Search results for: spherical organic particles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4281

Search results for: spherical organic particles

1461 Influences of Thermal Treatments on Dielectric Behaviors of Carbon Nanotubes-BaTiO₃ Hybrids Reinforced Polyvinylidene Fluoride Composites

Authors: Benhui Fan, Fahmi Bedoui, Jinbo Bai

Abstract:

Incorporated carbon nanotube-BaTiO₃ hybrids (H-CNT-BT) with core-shell structure, a better dispersion of CNTs can be achieved in a semi-crystalline polymeric matrix, polyvinylidene fluoride (PVDF). Carried by BT particles, CNTs are easy to mutually connect which helps to obtain an extremely low percolation threshold (fc). After thermal treatments, the dielectric constants (ε’) of samples further increase which depends on the conditions of thermal treatments such as annealing temperatures, annealing durations and cooling ways. Thus, in order to study more comprehensively about the influence of thermal treatments on composite’s dielectric behaviors, in situ synchrotron X-ray is used to detect re-crystalline behavior of PVDF. Results of wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) show that after the thermal treatment, the content of β polymorph (the polymorph with the highest ε’ among all the polymorphs of PVDF’s crystalline structure) has increased nearly double times at the interfacial region of CNT-PVDF, and the thickness of amorphous layers (La) in PVDF’s long periods (Lp) has shrunk around 10 Å. The evolution of CNT’s network possibly occurs in the procedure of La shrinkage, where the strong interfacial polarization may be aroused and increases ε’ at low frequency. Moreover, an increase in the thickness of crystalline lamella may also arouse more orientational polarization and improve ε’ at high frequency.

Keywords: dielectric properties, thermal treatments, carbon nanotubes, crystalline structure

Procedia PDF Downloads 321
1460 From Vertigo to Verticality: An Example of Phenomenological Design in Architecture

Authors: E. Osorio Schmied

Abstract:

Architects commonly attempt a depiction of organic forms when their works are inspired by nature, regardless of the building site. Nevertheless it is also possible to try matching structures with natural scenery, by applying a phenomenological approach in terms of spatial operations, regarding perceptions from nature through architectural aspects such as protection, views, and orientation. This method acknowledges a relationship between place and space, where intentions towards tangible facts then become design statements. Although spaces resulting from such a process may present an effective response to the environment, they can also offer further outcomes beyond the realm of form. The hypothesis is that, in addition to recognising a bond between architecture and nature, it is also plausible to associate such perceptions with the inner ambient of buildings, by analysing features such as daylight. The case study of a single-family house in a rainforest near Valdivia, Chilean Patagonia is presented, with the intention of addressing the above notions through a discussion of the actual effects of inhabiting a place by way of a series of insights, including a revision of diagrams and photographs that assist in understanding the implications of this design practice. In addition, figures based on post-occupancy behaviour and daylighting performance relate both architectural and environmental issues to a decision-making process motivated by the observation of nature.

Keywords: architecture, design statements, nature, perception

Procedia PDF Downloads 339
1459 Effect of Physicochemical Treatments on the Characteristics of Activated Sludge

Authors: Hammadi Larbi

Abstract:

The treatment of wastewater in sewage plants usually results in the formation of a large amount of sludge. These appear at the outlet of the treatment plant as a viscous fluid loaded with a high concentration of dry matter. This sludge production presents environmental, ecological, and economic risks. That is why it is necessary to find many solutions for minimizing these risks. In the present article, the effect of hydrogen peroxide, thermal treatment, and quicklime on the characteristics of the activated sludge produced in urban wastewater plant were evaluated in order to avoid any risk in the plants. The study shows increasing of the dose of H2O2 from 0 to 0.4 g causes an increase in the solubilization rate of COD from 12% to 45% and a reduction in the organic matter content of sludge (VM/SM) from 74% to 36% . The results also show that the optimum efficiency of the heat treatment corresponds to a temperature of 80 ° C for a treatment time of 40 min is 47% and 51.82% for a temperature equal to 100 ° C and 76.30 % for a temperature of 120 ° C, and 79.38% for a temperature of 140 ° C. The treatment of sludge by quicklime gives the optimum efficiency of 70.62 %. It was shown the increasing of the temperature from 80°C to 140°C, the pH of sludge was increased from 7.12 to 9.59. The obtained results showed that with increasing the dose of quicklime from 0 g/l to 1g/l in activated sludge led to an increase of their pH from 7.12 to 12.06. The study shows the increasing the dose of quicklime from 0 g/l to 1g/l causes also an increase in the solubilization of COD from 0% to 70.62 %

Keywords: activated sludge, hydrogen peroxide, thermal treatment, quicklime

Procedia PDF Downloads 97
1458 Potato Production under Brakish Water and Compost Use

Authors: Samih Abubaker, Amjad Abuserhan, Ghandi Anfoka

Abstract:

Potato yield reduction and soil salt accumulation are the main obstacles of using brackish water in irrigation. This study was carried out at Al- Balqa` Applied University research station, to investigate the impact of compost use on potato production and salt accumulation in the soil under brackish water, during 2014 growing season. Whole tubers of three imported potato cultivars (Spunta, Faluka and Ammbetion) were planted in pots with different soil and compost percentages (0, 20, 40, 60, 80, and 100%) and were irrigated with three water salinity levels (1.25, 5 and 10 ds/cm). A split-split plot design was used, where potato cultivars were arranged in the main plots, the brackish water treatments were in the sub-main and the soil amended treatments were in the sub-sub plots. Potato yield was generally decreased only when pots were irrigated by water of 10 ds/cm salinity compared with 1.25 and 5 ds/cm. Drainage water salinity, however, was increased as compost percentage increased. Nevertheless, salt accumulation in the growing media was decreased as the compost percentage level increased. Therefore, it can be concluded that brackish water, up to 5 ds/cm can be used to irrigate potato especially, when organic amendments were added to the soil to promote plant growth, yield and reduce salt accumulation.

