Search results for: building material
7372 An Investigation on the Need to Provide Environmental Sanitation Facilities to Informal Settlement in Shagari Low-Cost Katsina State for Sustainable Built Environment
Authors: Abdullahi Mannir Rawayau
Abstract:
This paper identifies the problems that have aided the decoy to adequate basic infrastructural amenities, sub-standard housing, over-crowding, poor ventilation in homes and work places, sanitation, and non-compliance with building bye-laws and regulation. The paper also asserts the efficient disposal of solid and liquid waste is one of the challenges in the informal areas due to threats on the environment and public health. Sanitation services in the informal settlements have been found to be much lower compared to the average for unban. Bearing in mind a factor which prevents sustainable sanitation in informal areas which include low incomes, insecure tenure, low education levels, difficulty topography and transitory populations, and this study aim to identify effective strategies for achieving sustainable sanitation with specific reference to the informal settlement. Using the Shanghai Low-Cost as a case study. The primary data collected was through observation and interview method. Similarly, the secondary data used for the study was collected through literature reviews from extent studies with specific reference to informal settlement. A number of strategies towards achieving sustainable sanitation in the study were identified here in classified into three (3):- Advocacy and capacity building, infrastructural provision and institutionalization of systems and processes. The paper concludes with the premise on the need to build alliances between the government and stakeholders concerned with sanitation provision through the creation of sanitation and employ adaptable technology. Provision of sanitation facilities in public areas and to establish a statutory body for timely response to sanitation waste management in Katsina. It is imperative to check and prevent further decay for harmonious living and sustainable development.Keywords: built environment, sanitation, facilities, settlement
Procedia PDF Downloads 2257371 Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds
Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto
Abstract:
Sulfur-oxidizing bacteria were isolated and then grown on snakefruits seeds forming biofilm. Their performance in sulfide removal were experimentally observed. Snakefruit seeds were then used as packing material in a cylindrical tube. Biological treatment of hydrogen sulfide from biogas was investigated using biofilm on packed bed of snakefruits seeds. Biogas containing 27,9512 ppm of hydrogen sulfide was flown through the bed. Then the hydrogen sulfide concentrations in the outlet at various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. The axial sulfide concentration gradient in the flowing liquid are assumed to be steady-state. Mean while the biofilm grows on the surface of the seeds and the oxidation takes place in the biofilm. Since the biofilm is very thin, the sulfide concentration in the biofilm is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The acuracy of the model proposed was tested by comparing the calcultion results using the model with the experimental data obtained. It turned out that the model proposed can be applied to describe the removal of sulfide liquid using bio-filter in packed bed. The values of the parameters were also obtained by curve-fitting. The biofilter could remove 89,83 % of the inlet of hydrogen sulfide from biogas for 2.5 h, and optimum loading of 8.33 ml/h.Keywords: Sulfur-oxidizing bacteria, snakefruits seeds, biofilm, packing material, biogas
Procedia PDF Downloads 4087370 An Approach in Design of Large-Scale Hydrogen Plants
Authors: Hamidreza Sahaleh
Abstract:
Because of the stringent prerequisite of low sulfur and heavier raw oil feedstock more hydrogen will be devoured in the refineries. Specifically if huge scale limits are the reaction to an expanded hydrogen request, certain configuration and building background are obliged with, which will be depicted in this paper with an illustration. Chosen procedure plan prerequisite will be recorded and portrayed in agreement to the flowsheet. Also, a determination of imaginative outline elements, similar to process condensate reuse, safe reformer start up and prerequisites will be highlighted.Keywords: low sulfur, raw oil, refineries, flowsheet
Procedia PDF Downloads 2967369 Optimize Study and Optical Characterization of Bilayer Structures from Silicon Nitride
Authors: Beddiaf Abdelaziz
Abstract:
The optical characteristics of thin films of silicon oxynitride SiOₓNy prepared by the Low-Pressure Chemical Vapor Deposition (LPCVD) technique have been studied. The films are elaborated from the SiH₂Cl₂, N₂O and NH₃ gaseous mixtures. The flows of SiH₂Cl₂ and (N₂O+NH₃) are 200 sccm and 160 sccm respectively. The deposited films have been characterized by ellipsometry, to model our silicon oxynitride SiOₓNy films. We have suggested two theoretical models (Maxwell Garnett and Bruggeman effective medium approximation (BEMA)). These models have been applied on silicon oxynitride considering the material as a heterogeneous medium formed by silicon oxide and silicon nitride. The model's validation was justified by the confrontation of theoretical spectra and those measured by ellipsometry. This result permits us to obtain the optical refractive coefficient of these films and their thickness. Ellipsometry analysis of the optical properties of the SiOₓNy films shows that the SiO₂ fraction decreases when the gaseous ratio NH₃/N₂O increases. Whereas the increase of this ratio leads to an increase of the silicon nitride Si3N4 fraction. The study also shows that the increasing gaseous ratio leads to a strong incorporation of nitrogen atoms in films. Also, the increasing of the SiOₓNy refractive coefficient until the SiO₂ value shows that this insulating material has good dielectric quality.Keywords: ellipsometry, silicon oxynitrde, model, refractive coefficient, effective medium
Procedia PDF Downloads 197368 Natural Frequency Analysis of Spinning Functionally Graded Cylindrical Shells Subjected to Thermal Loads
Authors: Esmaeil Bahmyari
Abstract:
The natural frequency analysis of the functionally graded (FG) rotating cylindrical shells subjected to thermal loads is studied based on the three-dimensional elasticity theory. The temperature-dependent assumption of the material properties is graded in the thickness direction, which varies based on the simple power law distribution. The governing equations and the appropriate boundary conditions, which include the effects of initial thermal stresses, are derived employing Hamilton’s principle. The initial thermo-mechanical stresses are obtained by the thermo-elastic equilibrium equation’s solution. As an efficient and accurate numerical tool, the differential quadrature method (DQM) is adopted to solve the thermo-elastic equilibrium equations, free vibration equations and natural frequencies are obtained. The high accuracy of the method is demonstrated by comparison studies with those existing solutions in the literature. Ultimately, the parametric studies are performed to demonstrate the effects of boundary conditions, temperature rise, material graded index, the thickness-to-length and the aspect ratios for the rotating cylindrical shells on the natural frequency.Keywords: free vibration, DQM, elasticity theory, FG shell, rotating cylindrical shell
