crisps, fires, food

Procedia PDF Downloads 121
14400 Computerized Analysis of Phonological Structure of 10,400 Brazilian Sign Language Signs

Authors: Wanessa G. Oliveira, Fernando C. Capovilla

Abstract:

Capovilla and Raphael’s Libras Dictionary documents a corpus of 4,200 Brazilian Sign Language (Libras) signs. Duduchi and Capovilla’s software SignTracking permits users to retrieve signs even when ignoring the gloss corresponding to it and to discover the meaning of all 4,200 signs sign simply by clicking on graphic menus of the sign characteristics (phonemes). Duduchi and Capovilla have discovered that the ease with which any given sign can be retrieved is an inverse function of the average popularity of its component phonemes. Thus, signs composed of rare (distinct) phonemes are easier to retrieve than are those composed of common phonemes. SignTracking offers a means of computing the average popularity of the phonemes that make up each one of 4,200 signs. It provides a precise measure of the degree of ease with which signs can be retrieved, and sign meanings can be discovered. Duduchi and Capovilla’s logarithmic model proved valid: The degree with which any given sign can be retrieved is an inverse function of the arithmetic mean of the logarithm of the popularity of each component phoneme. Capovilla, Raphael and Mauricio’s New Libras Dictionary documents a corpus of 10,400 Libras signs. The present analysis revealed Libras DNA structure by mapping the incidence of 501 sign phonemes resulting from the layered distribution of five parameters: 163 handshape phonemes (CherEmes-ManusIculi); 34 finger shape phonemes (DactilEmes-DigitumIculi); 55 hand placement phonemes (ArtrotoToposEmes-ArticulatiLocusIculi); 173 movement dimension phonemes (CinesEmes-MotusIculi) pertaining to direction, frequency, and type; and 76 Facial Expression phonemes (MascarEmes-PersonalIculi).

Keywords: Brazilian sign language, lexical retrieval, libras sign, sign phonology

Procedia PDF Downloads 345
14399 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network

Authors: Gulfam Haider, sana danish

Abstract:

Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.

Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent

Procedia PDF Downloads 125
14398 Thermodynamic and Magnetic Properties of Heavy Fermion UTE₂ Superconductor

Authors: Habtamu Anagaw Muluneh, Gebregziabher Kahsay, Tamiru Negussie

Abstract:

Theoretical study of the density of state, condensation energy, specific heat, and magnetization in a spin-triplet superconductor are the main goals of this work. Utilizing the retarded double-time temperature-dependent Green's function formalism and building a model Hamiltonian for the system at hand, we were able to derive the expressions for the parameters mentioned above. The phase diagrams are plotted using MATLAB scripts. From the phase diagrams, the density of electrons increases as the excitation energy increases, and the maximum excitation energy is equal to the superconducting gap, but it decreases when the value exceeds the gap and finally becomes the same as the density of the normal state. On the other hand, the condensation energy decreases with the increase in temperature and attains its minimum value at the superconducting transition temperature but increases with the increase in superconducting transition temperature (TC) and finally becomes zero, implying the superconducting energy is equal to the normal state energy. The specific heat increases with the increase in temperature, attaining its maximum value at the TC and then undergoing a jump, showing the presence of a second-order phase transition from the superconducting state to the normal state. Finally, the magnetization of both the itinerant and localized electrons decreases with the increase in temperature and finally becomes zero at TC = 1.6 K and magnetic phase transition temperature T = 2 K, respectively, which results in a magnetic phase transition from a ferromagnetic to a paramagnetic state. Our finding is in good agreement with the previous findings.

Keywords: spin triplet superconductivity, Green’s function, condensation energy, density of state, specific heat, magnetization

Procedia PDF Downloads 21
14397 The Importance of Anthropometric Indices for Assessing the Physical Development and Physical Fitness of Young Athletes

Authors: Akbarova Gulnozakhon

Abstract:

Relevance. Physical exercises can prolong the function of the growth zones of long tubular bones, delay the fusion of the epiphyses and diaphyses of bones and, thus, increase the growth of the body. At the same time, intensive strength exercises can accelerate the process of ossification of bone growth zones and slow down their growth in length. The influence of physical exercises on the process of biological maturation is noted. Gymnastics, which requires intense speed and strength loads, delays puberty. On the other hand, it is indicated that the relatively slow puberty of gymnasts is associated with the selection of girls with a special somatotype in this sport. It was found that the later onset of menstruation in female athletes does not have a negative effect on the maturation process and fertility (the ability to procreate). Observations are made about the normalizing influence of sports on the puberty of girls. The purpose of the study. Our goal is to study physical activity of varying intensity on the formation of secondary sexual characteristics and hormonal status of girls in adolescence. Each biological process peculiar to a given organism is not in a stationary state, but fluctuates with a certain frequency. According to the duration, there are, for example, circadian cycles, and infradian cycles, a typical example of which is the menstrual cycle. Materials and methods, results. Violations of menstrual function in athletes were detected by applying a questionnaire survey that contains several paragraphs and sub-paragraphs where passport data, anthropometric indicators, taking into account anthropometric indices, information about the menstrual cycle are indicated. Of 135 female athletes aged 1-3 to 16 years engaged in various sports - gymnasts, menstrual function disorders were noted in 86.7% (primary or secondary amenorrhea, irregular MC), in swimming-in 57.1%. The general condition also changes during the menstrual cycle. In a large percentage of cases, athletes indicate an increase in irritability in the premenstrual (45%) and menstrual (36%) phases. During these phases, girls note an increase in fatigue of 46.5% and 58% (respectively). In girls, secondary sexual characteristics continue to form during puberty and the clearest indicator of the onset of puberty is the age of the onset of the first menstruation - menarche. Conclusions. 1. Physical exercise has a positive effect on all major systems of the body and thus promotes health.2. Along with a beneficial effect on human health, physical exercise, if the requirements of sports are not observed, can be harmful.

Keywords: girls health, anthropometric, physical development, reproductive health

Procedia PDF Downloads 102
14396 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127
14395 Production of Biotechnological Chondroitin from Recombinant E, Coli K4 Strains on Renewable Substrates

Authors: Donatella Cimini, Sergio D’ambrosio, Saba Sadiq, Chiara Schiraldi

Abstract:

Chondroitin sulfate (CS), as well as modified CS, and unsulfated chondroitin, are largely applied in research today. CS is a linear glycosaminoglycan normally present in cartilage-rich tissues and bones in the form of proteoglycans decorated with sulfate groups in different positions. CS is used as an effective non-pharmacological alternative for the treatment of osteoarthritis, and other potential applications in the biomedical field are being investigated. Some bacteria, such as E. coli K4, produce a polysaccharide that is a precursor of CS (unsulfated chondroitin). This work focused on the construction of integrative E. coli K4 recombinant strains overexpressing genes (kfoA, kfoF, pgm and galU in different combinations) involved in the biosynthesis of the nucleotide sugars necessary for polysaccharide synthesis. Strain growth and polymer production were evaluated using renewable waste materials as substrates in shake flasks and small-scale batch fermentation processes. Results demonstrated the potential to replace pure sugars with cheaper medium components to establish environmentally sustainable and cost-effective production routes for potential industrial development. In fact, although excellent fermentation results have been described so far by employing strains that naturally produce chondroitin-like polysaccharides on semi-defined media, there is still the need to reduce manufacturing costs by providing a cost-effective biotechnological alternative to currently used animal-based extraction procedures.

Keywords: E. coli K4, chondroitin, microbial cell factories, glycosaminoglycans, renewable resources

Procedia PDF Downloads 81