Keywords: brackish water, compost, potato, salt accumulation

Procedia PDF Downloads 314
1457 Influence of Ground Granulated Blast Furnace Slag on Geotechnical Characteristics of Jarosite Waste

Authors: Chayan Gupta, Arun Prasad

Abstract:

The quick evolution of industrialization causes the scarcity of precious land. Thus, it is vital need to influence the R&D societies to achieve sustainable, economic and social benefits from huge utilization of waste for universal aids. The current study promotes the influence of steel industries waste i.e. ground granulated blast furnace slag (GGBS) in geotechnical properties of jarosite waste (solid waste residues produced from hydrometallurgy operations involved in extraction of Zinc). Numerous strengths tests (unconfined compression (qu) and splitting tensile strength (qt)) are conducted on jarosite-GGBS blends (GGBS, 10-30%) with different curing periods (7, 28 & 90 days). The results indicate that both qu and qt increase with the increase in GGBS content along with curing periods. The increased strength with the addition of GGBS is also observed from microstructural study, which illustrates the occurrence of larger agglomeration of jarosite-GGBS blend particles. The Freezing-Thawing (F-T) durability analysis is also conducted for all the jarosite-GGBS blends and found that the reduction in unconfined compressive strength after five successive F-T cycles enhanced from 62% (natural jarosite) to 48, 42 and 34% at 7, 14 and 28 days curing periods respectively for stabilized jarosite-GGBS samples containing 30% GGBS content. It can be concluded from this study that blending of cementing additives (GGBS) with jarosite waste resulted in a significant improvement in geotechnical characteristics.

Keywords: jarosite, GGBS, strength characteristics, microstructural study, durability analysis

Procedia PDF Downloads 165
1456 Genetic Association of SIX6 Gene with Pathogenesis of Glaucoma

Authors: Riffat Iqbal, Sidra Ihsan, Andleeb Batool, Maryam Mukhtar

Abstract:

Glaucoma is a gathering of optic neuropathies described by dynamic degeneration of retinal ganglionic cells. It is clinically and innately heterogenous illness containing a couple of particular forms each with various causes and severities. Primary open-angle glaucoma (POAG) is the most generally perceived kind of glaucoma. This study investigated the genetic association of single nucleotide polymorphisms (SNPs; rs10483727 and rs33912345) at the SIX1/SIX6 locus with primary open-angle glaucoma (POAG) in the Pakistani population. The SIX6 gene plays an important role in ocular development and has been associated with morphology of the optic nerve. A total of 100 patients clinically diagnosed with glaucoma and 100 control individuals of age over 40 were enrolled in the study. Genomic DNA was extracted by organic extraction method. The SNP genotyping was done by (i) PCR based restriction fragment length polymorphism (RFLP) and sequencing method. Significant genetic associations were observed for rs10483727 (risk allele T) and rs33912345 (risk allele C) with POAG. Hence, it was concluded that Six6 gene is genetically associated with pathogenesis of Glaucoma in Pakistan.

Keywords: genotyping, Pakistani population, primary open-angle glaucoma, SIX6 gene

Procedia PDF Downloads 180
1455 Recovery of Waste Acrylic Fibers for the Elimination of Basic Dyes

Authors: N. Ouslimani, M. T. Abadlia

Abstract:

Environment protection is a precondition for sustained growth and a better quality of life for all people on earth. Aqueous industrial effluents are the main sources of pollution. Among the compounds of these effluents, dyes are particularly resistant to discoloration by conventional methods, and discharges present many problems that must be supported. The scientific literature shows that synthetic organic dyes are compounds used in many industrial sectors. They are found in the chemical, car, paper industry and particularly the textile industry, where all the lines and grades of the chemical family are represented. The affinity between the fibers and dyes vary depending on the chemical structure of dyes and the type of materials to which they are applied. It is not uncommon to find that during the dyeing operation from 15 to 20 % of sulfur dyes, and sometimes up to 40 % of the reactants are discharged with the effluent. This study was conducted for the purpose of fading basics dyes from wastewater using as adsorbent fiber waste material. This technique presents an interesting alternative to usual treatment, as it allows the recovery of waste fibers, which can find uses as raw material for the manufacture of cleaning products or in other sectors In this study the results obtained by fading fiber waste are encouraging, given the rate of color removal which is about 90%.This method also helps to decrease BOD and suspended solids MES in an effective way.

Keywords: adsorption, dyes, fiber, valorization, wastewater

Procedia PDF Downloads 282
1454 Motivations and Obstacles in the Implementation of Public Policies Encouraging the Sorting of Organic Waste: The Case of a Metropolis of 400,000 Citizens

Authors: Enola Lamy, Jean Paul Mereaux, Jean Claude Lopez

Abstract:

In the face of new regulations related to waste management, it has become essential to understand the organizational process that accompanies this change. Through an experiment on the sorting of food waste in the community of Grand Reims, this research explores the acceptability, behavior, and tools needed to manage the change. Our position within a private company, SUEZ, a key player in the waste management sector, has allowed us to set up a driven team with concerned public organizations. The research was conducted through a theoretical study combined with semi-structured interviews. This qualitative method allowed us to conduct exchanges with users to assess the motivations and obstacles linked to the sorting of bio-waste. The results revealed the action levers necessary for the project's sustainability. Making the sorting gestures accessible and simplified makes it possible to target all populations. Playful communication adapted to each type of persona allows the user and stakeholders to be placed at the heart of the strategy. These recommendations are spotlighted thanks to the combination of theoretical and operational contributions, with the aim of facilitating the new public management and inducing the notion of performance while providing an example of added value.