Procedia PDF Downloads 847367 Optical Characterization of Transition Metal Ion Doped ZnO Microspheres Synthesized via Laser Ablation in Air
Authors: Parvathy Anitha, Nilesh J. Vasa, M. S. Ramachandra Rao
Abstract:
ZnO is a semiconducting material with a direct wide band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. Microspheres with high sphericity and symmetry exhibit unique functionalities which makes them excellent omnidirectional optical resonators. Hence there is an advent interest in fabrication of single crystalline semiconductor microspheres especially magnetic ZnO microspheres, as ZnO is a promising material for semiconductor device applications. Also, ZnO is non-toxic and biocompatible, implying it is a potential material for biomedical applications. Room temperature Photoluminescence (PL) spectra of the fabricated ZnO microspheres were measured, at an excitation wavelength of 325 nm. The ultraviolet (UV) luminescence observed is attributed to the room-temperature free exciton related near-band-edge (NBE) emission in ZnO. Besides the NBE luminescence, weak and broad visible luminescence (~560nm) was also observed. This broad emission band in the visible range is associated with oxygen vacancies related to structural defects. In transition metal (TM) ion-doped ZnO, 3d levels emissions of TM ions will modify the inherent characteristic emissions of ZnO. A micron-sized ZnO crystal has generally a wurtzite structure with a natural hexagonal cross section, which will serve as a WGM (whispering gallery mode) lasing micro cavity due to its high refractive index (~2.2). But hexagonal cavities suffers more optical loss at their corners in comparison to spherical structures; hence spheres may be a better candidate to achieve effective light confinement. In our study, highly smooth spherical shaped micro particles with different diameters ranging from ~4 to 6 μm were grown on different substrates. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) images show the presence of uniform smooth surfaced spheres. Raman scattering measurements from the fabricated samples at 488 nm light excitation provide convincing supports for the wurtzite structure of the prepared ZnO microspheres. WGM lasing studies from TM-doped ZnO microparticles are in progress.Keywords: laser ablation, microcavity, photoluminescence, ZnO microsphere
Procedia PDF Downloads 2177366 Effects of Initial Moisture Content on the Physical and Mechanical Properties of Norway Spruce Briquettes
Authors: Miloš Matúš, Peter Križan, Ľubomír Šooš, Juraj Beniak
Abstract:
The moisture content of densified biomass is a limiting parameter influencing the quality of this solid biofuel. It influences its calorific value, density, mechanical strength and dimensional stability as well as affecting its production process. This paper deals with experimental research into the effect of moisture content of the densified material on the final quality of biofuel in the form of logs (briquettes or pellets). Experiments based on the single-axis densification of the spruce sawdust were carried out with a hydraulic piston press (piston and die), where the densified logs were produced at room temperature. The effect of moisture content on the qualitative properties of the logs, including density, change of moisture, expansion and physical changes, and compressive and impact resistance were studied. The results show the moisture ranges required for producing good-quality logs. The experiments were evaluated and the moisture content of the tested material was optimized to achieve the optimum value for the best quality of the solid biofuel. The dense logs also have high-energy content per unit volume. The research results could be used to develop and optimize industrial technologies and machinery for biomass densification to achieve high quality solid biofuel.Keywords: biomass, briquettes, densification, fuel quality, moisture content, density
Procedia PDF Downloads 4287365 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials
Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte
Abstract:
Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance
Procedia PDF Downloads 807364 A Feasibility Study of Producing Biofuels from Textile Sludge by Torrefaction Technology
Authors: Hua-Shan Tai, Yu-Ting Zeng
Abstract:
In modern and industrial society, enormous amounts of sludge from various of industries are constantly produced; currently, most of the sludge are treated by landfill and incineration. However, both treatments are not ideal because of the limited land for landfill and the secondary pollution caused by incineration. Consequently, treating industrial sludge appropriately has become an urgent issue of environmental protection. In order to solve the problem of the massive sludge, this study uses textile sludge which is the major source of waste sludge in Taiwan as raw material for torrefaction treatments. To investigate the feasibility of producing biofuels from textile sludge by torrefaction, the experiments were conducted with temperatures at 150, 200, 250, 300, and 350°C, with heating rates of 15, 20, 25 and 30°C/min, and with residence time of 30 and 60 minutes. The results revealed that the mass yields after torrefaction were approximately in the range of 54.9 to 93.4%. The energy densification ratios were approximately in the range of 0.84 to 1.10, and the energy yields were approximately in the range of 45.9 to 98.3%. The volumetric densities were approximately in the range of 0.78 to 1.14, and the volumetric energy densities were approximately in the range of 0.65 to 1.18. To sum up, the optimum energy yield (98.3%) can be reached with terminal temperature at 150 °C, heating rate of 20°C/min, and residence time of 30 minutes, and the mass yield, energy densification ratio as well as volumetric energy density were 92.2%, 1.07, and 1.15, respectively. These results indicated that the solid products after torrefaction are easy to preserve, which not only enhance the quality of the product, but also achieve the purpose of developing the material into fuel.Keywords: biofuel, biomass energy, textile sludge, torrefaction
Procedia PDF Downloads 3217363 Synergizing Additive Manufacturing and Artificial Intelligence: Analyzing and Predicting the Mechanical Behavior of 3D-Printed CF-PETG Composites
Authors: Sirine Sayed, Mostapha Tarfaoui, Abdelmalek Toumi, Youssef Qarssis, Mohamed Daly, Chokri Bouraoui
Abstract:
This paper delves into the combination of additive manufacturing (AM) and artificial intelligence (AI) to solve challenges related to the mechanical behavior of AM-produced parts. The article highlights the fundamentals and benefits of additive manufacturing, including creating complex geometries, optimizing material use, and streamlining manufacturing processes. The paper also addresses the challenges associated with additive manufacturing, such as ensuring stable mechanical performance and material properties. The role of AI in improving the static behavior of AM-produced parts, including machine learning, especially the neural network, is to make regression models to analyze the large amounts of data generated during experimental tests. It investigates the potential synergies between AM and AI to achieve enhanced functions and personalized mechanical properties. The mechanical behavior of parts produced using additive manufacturing methods can be further improved using design optimization, structural analysis, and AI-based adaptive manufacturing. The article concludes by emphasizing the importance of integrating AM and AI to enhance mechanical operations, increase reliability, and perform advanced functions, paving the way for innovative applications in different fields.Keywords: additive manufacturing, mechanical behavior, artificial intelligence, machine learning, neural networks, reliability, advanced functionalities
Procedia PDF Downloads 107362 Future Applications of 4D Printing in Dentistry
Authors: Hosamuddin Hamza
Abstract:
The major concept of 4D printing is self-folding under thermal and humidity changes. This concept relies on understanding how the microstructures of 3D-printed models can undergo spontaneous shape transformation under thermal and moisture changes. The transformation mechanism could be achieved by mixing, in a controllable pattern, a number of materials within the printed model, each with known strain/shrinkage properties. 4D printing has a strong potential to be applied in dentistry as the technology could produce dynamic and adaptable materials to be used as functional objects in the oral environment under the continuously changing thermal and humidity conditions. The motion criteria could override the undesired dimensional changes, thermal instability, polymerization shrinkage and microleakage. 4D printing could produce restorative materials being self-adjusted spontaneously without further intervention from the dentist or patient; that is, the materials could be capable of fixing its failed portions, compensating for some lost tooth structure, while avoiding microleakage or overhangs at the margins. In prosthetic dentistry, 4D printing could provide an option to manage the influence of bone and soft tissue imbalance during mastication (and at rest) with high predictability of the type/direction of forces. It can also produce materials with better fitting and retention characteristics than conventional or 3D-printed materials. Nevertheless, it is important to highlight that 4D-printed objects, having dynamic properties, could provide some cushion as they undergo self-folding compensating for any thermal changes or mechanical forces such as traumatic forces.Keywords: functional material, self-folding material, 3D printing, 4D printing
Procedia PDF Downloads 4797361 Challenges of New Technologies in the Field of Criminal Law: The Protection of the Right to Privacy in the Spanish Penal Code
Authors: Deborah Garcia-Magna
Abstract:
The use of new technologies has become widespread in the last decade, giving rise to various risks associated with the transfer of personal data and the publication of sensitive material on social media. There are already several supranational instruments that seek to protect the citizens involved in this growing traffic of personal information and, especially, the most vulnerable people, such as minors, who are also the ones who make the most intense use of these new means of communication. In this sense, the configuration of the concept of privacy as a legal right has necessarily been influenced by these new social uses and supranational instruments. The researcher considers correct the decision to introduce sexting as a new criminal behaviour in the Penal Code in 2015, but questions the concrete manner in which it has been made. To this end, an updated review of the various options that our legal system already offered is made, assessing whether these legal options adequately addressed the new social needs and guidelines from jurisprudence and other supranational instruments. Some important issues emerge as to whether the principles of fragmentarity and subsidiarity may be violated since the new article 197.7 of the Spanish Penal Code could refer to very varied behaviours and protect not only particularly vulnerable persons. In this sense, the research focuses on issues such as the concept of 'seriousness' of the infringement of privacy, the possible reckless conduct of the victim, who hang over its own private material to third parties, the affection to other legal rights such as freedom and sexual indemnity, the possible problems of concurrent offences, etc.Keywords: criminal law reform, ECHR jurisprudence, right to privacy, sexting
Procedia PDF Downloads 1947360 The Socio-Technical Relationship between Architects and Nano-Enhanced Materials: An Ethnographic Study in Cairo, Egypt
Authors: Ramy Bakir
Abstract:
Advancements in the field of nanoscience and nanotechnology have had a sweeping effect on the manufacturing industry in the last two decades, and have specifically allowed for the enhancement of a multitude of applications in the field of building technology. Research carried out in the architectural field in the past decade highlights how those enhancements have improved the structural and environmental performance of buildings, and/or how they developed the aesthetic value of façade or interior treatments. In developing countries, such as Egypt, the actual use of those nano-enhanced applications and their benefits rarely manifest. Hence this paper investigates the socio-technical relationship between the architectural design process and nanotechnology in Cairo using participant observation within an ethnographic study. The study focused on the socio-cultural context of an environmental design process in a specific design firm, and the role of nano-enhanced applications in it, and provided a thick description of the design decisions made within the preliminary stages of the design process of a residential building in Cairo, Egypt. Using Grounded Theory, and through the analysis and coding of the qualitative data collected, this paper was able to identify specific socio-cultural issues influencing individual architect cognition, clarifying how the context of the design process of the studied project affected the design team members’ responses to nano-enhanced materials. This paper presents those findings within a framework of the three identified statuses of response to nanotechnology and classifies the socio-cultural reasons influencing them. In doing so, the paper aims to shed more light on the relation between nanotechnology and architects in their natural environment, and hence allow both to benefit more from a clearer understanding of how the socio-cultural context, along with the benefits of using nanotechnology, influences the design decisions made.Keywords: nanotechnology, design process, socio-cultural context, nano-enhanced applications