Keywords: bio-waste, CSR approach, stakeholders, users, perception

Procedia PDF Downloads 73
1453 Polyethylene Terephthalate Plastic Degradation by Fungus Rasamsonia Emersonii

Authors: Naveen Kumar

Abstract:

Microplastics, tiny plastic particles less than 5 mm in size formed by the disposal and breakdown of industrial and consumer products, have become a primary environmental concern due to their ubiquitous presence and application in the environment and their potential to cause harm to the ecosystem, wildlife and human health. In this, we study the ability of the fungus Rasamsonia emersonii IMI 393752 to degrade the rigid microplastics of Coke bottles. Microplastics were extracted from Coke bottles and incubated with Rasamsonia emersonii in Sabouraud dextrose agar media. Microplastics were pre-sterilized without altering the chemistry of microplastic. Preliminary analysis was performed by observing radial growth assessment of microplastic-containing media enriched with fungi vs. control. The assay confirmed no impedance or change in the fungi's growth pattern and rate by introducing microplastics. The degradation of the microplastics was monitored over time using microscopy and FTIR, and biodegradation/deterioration on the plastic surface was observed. Furthermore, the liquid assay was performed. HPLC and GCMS will be conducted to check the biodegradation and presence of enzyme release by fungi to counteract the presence of microplastics. These findings have important implications for managing plastic waste, as they suggest that fungi such as Rasamsonia emersonii can potentially degrade microplastics safely and effectively. However, further research to optimise the conditions for microplastic degradation by Rasamsonia emersonii and to develop strategies for scaling up the process for industrial applications will be beneficial.

Keywords: bioremediation, mycoremediation, plastic degradtion, polyethylene terephthalate

Procedia PDF Downloads 88
1452 Effect of Aeration on Co-Composting of Mixture of Food Waste with Sawdust and Sewage Sludge from Nicosia Waste Water Treatment Plant

Authors: Azad Khalid, Ime Akanyeti

Abstract:

About 68% of the urban solid waste generated in Turkish Republic of Northern Cyprus TRNC is household solid waste, at present, its disposal in landfills. In other hand more than 3000 ton per year of sewage sludge produces in Nicosia waste water treatment plant, the produced sludge piled up without any processing. Co-composting of organic fraction of municipal solid waste and sewage sludge is diverting of municipal solid waste from landfills and best disposal of wastewater sewage sludge. Three 10 L insulated bioreactor R1, R2 and R3 obtained with aeration rate 0.05 m3/h.kg for R2 and R3, R1 was without aeration. The mixture was destined with ratio of sewage sludge: food waste: sawdust; 1:5:0.8 (w/w). The effective of aeration monitored during 42 days of process through investigation in key parameter moisture, C/N ratio, temperature and pH. Results show that the high moisture content cause problem and around 60% recommend, C/N ratio decreased about 17% in aerated reactors and 10% in without aeration and mixture volume reduced in volume 40% in final compost with size of 1.00 to 20.0 mm. temperature in reactors with aeration reached thermophilic phase above 50 °C and <40 °C in without aeration. The final pH is 6.1 in R1, 8.23 in R2 and 8.1 in R3.

Keywords: aeration, sewage sludge, food waste, sawdust, composting

Procedia PDF Downloads 80
1451 Critical Evaluation of Groundwater Monitoring Networks for Machine Learning Applications

Authors: Pedro Martinez-Santos, Víctor Gómez-Escalonilla, Silvia Díaz-Alcaide, Esperanza Montero, Miguel Martín-Loeches

Abstract:

Groundwater monitoring networks are critical in evaluating the vulnerability of groundwater resources to depletion and contamination, both in space and time. Groundwater monitoring networks typically grow over decades, often in organic fashion, with relatively little overall planning. The groundwater monitoring networks in the Madrid area, Spain, were reviewed for the purpose of identifying gaps and opportunities for improvement. Spatial analysis reveals the presence of various monitoring networks belonging to different institutions, with several hundred observation wells in an area of approximately 4000 km2. This represents several thousand individual data entries, some going back to the early 1970s. Major issues included overlap between the networks, unknown screen depth/vertical distribution for many observation boreholes, uneven time series, uneven monitored species, and potentially suboptimal locations. Results also reveal there is sufficient information to carry out a spatial and temporal analysis of groundwater vulnerability based on machine learning applications. These can contribute to improve the overall planning of monitoring networks’ expansion into the future.

Keywords: groundwater monitoring, observation networks, machine learning, madrid

Procedia PDF Downloads 70
1450 Preparation and Physicochemical Characterization of Non-ionic Surfactant Vesicles Containing Itraconazole

Authors: S. Ataei, F. Sarrafzadeh Javadi, K. Gilani, E. Moazeni

Abstract:

Drug delivery systems using colloidal particulate carriers such as niosomes or liposomes have distinct advantages over conventional dosage forms because the particles can act as drug-containing reservoirs. These carriers play an increasingly important role in drug delivery. Niosomes are vesicular delivery systems which result from the self-assembly of hydrated surfactant. Niosomes are now widely studied as an attractive to liposomes because they alleviate the disadvantages associated with liposomes, such as chemical instability, variable purity of phospholipids and high cost. The encapsulation of drugs in niosomes can decrease drug toxicity, increase the stability of drug and increase the penetrability of drug in the location of application, and may reduce the dose and systemic side effect. Nowadays, Niosomes are used by the pharmaceutical industry in manufacturing skin medications, eye medication, in cosmetic formulas and these vesicular systems can be used to deliver aspiratory drugs. One way of improving dispersion in the water phase and solubility of the hydrophobic drug is to formulate in into niosomes. Itraconazole (ITZ) was chosen as a model hydrophobic drug. This drug is water insoluble (solubility ~ 1 ng/ml at neutral pH), is a broad-spectrum triazole antifungal agent and is used to treat various fungal disease. This study aims to investigate the capability of forming itraconazole niosomes with Spans, Tweens, Brijs as non-ionic surfactants. To this end, various formulations of niosomes have been studied with regard to parameters such as the degree of containment and particle size.

Keywords: physicochemical, non-ionic surfactant vesicles, itraconazole

Procedia PDF Downloads 457
1449 Internal Power Recovery in Cryogenic Cooling Plants Part I: Expander Development

Authors: Ambra Giovannelli, Erika Maria Archilei

Abstract:

The amount of the electrical power required by refrigeration systems is relevant worldwide. It is evaluated in the order of 15% of the total electricity production taking refrigeration and air-conditioning into consideration. For this reason, in the last years several energy saving techniques have been proposed to reduce the power demand of such plants. The paper deals with the development of an innovative internal recovery system for cryogenic cooling plants. Such a system consists in a Compressor-Expander Group (CEG) designed on the basis of the automotive turbocharging technology. In particular, the paper is focused on the design of the expander, the critical component of the CEG system. Due to the low volumetric flow entering the expander and the high expansion ratio, a commercial turbocharger expander wheel was strongly modified. It was equipped with a transonic nozzle, designed to have a radially inflow full admission. To verify the performance of such a machine and suggest improvements, two different set of nozzles have been designed and modelled by means of the commercial Ansys-CFX software. steady-state 3D CFD simulations of the second-generation prototype are presented and compared with the initial ones.

Keywords: vapour cCompression systems, energy saving, refrigeration plant, organic fluids, radial turbine

Procedia PDF Downloads 205
1448 Thermodynamic Analysis of a Multi-Generation Plant Driven by Pine Sawdust as Primary Fuel

Authors: Behzad Panahirad, UğUr Atikol

Abstract:

The current study is based on a combined heat and power system with multi-objectives, driven by biomass. The system consists of a combustion chamber (CC), a single effect absorption cooling system (SEACS), an air conditioning unit (AC), a reheat steam Rankine cycle (RRC), an organic Rankine cycle (ORC) and an electrolyzer. The purpose of this system is to produce hydrogen, electricity, heat, cooling, and air conditioning. All the simulations had been performed by Engineering Equation Solver (EES) software. Pine sawdust is the selected biofuel for the combustion process. The overall utilization factor (εₑₙ) and exergetic efficiency (ψₑₓ) were calculated to be 2.096 and 24.03% respectively. The performed renewable and environmental impact analysis indicated a sustainability index of 1.316 (SI) and a specific CO2 emission of 353.8 kg/MWh. The parametric study is conducted based on the variation of ambient (sink) temperature, biofuel mass flow rate, and boilers outlet temperatures. The parametric simulation showed that the increase in biofuel mass flow rate has a positive effect on the sustainability of the system.

Keywords: biomass, exergy assessment, multi-objective plant, CO₂ emission, irreversibility

Procedia PDF Downloads 166
1447 Ameliorating Effects of Silver Nanoparticles Synthesized Using Chlorophytum borivillianum against Gamma Radiation Induced Oxidative Stress in Testis of Swiss Albino Mice

Authors: Ruchi Vyas, Sanjay Singh, Rashmi Sisodia

Abstract:

Chlorophytum borivillianum root extract (CBE) was chosen as a reducing agent to fabricate silver nanoparticles with the aim of studying its radioprotective efficacy. The formation of synthesized nanoparticles was characterized by UV–visible analysis (UV–vis), Fourier transform infra-red (FT-IR), Transmission electron microscopy (TEM), Scanning electron microscope (SEM). TEM analysis showed particles size in the range of 20-30 nm. For this study, Swiss albino mice were selected from inbred colony and were divided into 4 groups: group I- control (irradiated-6 Gy), group II- normal (vehicle treated), group III- plant extract alone and group IV- CB-AgNPs (dose of 50 mg/kg body wt./day) administered orally for 7 consecutive days before irradiation to serve as experimental. CB-AgNPs pretreatment rendered significant increase in body weight and testes weight at various post irradiation intervals in comparison to irradiated group. Supplementation of CB-AgNPs reversed the adverse effects of gamma radiation on biochemical parameters as it notably ameliorated the elevation in lipid peroxidation and decline in glutathione concentration in testes. These observations indicate the radio-protective potential of CB-AgNPs in testicular constituents against gamma irradiation in mice.

Keywords: Chlorophytum borivillianum, gamma radiation, radioprotective, silver nanoparticles

Procedia PDF Downloads 143
1446 Effect of Vermicompost and Vermitea on the Growth and Yield of Selected Vegetable Crops

Authors: Josephine R. Migalbin, Jurhamid C. Imlan, Evelyn P. Esteban

Abstract:

A study was conducted to determine the effect of vermicompost and vermitea as organic fertilizers on the growth and yield of selected vegetable crops specifically eggplant, tomatoes and sweet pepper. The study was laid-out in Randomized Complete Block Design with 4 treatments replicated 4 times. The treatments were as follows: Treatment I (control), Treatment II (vermitea), Treatment III (vermicompost with buffalo manure), and Treatment IV (vermicompost with goat and sheep manure). In all the vegetable crops, almost all parameters significantly increased compared with the control except for number of fruits in eggplant and plant height in tomatoes where no significant difference was observed among treatments. The highest marketable fruit yield (tons/ha) was obtained from plants applied with vermicompost with goat and sheep manure but comparable with plants applied with vermicompost with buffalo manure and vermitea while the control plots received the lowest yield. The 28 spotted beetle (Epilachna philippinensis), and shoot and fruit borer (Leucinodes orbonalis) were the serious pests observed in the study on eggplant.