Procedia PDF Downloads 2677359 Evaluation of Potential of Crop Residues for Energy Generation in Nepal
Authors: Narayan Prasad Adhikari
Abstract:
In Nepal, the crop residues have often been considered as one of the potential sources of energy to cope with prevailing energy crisis. However, the lack of systematic studies about production and various other competent uses of crop production is the main obstacle to evaluate net potential of the residues for energy production. Under this background, this study aims to assess the net annual availability of crop residues for energy production by undertaking three different districts with the representation of country’s three major regions of lowland, hill, and mountain. The five major cereal crops of paddy, wheat, maize, millet, and barley are considered for the analysis. The analysis is based upon two modes of household surveys. The first mode of survey is conducted to total of 240 households to obtain key information about crop harvesting and livestock management throughout a year. Similarly, the quantification of main crops along with the respective residues on fixed land is carried out to 45 households during second mode. The range of area of such fixed land is varied from 50 to 100 m2. The measurements have been done in air dry basis. The quantity for competitive uses of respective crop residues is measured on the basis of respondents’ feedback. There are four major competitive uses of crop residues at household which are building material, burning, selling, and livestock fodder. The results reveal that the net annual available crop residues per household are 4663 kg, 2513 kg, and 1731 kg in lowland, hill, and mountain respectively. Of total production of crop residues, the shares of dedicated fodder crop residues (except maize stalk and maize cob) are 94 %, 62 %, and 89 % in lowland, hill, and mountain respectively and of which the corresponding shares of fodder are 87 %, 91 %, and 82 %. The annual percapita energy equivalent from net available crop residues in lowland, hill, and mountain are 2.49 GJ, 3.42 GJ, and 0.44 GJ which represent 30 %, 33 %, and 3 % of total annual energy consumption respectively whereas the corresponding current shares of crop residues are only 23 %, 8 %, and 1 %. Hence, even utmost exploitation of available crop residues can hardly contribute to one third of energy consumption at household level in lowland, and hill whereas this is limited to particularly negligible in mountain. Moreover, further analysis has also been done to evaluate district wise supply-demand context of dedicated fodder crop residues on the basis of presence of livestock. The high deficit of fodder crop residues in hill and mountain is observed where the issue of energy generation from these residues will be ludicrous. As a contrary, the annual production of such residues for livestock fodder in lowland meets annual demand with modest surplus even if entire fodder to be derived from the residues throughout a year and thus there seems to be further potential to utilize the surplus residues for energy generation.Keywords: crop residues, hill, lowland, mountain
Procedia PDF Downloads 4727358 Qualitative and Quantitative Methods in Multidisciplinary Fields Collection Development
Authors: Hui Wang
Abstract:
Traditional collection building approaches are limited in breadth and scope and are not necessarily suitable for multidisciplinary fields development in the institutes of the Chinese Academy of Sciences. The increasing of multidisciplinary fields researches require a viable approach to collection development in these libraries. This study uses qualitative and quantitative analysis to assess collection. The quantitative analysis consists of three levels of evaluation, which including realistic demand, potential demand and trend demand analysis. For one institute, three samples were separately selected from the object institute, more than one international top institutes in highly relative research fields and future research hotspots. Each sample contains an appropriate number of papers published in recent five years. Several keywords and the organization names were reasonably combined to search in commercial databases and the institutional repositories. The publishing information and citations in the bibliographies of these papers were selected to build the dataset. One weighted evaluation model and citation analysis were used to calculate the demand intensity index of every journal and book. Principal Investigator selector and database traffic provide a qualitative evidence to describe the demand frequency. The demand intensity, demand frequency and academic committee recommendations were comprehensively considered to recommend collection development. The collection gaps or weaknesses were ascertained by comparing the current collection and the recommend collection. This approach was applied in more than 80 institutes’ libraries in Chinese Academy of Sciences in the past three years. The evaluation results provided an important evidence for collections building in the second year. The latest user survey results showed that the updated collection’s capacity to support research in a multidisciplinary subject area have increased significantly.Keywords: citation analysis, collection assessment, collection development, quantitative analysis
Procedia PDF Downloads 2177357 Relationship between Learning Methods and Learning Outcomes: Focusing on Discussions in Learning
Authors: Jaeseo Lim, Jooyong Park
Abstract:
Although there is ample evidence that student involvement enhances learning, college education is still mainly centered on lectures. However, in recent years, the effectiveness of discussions and the use of collective intelligence have attracted considerable attention. This study intends to examine the empirical effects of discussions on learning outcomes in various conditions. Eighty eight college students participated in the study and were randomly assigned to three groups. Group 1 was told to review material after a lecture, as in a traditional lecture-centered class. Students were given time to review the material for themselves after watching the lecture in a video clip. Group 2 participated in a discussion in groups of three or four after watching the lecture. Group 3 participated in a discussion after studying on their own. Unlike the previous two groups, students in Group 3 did not watch the lecture. The participants in the three groups were tested after studying. The test questions consisted of memorization problems, comprehension problems, and application problems. The results showed that the groups where students participated in discussions had significantly higher test scores. Moreover, the group where students studied on their own did better than that where students watched a lecture. Thus discussions are shown to be effective for enhancing learning. In particular, discussions seem to play a role in preparing students to solve application problems. This is a preliminary study and other age groups and various academic subjects need to be examined in order to generalize these findings. We also plan to investigate what kind of support is needed to facilitate discussions.Keywords: discussions, education, learning, lecture, test
Procedia PDF Downloads 1767356 High Power Thermal Energy Storage for Industrial Applications Using Phase Change Material Slurry
Authors: Anastasia Stamatiou, Markus Odermatt, Dominic Leemann, Ludger J. Fischer, Joerg Worlitschek
Abstract:
The successful integration of thermal energy storage in industrial processes is expected to play an important role in the energy turnaround. Latent heat storage technologies can offer more compact thermal storage at a constant temperature level, in comparison to conventional, sensible thermal storage technologies. The focus of this study is the development of latent heat storage solutions based on the Phase Change Slurry (PCS) concept. Such systems promise higher energy densities both as refrigerants and as storage media while presenting better heat transfer characteristics than conventional latent heat storage technologies. This technology is expected to deliver high thermal power and high-temperature stability which makes it ideal for storage of process heat. An evaluation of important batch processes in industrial applications set the focus on materials with a melting point in the range of 55 - 90 °C. Aluminium ammonium sulfate dodecahydrate (NH₄Al(SO₄)₂·12H₂O) was chosen as the first interesting PCM for the next steps of this study. The ability of this material to produce slurries at the relevant temperatures was demonstrated in a continuous mode in a laboratory test-rig. Critical operational and design parameters were identified.Keywords: esters, latent heat storage, phase change materials, thermal properties
Procedia PDF Downloads 2987355 Nano-Coating for Corrosion Prevention
Authors: M. J. Suriani, F. Mansor, W. Siti Maizurah, I. Nurizwani
Abstract:
Silicon Carbide (SiC) is one of the Silicon-based materials, which get interested by the researcher. SiC is an emerging semiconductor material, which has received a great deal of attention due to their application in high frequency and high power systems. Although its superior characteristic for a semiconductor material, its outstanding mechanical properties, chemical inertness and thermal stability has gained important aspect for a surface coating for deployment in extreme environments. Very high frequency (VHF)-PECVD technique utilized to deposit nano ns-SiC film in which variation in chamber pressure, substrate temperature, RF power and precursor gases flow rate will be investigated in order to get a good quality of thin film coating. Characterization of the coating performed in order to study the surface morphology, structural information. This performance of coating evaluated through corrosion test to determine the effectiveness of the coating for corrosion prevention. Ns-SiC film expected to possess better corrosion resistance and optical properties, as well as preserving the metal from the marine environment. Through this research project, corrosion protection performance by applying coating will be explored to obtain a great corrosion prevention method to the shipping and oil and gas industry in Malaysia. Besides, the cost of repair and maintenance spending by the government of Malaysia can be reduced through practicing this method.Keywords: composite materials, marine corrosion, nano-composite, nano structure–coating
Procedia PDF Downloads 4707354 Sustainable Community Education: Strategies for Long-Term Impact
Authors: Kariman Abdelaziz Ahmed Ali Hamzawy
Abstract:
Amidst the growing global challenges facing communities, from climate change to educational gaps, sustainable community education has emerged as a vital tool for ensuring comprehensive and enduring development. This research aims to explore effective strategies for sustainable community education that can lead to long-term impacts on local communities. The study begins by defining the concept of sustainable education within a community context and reviews the current literature on the topic. It then presents case studies from various communities around the world where sustainable educational strategies have been successfully implemented. These case studies illustrate how sustainable education can enhance community engagement, build local capacities, and improve quality of life in sustainable ways. The findings from these studies are analyzed to identify the key factors contributing to the success of sustainable educational programs. These factors include partnerships between different sectors (governmental, private, and community), the innovative use of technology, and the adaptation of educational curricula to meet the unique needs of the community. The research also offers practical recommendations on designing and implementing sustainable educational programs, emphasizing the integration of formal and informal education, promoting lifelong learning, and developing local resources. It addresses potential challenges and ways to overcome them to ensure the long-term sustainability of these programs. In conclusion, the research provides a future vision of the role of sustainable education in building resilient and prosperous communities and highlights the importance of investing in education as a key driver of sustainable development. This study contributes to the ongoing discussion on achieving lasting impact through sustainable community education and offers a practical framework for stakeholders to adopt and implement these strategies.Keywords: sustainable education, community education, Community engagement, local capacity building, educational technology
Procedia PDF Downloads 477353 The Effect of Rice Husk Ash on the Mechanical and Durability Properties of Concrete
Authors: Binyamien Rasoul
Abstract:
Portland cement is one of the most widely used construction materials in the world today; however, manufacture of ordinary Portland cement (OPC) emission significant amount of CO2 resulting environmental impact. On the other hand, rice husk ash (RHA), which is produce as by product material is generally considered to be an environmental issue as a waste material. This material (RHA) consists of non-crystalline silicon dioxide with high specific surface area and high pozzolanic reactivity. These RHA properties can demonstrate a significant influence in improving the mechanical and durability properties of mortar and concrete. Furthermore, rice husk ash can provide a cost effective and give concrete more sustainability. In this paper, chemical composition, reactive silica and fineness effect was assessed by examining five different types of RHA. Mortars and concrete specimens were molded with 5% to 50% of ash, replacing the Portland cement, and measured their compressive and tensile strength behavior. Beyond it, another two parameters had been considered: the durability of concrete blended RHA, and effect of temperature on the transformed of amorphous structure to crystalline form. To obtain the rice husk ash properties, these different types were subjected to X-Ray fluorescence to determine the chemical composition, while pozzolanic activity obtained by using X-Ray diffraction test. On the other hand, finesses and specific surface area were obtained by used Malvern Mastersizer 2000 test. The measured parameters properties of fresh mortar and concrete obtained by used flow table and slump test. While, for hardened mortar and concrete the compressive and tensile strength determined pulse the chloride ions penetration for concrete using NT Build 492 (Nord Test) – non-steady state migration test (RMT Test). The obtained test results indicated that RHA can be used as a cement replacement material in concrete with considerable proportion up to 50% percentages without compromising concrete strength. The use of RHA in the concrete as blending materials improved the different characteristics of the concrete product. The paper concludes that to exhibits a good compressive strength of OPC mortar or concrete with increase RHA replacement ratio rice husk ash should be consist of high silica content with high pozzolanic activity. Furthermore, with high amount of carbon content (12%) could be improve the strength of concrete when the silica structure is totally amorphous. As well RHA with high amount of crystalline form (25%) can be used as cement replacement when the silica content over 90%. The workability and strength of concrete increased by used of superplasticizer and it depends on the silica structure and carbon content. This study therefore is an investigation of the effect of partially replacing Ordinary Portland cement (OPC) with Rice hush Ash (RHA) on the mechanical properties and durability of concrete. This paper gives satisfactory results to use RHA in sustainable construction in order to reduce the carbon footprint associated with cement industry.Keywords: OPC, ordinary Portland cement, RHA rice husk ash, W/B water to binder ratio, CO2, carbon dioxide
Procedia PDF Downloads 1927352 Exploring the Influence of High-Frequency Acoustic Parameters on Wave Behavior in Porous Bilayer Materials: An Equivalent Fluid Theory Approach
Authors: Mustapha Sadouk
Abstract:
This study investigates the sensitivity of high-frequency acoustic parameters in a rigid air-saturated porous bilayer material within the framework of the equivalent fluid theory, a specific case of the Biot model. The study specifically focuses on the sensitivity analysis in the frequency domain. The interaction between the fluid and solid phases of the porous medium incorporates visco-inertial and thermal exchange, characterized by two functions: the dynamic tortuosity α(ω) proposed by Johnson et al. and the dynamic compressibility β(ω) proposed by Allard, refined by Sadouki for the low-frequency domain of ultrasound. The parameters under investigation encompass porosity, tortuosity, viscous characteristic length, thermal characteristic length, as well as viscous and thermal shape factors. A +30% variation in these parameters is considered to assess their impact on the transmitted wave amplitudes. By employing this larger variation, a more comprehensive understanding of the sensitivity of these parameters is obtained. The outcomes of this study contribute to a better comprehension of the high-frequency wave behavior in porous bilayer materials, providing valuable insights for the design and optimization of such materials across various applications.Keywords: bilayer materials, ultrasound, sensitivity analysis, equivalent fluid theory, dynamic tortuosity., porous material
Procedia PDF Downloads 867351 The Effects of Damping Devices on Displacements, Velocities and Accelerations of Structures
Authors: Radhwane Boudjelthia
Abstract:
The most recent earthquakes occurred in the world have killed thousands of people and severe damage. For all the actors involved in the building process, the earthquake is the litmus test for construction. The goal we set ourselves is to contribute to the implementation of a thoughtful approach to the seismic protection of structures. For many engineers, the most conventional approach to protection works (buildings and bridges) the effects of earthquakes is to increase rigidity. This approach is not always effective, especially when there is a context that favors the phenomenon of resonance and amplification of seismic forces. Therefore, the field of earthquake engineering has made significant inroads, among others catalyzed by the development of computational techniques in computer form and the use of powerful test facilities. This has led to the emergence of several innovative technologies, such as the introduction of special devices insulation between infrastructure and superstructure. This approach, commonly known as "seismic isolation," to absorb the significant efforts without the structure is damaged and thus ensuring the protection of lives and property. In addition, the restraints to the construction by the ground shaking are located mainly at the supports. With these moves, the natural period of construction is increasing, and seismic loads are reduced. Thus, there is an attenuation of the seismic movement. Likewise, the insulation of the base mechanism may be used in combination with earthquake dampers in order to control the deformation of the insulation system and the absolute displacement of the superstructure located above the isolation interface. On the other hand, only can use these earthquake dampers to reduce the oscillation amplitudes and thus reduce seismic loads. The use of damping devices represents an effective solution for the rehabilitation of existing structures. Given all these acceleration reducing means considered passive, much research has been conducted for several years to develop an active control system of the response of buildings to earthquakes.Keywords: earthquake, building, seismic forces, displacement, resonance, response.