Keywords: marketable fruit yield, vermicompost, vermitea, vegetable crops

Procedia PDF Downloads 570
1445 Simple and Scalable Thermal-Assisted Bar-Coating Process for Perovskite Solar Cell Fabrication in Open Atmosphere

Authors: Gizachew Belay Adugna

Abstract:

Perovskite solar cells (PSCs) shows rapid development as an emerging photovoltaic material; however, the fast device degradation due to the organic nature, mainly hole transporting material (HTM) and lack of robust and reliable upscaling process for photovoltaic module hindered its commercialization. Herein, HTM molecules with/without fluorine-substituted cyclopenta[2,1-b;3,4-b’]dithiophene derivatives (HYC-oF, HYC-mF, and HYC-H) were developed for PSCs application. The fluorinated HTM molecules exhibited better hole mobility and overall charge extraction in the devices mainly due to strong molecular interaction and packing in the film. Thus, the highest power conversion efficiency (PCE) of 19.64% with improved long stability was achieved for PSCs based on HYC-oF HTM. Moreover, the fluorinated HYC-oF demonstrated excellent film processability in a larger-area substrate (10 cm×10 cm) prepared sequentially with the absorption perovskite underlayer via a scalable bar coating process in ambient air and owned a higher PCE of 18.49% compared to the conventional spiro-OMeTAD (17.51%). The result demonstrates a facile development of HTM towards stable and efficient PSCs for future industrial-scale PV modules.

Keywords: perovskite solar cells, upscaling film coating, power conversion efficiency, solution processing

Procedia PDF Downloads 66
1444 Refinement of Thermal and Mechanical Properties of Poly (Lactic Acid)/Poly (Ethylene-Co-Glycidyle Methacrylate)/ Hexagonal Boron Nitride Blend-Composites through Electron-Beam Irradiation

Authors: Ashish Kumar, T. Venkatappa Rao, Subhendu Ray Chowdhury, S. V. S. Ramana Reddy

Abstract:

The main objective of this work is to determine the influence of electron beam irradiation on thermal and mechanical properties of Poly (lactic acid) (PLA)/Poly (ethylene-co-glycidyle methacrylate) (PEGM)/Hexagonal boron nitride (HBN) blend-composites. To reduce the brittleness and improve the toughness of PLA, the PLA/PEGM blend is prepared by using twin-screw Micro compounder. However, the heat deflection temperature (HDT) and other tensile properties were reduced. The HBN has been incorporated into the PLA/PEGM blend as part per hundred i.e. 5 phr and 10phr to improve the HDT. The prepared specimens of blend and blend-composites were irradiated to high energy (4.5 MeV) electron beam (E-beam) at different radiation doses to introduce the cross linking among the polymer chains and uniform dispersion of HBN particles in the PLA/PEGM/HBN blend-composites. The further improvement in the notched impact strength and HDT have been achieved in the case of PLA/PEGM/HBN blend-composites. The irradiated PLA/PEGM/HBN 5phr blend composite shows high notched impact strength and HDT as compared to other unirradiated and E-beam irradiated blend and blend-composites. The improvements in the yield strength and tensile modulus have also been noticed in the case of E-beam irradiated PLA/PEGM/HBN blend-composites as compared to unirradiated blend-composites.

Keywords: blend-composite, e-beam, HDT, PEGM, PLA

Procedia PDF Downloads 181
1443 The Use of Fertilizers in the Context of Agricultural Extension

Authors: Ahmed Altalb

Abstract:

Fertilizers are natural materials, or industrial contain nutrients, which help to improve soil fertility and is considered (nitrogen, phosphorus, and potassium) is important elements for the growth of crops properly. Fertilization is necessary in order to improve the quality of agricultural products and the recovery in agricultural activities. The use of organic fertilizers and chemical lead to reduce the loss of nutrients in agricultural soils, and this leads to an increase in the production of agricultural crops. Fertilizers are one of the key factors in the increase of agricultural production as well as other factors such as irrigation and improved seeds and Prevention and others; the fertilizers will continue to be a cornerstone of the agriculture in order to produce the food to feed of world population. The use of fertilizers has become commonplace today, especially the chemical fertilizers for the development of agricultural production, due to the provision of nutrients for plants and in high concentrations and easily dissolves in water and ease of use. The choose the right type of fertilizer depends on the soil type and the type of crop. In this subject, find the relationship between the agricultural extension and the optimal use of fertilizers. The extension plays the important role in the advise and educate of farmers in how they optimal use the fertilizers in a scientific way. This article aims to identify the concept the fertilizers. Identify the role of fertilizers in increasing the agricultural production, identify the role of agricultural extension in the optimal use of fertilizers and rural development.

Keywords: agricultural, extension, fertilizers, production

Procedia PDF Downloads 433
1442 Determination of the Bearing Capacity of Granular Pumice Soils by Laboratory Tests

Authors: Mustafa Yildiz, Ali Sinan Soganci

Abstract:

Pumice soils are countered in many projects such as transportation roads, channels and residential units throughout the World. The pumice deposits are characterized by the vesicular nature of their particles. When the pumice soils are evaluated considering the geotechnical viewpoint, they differ from silica sands in terms of physical and engineering characteristics. These differences are low grain strength, high friction angle, void ratio and compressibility. At stresses greater than a few hundred kPa, the stress-strain-strength behaviour of these soils is determined by particle crushing. Particle crushing leads to changes in the density and reduction in the components of shear stress due to expansion. In this study, the bearing capacity and behaviour of granular pumice soils compared to sand-gravels were investigated by laboratory model tests. Firstly the geotechnical properties of granular pumice soils were determined; then, the behaviour of pumice soils with an equivalent diameter of sand and gravel soils were investigated by model rectangular and circular foundation types and were compared with each other. For this purpose, basic types of model footing (15*15 cm, 20*20 cm, Φ=15 cm and Φ=20 cm) have been selected. When the experimental results of model bearing capacity are analyzed, the values of sand and gravel bearing capacity tests were found to be 1.0-1.5 times higher than the bearing capacity of pumice the same size. This fact has shown that sand and gravel have a higher bearing capacity than pumice of the similar particle sizes.

Keywords: pumice soils, laboratory model tests, bearing capacity, laboratory model tests, Nevşehir

Procedia PDF Downloads 209
1441 Greatly Improved Dielectric Properties of Poly'vinylidene fluoride' Nanocomposites Using Ag-BaTiO₃ Hybrid Nanoparticles as Filler

Authors: K. Silakaew, P. Thongbai

Abstract:

There is an increasing need for high–permittivity polymer–matrix composites (PMC) owing to the rapid development of the electronics industry. Unfortunately, the dielectric permittivity of PMC is still too low ( < 80). Moreover, the dielectric loss tangent is usually high (tan > 0.1) when the dielectric permittivity of PMC increased. In this research work, the dielectric properties of poly(vinylidene fluoride) (PVDF)–based nanocomposites can be significantly improved by incorporating by silver–BaTiO3 (Ag–BT) ceramic hybrid nanoparticles. The Ag–BT/PVDF nanocomposites were fabricated using various volume fractions of Ag–BT hybrid nanoparticles (fAg–BT = 0–0.5). The Ag–BT/PVDF nanocomposites were characterized using several techniques. The main phase of Ag and BT can be detected by the XRD technique. The microstructure of the Ag–BT/PVDF nanocomposites was investigated to reveal the dispersion of Ag–BT hybrid nanoparticles because the dispersion state of a filler can have an effect on the dielectric properties of the nanocomposites. It was found that the filler hybrid nanoparticles were well dispersed in the PVDF matrix. The phase formation of PVDF phases was identified using the XRD and FTIR techniques. We found that the fillers can increase the polar phase of a PVDF polymer. The fabricated Ag–BT/PVDF nanocomposites are systematically characterized to explain the dielectric behavior in Ag–BT/PVDF nanocomposites. Interestingly, largely enhanced dielectric permittivity (>240) and suppressed loss tangent (tan<0.08) over a wide frequency range (102 – 105 Hz) are obtained. Notably, the dielectric permittivity is slightly dependent on temperature. The greatly enhanced dielectric permittivity was explained by the interfacial polarization between the Ag and PVDF interface, and due to a high permittivity of BT particles.

Keywords: BaTiO3, PVDF, polymer composite, dielectric properties

Procedia PDF Downloads 186
1440 Prospects in Teaching Arabic Grammatical Structures to Non-Arab Learners

Authors: Yahya Toyin Muritala, Nonglaksana Kama, Ahmad Yani

Abstract:

The aim of the paper is to investigate various linguistic techniques in enhancing and facilitating the acquisition of the practical knowledge of Arabic grammatical structuring among non-Arab learners of the standard classical Arabic language in non-Arabic speaking academic settings in the course of the current growth of the internationalism and cultural integration in some higher institutions. As the nature of the project requires standard investigations into the unique principal features of Arabic structurings and implications, the findings of the research work suggest some principles to follow in solving the problems faced by learners while acquiring grammatical aspects of Arabic language. The work also concentrates on the the structural features of the language in terms of inflection/parsing, structural arrangement order, functional particles, morphological formation and conformity etc. Therefore, grammatical aspect of Arabic which has gone through major stages in its early evolution of the classical stages up to the era of stagnation, development and modern stage of revitalization is a main subject matter of the paper as it is globally connected with communication and religion of Islam practiced by millions of Arabs and non-Arabs nowadays. The conclusion of the work shows new findings, through the descriptive and analytical methods, in terms of teaching language for the purpose of effective global communication with focus on methods of second language acquisitions by application.

Keywords: language structure, Arabic grammar, classical Arabic, intercultural communication, non-Arabic speaking environment and prospects

Procedia PDF Downloads 394
1439 Aggregation of Butanediyl-1,4-Bis(Tetradecyldimethylammonium Bromide) (14–4–14) Gemini Surfactants in Presence of Ethylene Glycol and Propylene Glycol

Authors: P. Ajmal Koya, Tariq Ahmad Wagay, K. Ismail

Abstract:

One of the fundamental property of surfactant molecules are their ability to aggregate in water or binary mixtures of water and organic solvents as an effort to minimize their unfavourable interaction with the medium. In this work, influence two co-solvents (ethylene glycol (EG) and propylene glycol (PG)) on the aggregation properties of a cationic gemini surfactant, butanediyl-1,4-bis(tetradecyldimethylammonium bromide) (14–4–14), has been studied by conductance and steady state fluorescence at 298 K. The weight percentage of two co-solvents varied in between 0 and 50 % at an interval of 5 % up to 20 % and then 10 % up to 50 %. It was found that micellization process is delayed by the inclusion of both the co-solvents; consequently, a progressive increase was observed in critical micelle concentration (cmc) and Gibbs free energy of micellization (∆G0m), whereas a rough increase was observed in the values of degree of counter ion dissociation (α) and a decrease was obtained in values of average aggregation number (Nagg) and Stern-Volmer constant (KSV). At low weight percentage (up to 15 %) of co-solvents, 14–4–14 geminis were found to be almost equally prone to micellization both in EG–water (EG–WR) and in PG–water (PG–WR) mixed media while at high weight percentages they are more prone to micellization in EG–WR than in PG–WR mixed media.

Keywords: aggregation number, gemini surfactant, micellization, non aqueous solvent

Procedia PDF Downloads 320
1438 Smelling Our Way through Names: Understanding the Potential of Floral Volatiles as Taxonomic Traits in the Fragrant Ginger Genus Hedychium

Authors: Anupama Sekhar, Preeti Saryan, Vinita Gowda

Abstract:

Plants, due to their sedentary lifestyle, have evolved mechanisms to synthesize a huge diversity of complex, specialized chemical metabolites, a majority of them being volatile organic compounds (VOCs). These VOCs are heavily involved in their biotic and abiotic interactions. Since chemical composition could be under the same selection processes as other morphological characters, we test if VOCs can be used to taxonomically distinguish species in the well-studied, fragrant ginger genus -Hedychium (Zingiberaceae). We propose that variations in the volatile profiles are suggestive of adaptation to divergent environments, and their presence could be explained by either phylogenetic conservatism or ecological factors. In this study, we investigate the volatile chemistry within Hedychium, which is endemic to Asian palaeotropics. We used an unsupervised clustering approach which clearly distinguished most taxa, and we used ancestral state reconstruction to estimate phylogenetic signals and chemical trait evolution in the genus. We propose that taxonomically, the chemical composition could aid in species identification, especially in species complexes where taxa are not morphologically distinguishable, and extensive, targeted chemical libraries will help in this effort.