Procedia PDF Downloads 697350 Intuition in Negotiation within Ghanaian Social Contexts: Exploring Female Leadership Strategies for Conflict Transformation
Authors: Nadia Naadu Nartey, Esther A.O.G. Tetteh
Abstract:
Male negotiator representations and the appreciation of masculine traits in negotiation contexts dominate negotiation research in the field of conflict management and resolution. This study switched focus to pay attention to rarely examined gendered criteria and social contexts in negotiation research by investigating how intuition has been used in negotiations by female leaders toward conflict transformation in Ghanaian social contexts. Using the theoretical lenses of Klein’s Recognition-Primed Decisions (RPD) and Unconscious Information Processing (UIP) models, this study employs narrative inquiry in qualitative research. Semi-structured interviews of five (5) female leaders of Ghanaian social contexts in the United States (US) revealed that the use of intuition is necessary for effective negotiation outcomes due to its primal focus on relationship-building toward transforming conflicts. The knowledge added to the body of research by this study is summed up in the study’s conceptual framework. Female leaders, in negotiation situations where there are conflicting parties, prioritize the greater need for stronger relationships and win-win outcomes. The participant female leaders in negotiation contexts utilize their intuition as a bonding mechanism by effectively timing their actions, using an appropriate communication tone, emphasizing relationship building, and drawing from experience to make sound situational judgments (as in assessing a situation in the RPD model). Female leaders’ use of intuition in negotiations then translates to creating a force that bridges the gap between the conflicting parties. That force is noticed as conflict transformation that manifests as a reduction in anger and a promotion of trust and mutual understanding toward strengthening relationships. Future studies can expand the scope of the findings of this research by conducting a comparative analysis between male and female leaders on their use of intuition in negotiations in Ghanaian contexts.Keywords: intuition, negotiation, conflict transformation, female leaders, ghanaian social contexts
Procedia PDF Downloads 117349 Sensing Mechanism of Nano-Toxic Ions Using Quartz Crystal Microbalance
Authors: Chanho Park, Juneseok You, Kuewhan Jang, Sungsoo Na
Abstract:
Detection technique of nanotoxic materials is strongly imperative, because nano-toxic materials can harmfully influence human health and environment as their engineering applications are growing rapidly in recent years. In present work, we report the DNA immobilized quartz crystal microbalance (QCM) based sensor for detection of nano-toxic materials such as silver ions, Hg2+ etc. by using functionalization of quartz crystal with a target-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz crystal is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated fast and in situ detection of nanotoxic materials using quartz crystal microbalance. We report the label-free and highly sensitive detection of silver ion for present case, which is a typical nano-toxic material by using QCM and silver-specific DNA. The detection is based on the measurement of frequency shift of Quartz crystal from constitution of the cytosine-Ag+-cytosine binding. It is shown that the silver-specific DNA measured frequency shift by QCM enables the capturing of silver ions below 100pM. The results suggest that DNA-based detection opens a new avenue for the development of a practical water-testing sensor.Keywords: nano-toxic ions, quartz crystal microbalance, frequency shift, target-specific DNA
Procedia PDF Downloads 3217348 Application of Shape Memory Alloy as Shear Connector in Composite Bridges: Overview of State-of-the-Art
Authors: Apurwa Rastogi, Anant Parghi
Abstract:
Shape memory alloys (SMAs) are memory metals with a high calibre to outperform as a civil construction material. They showcase novel functionality of undergoing large deformations and self-healing capability (pseudoelasticity) that leads to its emerging applications in a variety of areas. In the existing literature, most of the studies focused on the behaviour of SMA when used in critical regions of the smart buildings/bridges designed to withstand severe earthquakes without collapse and also its various applications in retrofitting works. However, despite having high ductility, their uses as construction joints and shear connectors in composite bridges are still unexplored in the research domain. This article presents to gain a broad outlook on whether SMAs can be partially used as shear connectors in composite bridges. In this regard, existing papers on the characteristics of shear connectors in the composite bridges will be discussed thoroughly and matched with the fundamental characteristics and properties of SMA. Since due to the high strength, stiffness, and ductility phenomena of SMAs, it is expected to be a good material for the shear connectors in composite bridges, and the collected evidence encourages the prior scrutiny of its partial use in the composite constructions. Based on the comprehensive review, important and necessary conclusions will be affirmed, and further emergence of research direction on the use of SMA will be discussed. This opens the window of new possibilities of using smart materials to enhance the performance of bridges even more in the near future.Keywords: composite bridges, ductility, pseudoelasticity, shape memory alloy, shear connectors
Procedia PDF Downloads 1907347 High-Performance Supercapacitors with Activated Carbon and Nickel Sulfide Composite
Authors: Sarita Sindhu, Vinay Kumar
Abstract:
The growing demand for efficient energy storage in applications such as portable electronics, electric vehicles, and renewable energy systems has emphasized the need for advanced energy storage materials. This study addresses the pressing need for efficient energy storage materials by exploring the synthesis and application of a composite of activated carbon (AC) and nickel sulfide (NiS) for supercapacitors. Activated carbon, possessing high surface area and excellent electrochemical stability, was combined with nickel sulfide, a transition metal sulfide with high theoretical capacitance, to enhance the electrochemical performance of the composite material. Characterization techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), were employed to analyze the morphology, crystalline structure, and bonding characteristics, confirming the successful formation of a uniformly distributed AC/NiS composite. Electrochemical evaluations revealed that the AC/NiS composite exhibited superior capacitance, excellent rate capability, and enhanced cycling stability compared to pure AC and NiS. The synergistic effect of the large surface area from activated carbon and redox-active sites of nickel sulfide provided an improved energy storage capacity, making this composite a promising electrode material for high-performance supercapacitors.Keywords: activated carbon, energy storage, sulfide, surface area
Procedia PDF Downloads 117346 Effect of Annealing on Electrodeposited ZnTe Thin Films in Non-Aqueous Medium
Authors: Shyam Ranjan Kumar, Shashikant Rajpal
Abstract:
Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material. This semiconducting material has several applications in sensors, photo-electrochemical devices and photovoltaic solar cell. In this study, Zinc telluride (ZnTe) thin films were deposited on nickel substrate by electrodeposition technique using potentiostat/galvanostat at -0.85 V using AR grade of Zinc Chloride (ZnCl2), Tellurium Tetrachloride (TeCl4) in non-aqueous bath. The developed films were physically stable and showed good adhesion. The as deposited ZnTe films were annealed at 400ºC in air. The solid state properties and optical properties of the as deposited and annealed films were carried out by XRD, EDS, SEM, AFM, UV–Visible spectrophotometer, and photoluminescence spectrophotometer. The diffraction peak observed at 2θ = 49.58° with (111) plane indicate the crystalline nature of ZnTe film. Annealing improves the crystalline nature of the film. Compositional analysis reveals the presence of Zn and Te with tellurium rich ZnTe film. SEM photograph at 10000X shows that grains of film are spherical in nature and densely distributed over the surface. The average roughness of the film is measured by atomic force microscopy and it is nearly equal to 60 nm. The direct wide band gap of 2.12 eV is observed by UV-Vis spectroscopy. Luminescence peak of the ZnTe films are also observed in as deposited and annealed case.Keywords: annealing, electrodeposition, optical properties, thin film, XRD, ZnTe
Procedia PDF Downloads 1937345 Studies on Lucrative Design of a Waste Heat Recovery System for Air Conditioners
Authors: Ashwin Bala, K. Panthalaraja Kumaran, S. Prithviraj, R. Pradeep, J. Udhayakumar, S. Ajith
Abstract:
In this paper, studies have been carried out for an in-house design of a waste heat recovery system for effectively utilizing the domestic air conditioner heat energy for producing hot water. Theoretical studies have been carried to optimizing the flow rate for getting maximum output with a minimum size of the heater. Critical diameter, wall thickness, and total length of the water pipeline have been estimated from the conventional heat transfer model. Several combinations of pipeline shapes viz., spiral, coil, zigzag wound through the radiator has been attempted and accordingly shape has been optimized using heat transfer analyses. The initial condition is declared based on the water flow rate and temperature. Through the parametric analytical studies we have conjectured that water flow rate, temperature difference between incoming water and radiator skin temperature, pipe material, radiator material, geometry of the water pipe viz., length, diameter, and wall thickness are having bearing on the lucrative design of a waste heat recovery system for air conditioners. Results generated through the numerical studies have been validated using an in-house waste heat recovery system for air conditioners.Keywords: air conditioner design, energy conversion system, radiator design for energy recovery systems, waste heat recovery system
Procedia PDF Downloads 3577344 Dynamics Characterizations of Dielectric Electro- Active Polymer Pull Actuator for Vibration Control
Authors: Abdul Malek Abdul Wahab, Emiliano Rustighi
Abstract:
The elastomeric dielectric material has become a new alternative for actuator technology recently. The characteristic of dielectric elastomer that induces significant strain by applying voltage attracts the attention of many researchers to study this material in actuator technology. Thus, for a couple of years, Danfoss Ventures A/S has established their dielectric electro-active polymer (DEAP), which called Polypower. The main objective of this work was to investigate the characterization of PolyPower folded actuator as a ‘pull’ actuator for vibration control. A range of experiment was carried out on folded actuator including passive (without electrical stimulate) and active (with electrical stimulate) testing. For both categories static and dynamic testing have been done to determine the behavior of folded DEAP actuator. Voltage-Strain experiment determines that DEAP folded actuator is the non-linear system. The voltage supplied has no effect on the natural frequency which shows by ongoing dynamic testing. Finally, varies AC voltage with different amplitude and frequency has been provided to DEAP folded actuator. This experiment shows the parameter that influences the performance of DEAP folded actuator. As a result, the actuator performance dominated by the frequency dependence of the elastic response and was less influenced by dielectric properties.Keywords: elastomeric dielectric, dielectric electro-active polymer, folded actuator, voltage-strain
Procedia PDF Downloads 3207343 Preparation and Characterization of Iron/Titanium-Pillared Clays
Authors: Rezala Houria, Valverde Jose Luis, Romero Amaya, Molinari Alessandra, Maldotti Andrea
Abstract:
The escalation of oil prices in 1973 confronted the oil industry with the problem of how to maximize the processing of crude oil, especially the heavy fractions, to give gasoline components. Strong impetus was thus given to the development of catalysts with relatively large pore sizes, which were able to deal with larger molecules than the existing molecular sieves, and with good thermal and hydrothermal stability. The oil embargo in 1973 therefore acted as a stimulus for the investigation and development of pillared clays. Iron doped titania-pillared montmorillonite clays was prepared using bentonite from deposits of Maghnia in western-Algeria. The preparation method consists of differents steps (purification of the raw bentonite, preparation of a pillaring agent solution and exchange of the cations located between the clay layers with the previously formed iron/titanium solution). The characterization of this material was carried out by X-ray fluorescence spectrometry, X-ray diffraction, textural measures by BET method, inductively coupled plasma atomic emission spectroscopy, diffuse reflectance UV visible spectroscopy, temperature- programmed desorption of ammonia and atomic absorption.This new material was investigated as photocatalyst for selective oxygenation of the liquid alkylaromatics such as: toluene, paraxylene and orthoxylene and the photocatalytic properties of it were compared with those of the titanium-pillared clays.Keywords: iron doping, montmorillonite clays, pillared clays, oil industry
Procedia PDF Downloads 302