Keywords: chemotaxonomy, dynamic headspace sampling, floral fragrance, floral volatile evolution, gingers, Hedychium

Procedia PDF Downloads 88
1437 Electrochemical Studies of the Inhibition Effect of 2-Dimethylamine on the Corrosion of Austenitic Stainless Steel Type 304 in Dilute Hydrochloric Acid

Authors: Roland Tolulope Loto, Cleophas Akintoye Loto, Abimbola Patricia Popoola

Abstract:

The inhibiting action of 2-dimethylamine on the electrochemical behaviour of austenitic stainless steel (type 304) in dilute hydrochloric was evaluated through weight-loss method, open circuit potential measurement and potentiodynamic polarization tests at specific concentrations of the organic compound. Results obtained reveal that the compound performed effectively giving a maximum inhibition efficiency of 79% at 12.5% concentration from weight loss analysis and 80.9% at 12.5% concentration from polarization tests. The average corrosion potential of -321 mV was obtained the same concentration from other tests which is well within passivation potentials on the steel thus, providing good protection against corrosion in the acid solutions. 2-dimethylamine acted through physiochemical interaction at the steel/solution interface from thermodynamic calculations and obeyed the Langmuir adsorption isotherm. The values of the inhibition efficiency determined from the three methods are in reasonably good agreement. Polarization studies showed that the compounds behaved as cathodic type inhibitor.

Keywords: corrosion, 2-dimethylamine, inhibition, adsorption, hydrochloric acid, steel

Procedia PDF Downloads 310
1436 Precursor Muscle Cell’s Phenotype under Compression in a Biomimetic Mechanical Niche

Authors: Fatemeh Abbasi, Arne Hofemeier, Timo Betz

Abstract:

Muscle growth and regeneration critically depend on satellite cells (SCs) which are muscle stem cells located between the basal lamina and myofibres. Upon damage, SCs become activated, enter the cell cycle, and give rise to myoblasts that form new myofibres, while a sub-population self-renew and re-populate the muscle stem cell niche. In aged muscle as well as in certain muscle diseases such as muscular dystrophy, some of the SCs lose their regenerative ability. Although it is demonstrated that the chemical composition of SCs quiescent niche is different from the activated niche, the mechanism initially activated in the SCs remains unknown. While extensive research efforts focused on potential chemical activation, no such factor has been identified to the author’s best knowledge. However, it is substantiated that niche mechanics affects SCs behaviors, such as stemness and engraftment. We hypothesize that mechanical stress in the healthy niche (homeostasis) is different from the regenerative niche and that this difference could serve as an early signal activating SCs upon fiber damage. To investigate this hypothesis, we develop a biomimetic system to reconstitute both, the mechanical and the chemical environment of the SC niche. Cells will be confined between two elastic polyacrylamide (PAA) hydrogels with controlled elastic moduli and functionalized surface chemistry. By controlling the distance between the PAA hydrogel surfaces, we vary the compression forces exerted by the substrates on the cells, while the lateral displacement of the upper hydrogel will create controlled shear forces. To establish such a system, a simplified system is presented. We engineered a sandwich-like configuration of two elastic PAA layer with stiffnesses between 1 and 10 kPa and confined a precursor myoblast cell line (C2C12) in between these layers. Our initial observations in this sandwich model indicate that C2C12 cells show different behaviors under mechanical compression if compared to a control one-layer gel without compression. Interestingly, this behavior is stiffness-dependent. While the shape of C2C12 cells in the sandwich consisting of two stiff (10 kPa) layers was much more elongated, showing almost a neuronal phenotype, the cell shape in a sandwich situation consisting of one stiff and one soft (1 kPa) layer was more spherical. Surprisingly, even in proliferation medium and at very low cell density, the sandwich situation stimulated cell differentiation with increased striation and myofibre formation. Such behavior is commonly found for confluent cells in differentiation medium. These results suggest that mechanical changes in stiffness and applied pressure might be a relevant stimulation for changes in muscle cell behavior.

Keywords: C2C12 cells, compression, force, satellite cells, skeletal muscle

Procedia PDF Downloads 115
1435 The Measurements of Nitrogen Dioxide Pollution in Street Canyons

Authors: Aukse Miskinyte, Audrius Dedele

Abstract:

The impact of urban air pollution on human health effects has been revealed in epidemiological studies, which have assessed the associations between various types of gases and particles and negative health outcomes. The percentage of population living in urban areas is increasing, and the assessment of air pollution in certain zones in the city (like street canyons) that have higher level of air pollution and specific dispersion conditions is essential as these places tend to contain a lot of people. Street canyon is defined as a street surrounded by tall buildings on both sides that trapes traffic emissions and prevents pollution dispersion. The aim of this study was to determine the pollution of nitrogen dioxide in street canyons in Kaunas city during cold and warm seasons. The measurements were conducted using passive sampling technique during two-week period in two street canyon sites, whose axes are approximately north-south and north-northeast‒south-southwest. Both of these streets are two-lane roads of 7 meters width, one is in the central part of the city, and other is in the Old Town. The results of two-week measurements showed that the concentration of nitrogen dioxide was higher in summer season than in winter in both street canyon sites. The difference between the level of NO2 in winter and summer seasons was 5.1 and 19.4 µg/m3 in the first and in the second street canyon sites, respectively. The higher concentration of NO2 was determined in the second street canyon site than in the first, although there was calculated lower traffic intensity. These results could be related to the certain street canyon characteristics.

Keywords: air pollution, nitrogen dioxide, passive sampler, street canyon

Procedia PDF Downloads 266
1434 Full-Field Estimation of Cyclic Threshold Shear Strain

Authors: E. E. S. Uy, T. Noda, K. Nakai, J. R. Dungca

Abstract:

Cyclic threshold shear strain is the cyclic shear strain amplitude that serves as the indicator of the development of pore water pressure. The parameter can be obtained by performing either cyclic triaxial test, shaking table test, cyclic simple shear or resonant column. In a cyclic triaxial test, other researchers install measuring devices in close proximity of the soil to measure the parameter. In this study, an attempt was made to estimate the cyclic threshold shear strain parameter using full-field measurement technique. The technique uses a camera to monitor and measure the movement of the soil. For this study, the technique was incorporated in a strain-controlled consolidated undrained cyclic triaxial test. Calibration of the camera was first performed to ensure that the camera can properly measure the deformation under cyclic loading. Its capacity to measure deformation was also investigated using a cylindrical rubber dummy. Two-dimensional image processing was implemented. Lucas and Kanade optical flow algorithm was applied to track the movement of the soil particles. Results from the full-field measurement technique were compared with the results from the linear variable displacement transducer. A range of values was determined from the estimation. This was due to the nonhomogeneous deformation of the soil observed during the cyclic loading. The minimum values were in the order of 10-2% in some areas of the specimen.

Keywords: cyclic loading, cyclic threshold shear strain, full-field measurement, optical flow

Procedia PDF Downloads 230
1433 Investigation of the Carbon Dots Optical Properties Using Laser Scanning Confocal Microscopy and TimE-resolved Fluorescence Microscopy

Authors: M. S. Stepanova, V. V. Zakharov, P. D. Khavlyuk, I. D. Skurlov, A. Y. Dubovik, A. L. Rogach

Abstract:

Carbon dots are small carbon-based spherical nanoparticles, which are typically less than 10 nm in size that can be modified with surface passivation and heteroatoms doping. The light-absorbing ability of carbon dots has attracted a significant amount of attention in photoluminescence for bioimaging and fluorescence sensing applications owing to their advantages, such as tunable fluorescence emission, photo- and thermostability and low toxicity. In this study, carbon dots were synthesized by the solvothermal method from citric acid and ethylenediamine dissolved in water. The solution was heated for 5 hours at 200°C and then cooled down to room temperature. The carbon dots films were obtained by evaporation from a high-concentration aqueous solution. The increase of both luminescence intensity and light transmission was obtained as a result of a 405 nm laser exposure to a part of the carbon dots film, which was detected using a confocal laser scanning microscope (LSM 710, Zeiss). Blueshift up to 35 nm of the luminescence spectrum is observed as luminescence intensity, which is increased more than twofold. The exact value of the shift depends on the time of the laser exposure. This shift can be caused by the modification of surface groups at the carbon dots, which are responsible for long-wavelength luminescence. In addition, a shift of the absorption peak by 10 nm and a decrease in the optical density at the wavelength of 350 nm is detected, which is responsible for the absorption of surface groups. The obtained sample was also studied with time-resolved confocal fluorescence microscope (MicroTime 100, PicoQuant), which made it possible to receive a time-resolved photoluminescence image and construct emission decays of the laser-exposed and non-exposed areas. 5 MHz pulse rate impulse laser has been used as a photoluminescence excitation source. Photoluminescence decay was approximated by two exhibitors. The laser-exposed area has the amplitude of the first-lifetime component (A1) twice as much as before, with increasing τ1. At the same time, the second-lifetime component (A2) decreases. These changes evidence a modification of the surface groups of carbon dots. The detected effect can be used to create thermostable fluorescent marks, the physical size of which is bounded by the diffraction limit of the optics (~ 200-300 nm) used for exposure and to improve the optical properties of carbon dots or in the field of optical encryption. Acknowledgements: This work was supported by the Ministry of Science and Higher Education of Russian Federation, goszadanie no. 2019-1080 and financially supported by Government of Russian Federation, Grant 08-08.

Keywords: carbon dots, photoactivation, optical properties, photoluminescence and absorption spectra

Procedia PDF Downloads 159
1432 Development of Mineral Carbonation Process from Ultramafic Tailings, Enhancing the Reactivity of Feedstocks

Authors: Sara Gardideh, Mansoor Barati

Abstract:

The mineral carbonation approach for reducing global warming has garnered interest on a worldwide scale. Due to the benefits of permanent storage and abundant mineral resources, mineral carbonation (MC) is one of the most effective strategies for sequestering CO₂. The combination of mineral processing for primary metal recovery and mineral carbonation for carbon sequestration is an emerging field of study with the potential to minimize capital costs. A detailed study of low-pressures–solid carbonation of ultramafic tailings in a dry environment has been accomplished. In order to track the changing structure of serpentine minerals and their reactivity as a function of temperature (300-900 ᵒC), CO₂ partial pressure (25-90 mol %), and thermal preconditioning, thermogravimetry has been utilized. The incongruent CO₂ van der Waals molecular diameters with the octahedral-tetrahedral lattice constants of serpentine were used to explain the mild carbonation reactivity. Serpentine requires additional thermal-treatment to remove hydroxyl groups, resulting in the chemical transformation to pseudo-forsterite, which is a mineral composed of isolated SiO₄ tetrahedra linked by octahedrally coordinated magnesium ions. The heating treatment above 850 ᵒC is adequate to remove chemically bound water from the lattice. Particles with a diameter < 34 (μm) are desirable, and thermally treated serpentine at 850 ᵒC for 2.30 hours reached 65% CO₂ storage capacity. The decrease in particle size, increase in temperature, and magnetic separation can dramatically enhance carbonation.

Keywords: particle size, thermogravimetry, thermal-treatment, serpentine

Procedia PDF Downloads 82